

Vol 06 Issue12, Dec 2017 ISSN 2456 – 5083 www.ijiemr.org

COPY RIGHT

2017 IJIEMR.Personal use of this material is permitted. Permission from IJIEMR must

be obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted

component of this work in other works. No Reprint should be done to this paper, all copy

right is authenticated to Paper Authors

IJIEMR Transactions, online available on 8
th

 Dec 2017. Link

:http://www.ijiemr.org/downloads.php?vol=Volume-6&issue=ISSUE-12

Title: DESIGN OF HIGH SPEED CARRY SELECT ADDER USING KOGGESTONE ADDER

Volume 06, Issue 12, Pages: 345–351.

Paper Authors

M.NAVEEN KUMAR, S.DADAPEER

CVRT, AP, India

 USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER

To Secure Your Paper As Per UGC Guidelines We Are Providing A Electronic

Bar Code

Vol 06 Issue12, Dec 2017 ISSN 2456 – 5083 Page 345

DESIGN OF HIGH SPEED CARRY SELECT ADDER USING

KOGGESTONE ADDER
1
M.NAVEEN KUMAR,

2
S.DADAPEER

1
PG Scholar, ECE, CVRT, AP, India

2
Asst Professor, ECE, CVRT, AP, India

Abstract :In this paper, Carry Select Adder (CSA) architecture are proposed using parallel prefix

adder. Instead of using 16-bit Ripple Carry Adder (RCA), parallel prefix adder i.e., 16-bit Brent

Kung (BK) adder is used to design CSA. Adders are key element in digital design, performing

not only addition operation, but also many other function such as subtraction, multiplication and

division. Ripple Carry Adder (RCA) gives the most complicated design as-well-as longer

computation time. The time critical application use Brent Kung parallel prefix adder to drive fast

results but they lead to increase in area. Carry Select Adder understands between RCA and BK

in term of area and delay. Delay of RCA is larger therefore we have replaced it with Brent Kung

parallel prefix adder which gives fast result. Power and delay of 16-bit RCA and 16-bit BK adder

architecture .

INTRODUCTION

Digital filters are very important part of

DSP. In fact their extraordinary performance

is one of the key reasons that DSP has

become so popular. Filters have two uses:

signal separation and signal restoration.

Signal separation is needed when the signal

has been contaminated with interference,

noise or other signals. Which is better?

Analog filters are cheap, fast and have a

large dynamic range both in amplitude and

frequency. Digital filters in comparison are

vastly superior in the level of performance

that can be achieved. Digital filters can

achieve thousand of times better

performance than an analog filter. This

makes a dramatic difference in how filtering

problems are approached. With analog

filters, the emphasis is on handling

limitations of the electronics such as the

accuracy and stability of the resistors and

capacitors. In comparison digital filters are

so good that the performance of the filter is

frequently ignored. The emphasis shifts to

the limitations of the signals and the

theoretical issues regarding their

processing. Multiplying a variable by a set

of known constant coefficients is a common

operation in many digital signal processing

(DSP) algorithms. Compared to other

common operations in DSP algorithms, such

as addition, subtraction, using delay

elements, etc., multiplication is generally the

most expensive. There is a trade-off between

the amount of logic resources used (i.e. the

amount of silicon in the integrated circuit)

and how fast the computation can be done.

Compared to most of the other operations,

multiplication requires more time given the

same amount of logic resources and it

requires more logic resources under the

constraint that each operation must be

completed within the same amount of time.

Vol 06 Issue12, Dec 2017 ISSN 2456 – 5083 Page 346

A general multiplier is needed if one

performs multiplication between two

arbitrary variables. However, when

multiplying by a known constant, we can

exploit the properties of binary

multiplication in order to obtain a less

expensive logic circuit that is functionally

equivalent to simply asserting the constant

on one input of a general multiplier. In many

cases, using a cheaper implementation for

only multiplication still results in significant

savings when considering the entire logic

circuit because multiplication is relatively

expensive. Furthermore, multiplication

could be the dominant operation, depending

on the application.Multipliers are key

components of many high performance

systems such as FIR filters,

microprocessors, digital signal processors,

etc. A system’s performance is generally

determined by the performance of the

multiplier because the multiplier is generally

the slowest clement in the system.

Furthermore, it is generally the most area

consuming. Hence, optimizing the speed and

area of the multiplier is a major design issue.

However, area and speed are usually

conflicting constraints so that improving

speed results mostly in larger areas. As a

result, a whole spectrum of multipliers with

different area-speed constraints have been

designed with fully parallel. Multipliers at

one end of the spectrum and fully serial

multipliers at the other end. In between are

digit serial multipliers where single digits

consisting of several bits are operated on.

These multipliers have moderate

performance in both speed and area.

However, existing digit serial multipliers

have been Plagued by complicated

switching systems and/or irregularities in

design. Radix 2^n multipliers which operate

on digits in a parallel fashion instead of bits

bring the pipelining to the digit level and

avoid most of‘the above problems. They

were introduced by M. K. Ibrahim in 1993.

These structures are iterative and modular.

The pipelining done at the digit level brings

the benefit of constant operation speed

irrespective of the size of’ the multiplier.

The clock speed is only determined by the

digit size which is already fixed before the

design is implemented.

Although binary calculations are the

dominant in most machines, they are not

suitable for commercial, banking, and

business applications due to the

unacceptable inexact decimal to binary

conversion errors they produce. A real

example shows the extreme effect of these

wrong approximations, where it stated that if

a communication company approximates a

5% sales tax on an item (such as a $0.70

telephone call), the yearly loss is over than a

$5 million.In Processors (DSP) and

microprocessor data path units, adder is an

important element. As such, extensive

research continues to be focused on

improving the power-delay performance of

the adder. In VLSI implementations,

parallel-prefix adders are known to have the

best performance. Reconfigurable logic such

as Field Programmable Gate Arrays

(FPGAs) has been gaining in popularity in

recent years because it offers improved

performance in terms of speed and power

over DSP-based and microprocessor-based

solutions for many practical designs

Vol 06 Issue12, Dec 2017 ISSN 2456 – 5083 Page 347

involving mobile DSP and

telecommunications applications and a

significant reduction in development time

and cost over Application Specific

Integrated Circuit (ASIC) designs. The

power advantage is especially important

with the growing popularity of mobile and

portable electronics, which make extensive

use of DSP functions. However, because of

the structure of the configurable logic and

routing resources in FPGAs, parallel-prefix

adders will have a different performance

than VLSI implementations. In particular,

most modern FPGAs employ a fast-carry

chain which optimizes the carry path for the

simple Ripple Carry Adder (RCA).

PARALLEL PREFIX ADDERS

Binary addition is the most fundamental and

frequently used arithmetic operation. A lot

of work on adder design has been done so

far and many architectures have been

proposed. When high operation speed is

required, tree structures like parallel-prefix

adders are used. The Parallel Prefix addition

is done in three steps, which is shown in

fig1. The fundamental generate and

propagate signals are used to generate the

carry input for each adder. Two different

operators black and gray are used here.

Fig 1. Addition procedure using Parallel

Prefix tree structures

 In every bit (i) of the two operand block,

the two input signals (ai and bi) are added to

the corresponding carry-in signal (carryi) to

produce sum output (sumi) The equation to

produce the sum output is:

 Sumi = ai ^ bi ^ carryi (1)

 Computation of the carry-in signals at every

bit is the most critical and time – consuming

operation. In the carry- look ahead scheme

of adders (CLA), the focus is to design the

carry-in signals for an individual bit

additions. This is achieved by generating

two signals, the generate (gi) and propagate

(pi) using the equations:

 Gi = ai ^ bi (2)

 Pi = ai ^ bi (3)

The carry in signal for any adder block is

calculated by using the formula

 Ci+1 = gi V (pi) (4)

Where ci must be expanded to calculate ci+1

at any level of addition Parallel Prefix

adders compute carry-in at each level of

addition by combining generate and

propagate signals in a different manner. Two

operators namely black and gray are used in

parallel prefix trees are shown in fig 2(a), fig

2(b) respectively.

(a) black operator (b) gray operator

Fig 2 Operators used in Parallel Prefix trees

Vol 06 Issue12, Dec 2017 ISSN 2456 – 5083 Page 348

The black operator receives two sets of

generate and propagate signals (gi , pi),(gi-1

,pi-1), computes one set of generate and

propagate signals (go , po) by the following

equations:

 Go = gi V (pi ^ gi-1) (5)

 Po = pi ^ pi-1 (6)

The gray operator receives two sets of

generate and propagate signals (gi, pi),(gi-1

,pi-1), computes only one generate signal

with the same equation as in equation (5).It

is readily apparent that a key advantage of

the tree-structured adder is that the critical

path due to the carry delay is on the order of

log 2N for an N-bit wide adder. The

arrangement of the prefix network gives rise

to various families of adders. For a

discussion of the various carry-tree

structures, see [1, 3]. For this study, the

focus is on the Kogge-Stone adder , known

for having minimal logic depth and fanout.

Here we designate BC as the black cell

which generates the ordered pair in equation

(1); the gray cell (GC) generates the left

signal only, following . The interconnect

area is known to be high, but for an FPGA

with large routing overhead to begin with,

this is not as important as in a VLSI

implementation. The regularity of the Kogge

-Stone prefix network has built in

redundancy which has implications for fault-

tolerant designs. The sparse Kogge -Stone

adder, shown in Fig 1(b), is also studied.

This hybrid design completes the summation

process with a 4 bit RCA allowing the carry

prefix network to be simplified

Fig 3 16 bit Kogge-Stone adder

BRENT KUNG

The Brent Kung adder computes the prefixes

for 2 bit groups. These prefixes are used to

find the prefixes for the 4 bit groups, which

in turn are used to compute the prefixes for

8 bit groups and so on. These prefixes are

then used to compute the carry out of the

particular bit stage. These carries will be

used along with the Group Propagate of the

next stage to compute the Sum bit of that

stage. Brent Kung Tree will be using 2log2N

- 1 stages. Since we are designing a 32-bit

adder the number of stages will be 9. The

fanout for each bit stage is limited to 2. The

diagram below shows the fanout being

minimized and the loading on the further

stages being reduced. But while actually

implemented the buffers are generally

omitted.

Figure 16-bit Brent Kung Adder

Vol 06 Issue12, Dec 2017 ISSN 2456 – 5083 Page 349

CARRY SELECT ADDER

The carry select adder is constructed by

cascading each single-bit full-adder. In the

carry ripple adder, each full-adder starts its

computation till previous carry-out signal is

ready. Therefore, the critical path delay in a

carry ripple adder is determined by its carry-

out propagation path. For an N-bit full-adder

as illustrated in Fig. 6.1, the critical path is

N-bit carry propagation path in the full-

adders. As the bit number N increases, the

delay time of carry ripple adder will increase

accordingly in a linear way. In order to

improve the shortcoming of carry ripple

adder to remove the linear dependency

between computation delay time and input

word length, carry select adder is presented.

The carry select adder divides the carry

ripple adder into M parts, while each part

consists of a duplicated (N/M)-bit carry

ripple adder pair, as illustrated in Fig. 6.2 as

M=16 and N=4. This duplicated carry ripple

adder pair is to anticipate both possible carry

input values, where one carry ripple adder is

calculated as carry input value is logic “0”

and another carry ripple adder is calculated

as carry input value is logic “1”. When the

actual carry input is ready, either the result

of carry “0” path or the result of carry “1”

path is selected by the multiplexer according

to its carry input value. An example of 5-bit

carry select adder is illustrated in Fig. 6.3.

To anticipate both possible carry input

values in advance, the start of each M part

carry ripple adder pair no longer need to

wait for the coming of previous carry input.

As a result, each M part carry ripple adder

pair in the carry select adder can compute in

parallel. In this way, the critical path of N

bit adder can be greatly reduced. In the

conventional N-bit carry ripple adder design,

the critical path is N-bit carry propagation

path plus one summation generation stage.

Alternatively, the critical path is (N/M)-bit

carry propagation path plus M stage

multiplexer with one summation generation

stage in the N-bit carry select adder. Since

M is much smaller than N and delay in the

multiplexer is smaller than that in the full

adder, the computation delay in the carry

select adder is much shorter than that in the

carry ripple adder. However, implementing

the adder with duplicated carry generation

circuit costs almost twice hardware and

twice power consumption as compared with

the carry ripple adder.

 16-B REGULAR CSLA

The carry-select adder generally consists of

two ripple carry adders and a multiplexer.

Adding two n-bit numbers with a carry-

select adder is done with two adders

(therefore two ripple carry adders). In order

to perform the calculation twice, one time

with the assumption of the carry-in being

zero and the other assuming it will be one.

After the two results are calculated, the

correct sum, as well as the correct carry-out,

is then selected with the multiplexer once

the correct carry-in is known. The number of

bits in each carry select block can be

uniform, or variable. In the uniform case, the

optimal delay occurs for a block size of √n .
When variable, the block size should have a

delay, from addition inputs A and B to the

carry out, equal to that of the multiplexer

chain leading into it, so that the carry out is

calculated just in time. The √n delay is
derived from uniform sizing, where the ideal

https://en.wikipedia.org/wiki/Adder_(electronics)#Multiple-bit_adders
https://en.wikipedia.org/wiki/Multiplexer

Vol 06 Issue12, Dec 2017 ISSN 2456 – 5083 Page 350

number of full-adder elements per block is

equal to the square root of the number of

bits being added, since that will yield an

equal number of MUX delays.

BRENT KUNG CARRY SELECT ADDER

Conventional Carry Select Adder consists of

dual Ripple Carry Adders and a multiplexer.

Brent Kung Adder has reduced delay as

compared to Ripple Carry Adder. So,

Regular Linear BK CSA is designed using

Brent Kung Adder. Regular Linear KS CSA

consists of a single Brent Kung adder fo r

Cin=O and a Ripple Carry Adder for Cin=1.

It has four groups of same size. Each group

consists of single Brent Kung adder, single

RCA and multiplexer. We use tree structure

form in Brent Kung adder to increase the

speed of arithmetic operation. The schematic

diagram of Regular Linear BK CSA is

shown in Fig. 3.

KOGGE STONE CARRY SELECT

ADDER

The CSLA is used in many computational

systems design to moderate the problem of

carry propagation delay by independently

generating multiple carries and then select a

carry to generate the sum. It uses

independent ripple carry adders (for Cin=O

and Cin=l) to generate the resultant sum.

However, the Regular CSLA (RCSLA) is

not area and speed efficient because it uses

multiple pairs of Kogge Stone Adders

(KSA) to generate partial sum and carry by

considering carry input. The final sum and

carry are selected by the multiplexers (mux).

Due to the use of two independent KSA the

area will increase which leads an increase in

delay. To overcome the above problem, the

basic idea of the proposed work is to use n-

bit first zero finding logic. This logic can be

replaced in KSA for "Cin=l" to further

reduces the area. Using a fust zero finding

logic instead of KSA in the RCSLA will

achieve lower area of Modified CSLA

(MCSLA). The main advantage of this zero

finding logic comes from the lesser number

of logic gates than the Full Adder (FA)

structure because the number of gates used

will be decreased.

The structure of 64 bit Linear Kogge Stone

Carry Select Adder is shown in Fig.2. It has

sixteen groups of same size KSA. Each

group consists of two identical 4 bit Kogge

stone adders and one 10:5 multiplexer

except fust group which has single 4bit KSA

only. In which we have given Cin=O to one

4bit KSA and Cin=1 to another 4bit KSA.

Depending upon the previous carry the

selection of either one of the 4bit KSA

output is fed to the 10:5 multiplexer along

Vol 06 Issue12, Dec 2017 ISSN 2456 – 5083 Page 351

with carry.Methodology for delay and area

evaluations are same for Kogge Stone

Linear Carry Select Adder with Cin=O and

Cin=1 .Depending upon the selection input

i.e carry from previous group, final sum and

carry differ in delays[5]. Where as Area

evaluation for each group except group 1

remains same.

CONCLUSION AND FUTURE SCOPE

This work can be extended for higher

number of bits also. By using parallel prefix

adder, delay and power consumption of

different adder architectures is reduced. As,

parallel prefix adders derive fast results

therefore Brent Kung adder is used. The

calculated results conclude that BK Carry

Select Adder is better in terms of power

consumption and high speed when

compared with RCA adder architectures and

can be used in different applications of

adders like in multipliers, to execute

different algorithms of Digital Signal

Processing like Finite Impulse Response,

Infinite Impulse Response etc.

REFERENCES

[1] Sudheer Kumar Yezerla, B Rajendra

Naik. “Design and Estimation of delay,

power and area for Parallel prefix adders”

Proceedings of 2014 RAECS UIET Panjab

University Chandigarh, 06 - 08 March,

2014.

[2] N. H. E. Weste and D. Harris, CMOS

VLSI Design, 4th edition,Pearson–Addison-

Wesley, 2011.

[3] R. P. Brent and H. T. Kung, “A regular

layout for parallel adders,” IEEE Trans.

Comput., vol. C-31, pp. 260-264, 1982.

[4] Y. Choi, "Parallel Prefix Adder Design",

Proc. 17th IEEE Symposium on Computer

Arithmetic, pp. 90-98, 27th June 2005.

[5] Basant Kumar Mohanty and Sujit Kumar

Patel “Area–Delay–Power Efficient Carry-

Select Adder,” IEEE transaction on circuits

and systems-II: Express briefs, VOL. NO. 6,

JUNE 2014.

[6] L. Mugilvannan and S. Ramasamy

“Low-Power and Area-Efficient Carry

Select Adder Using Modified BEC-1

Converter” IEEE-31661. 4th ICCCNT2013

July 4-6, 2013, Tiruchengode, India.

[7] T. Lynch and E. E. Swartzlander, “A

Spanning Tree Carry Look ahead Adder,”

IEEE Trans. On Computers, vol. 41, no. 8,

pp. 931-939, Aug.1992.

[8] D. Jaya Kumar, Dr.E. Logashanmugam,

―Performance Analysis of FIR filter using

Booth Multiplier‖, IEEE July 2014.
[9] Shelja Jose, Shereena Mytheen

,‖Modified Booth Multiplier Based Low-

Cost FIR Filter Design” International

Journal of Engineering Science and

Innovative Technology (IJESIT) Volume 3,

Issue 5, September 2014.

[10] Sarita Chouhan1,Yogesh Kumar2,

―Low power designing of FIR filters‖,
ISSN No: 2250-3536 ,May 2012.

 [11] Rashidi B, Pourormazd M ―Design

and implementation of low power digital

FIR filter based on low power multipliers

and adders on xilinx FPGA‖,IEEE April
2011.

 [12] Ravikumar A Javali, Ramanath J

Nayak, Ashish M Mhetar, Manjunath C

Lakkannavar‖ Design of High Speed Carry

Save Adder using Carry Lookahead Adder

“Proceedings of International Conference on

Circuits, Communication, Control and

Computing (I4C 2014).

Vol 06 Issue12, Dec 2017 ISSN 2456 – 5083 Page 352

