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Abstract :In this paper, Carry Select Adder (CSA) architecture are proposed using parallel prefix 

adder. Instead of using 16-bit Ripple Carry Adder (RCA), parallel prefix adder i.e., 16-bit Brent 

Kung (BK) adder is used to design CSA. Adders are key element in digital design, performing 

not only addition operation, but also many other function such as subtraction, multiplication and 

division. Ripple Carry Adder (RCA) gives the most complicated design as-well-as longer 

computation time. The time critical application use Brent Kung parallel prefix adder to drive fast 

results but they lead to increase in area. Carry Select Adder understands between RCA and BK 

in term of area and delay. Delay of RCA is larger therefore we have replaced it with Brent Kung 

parallel prefix adder which gives fast result. Power and delay of 16-bit RCA and 16-bit BK adder 

architecture .  

 

INTRODUCTION 

Digital filters are very important part of 

DSP. In fact their extraordinary performance 

is one of the key reasons that DSP has 

become so popular. Filters have two uses: 

signal separation and signal restoration. 

Signal separation is needed when the signal 

has been contaminated with interference, 

noise or other signals. Which is better? 

Analog filters are cheap, fast and have a 

large dynamic range both in amplitude and 

frequency. Digital filters in comparison are 

vastly superior in the level of performance 

that can be achieved. Digital filters can 

achieve thousand of times better 

performance than an analog filter. This 

makes a dramatic difference in how filtering 

problems are approached. With analog 

filters, the emphasis is on handling 

limitations of the electronics such as the 

accuracy and stability of the resistors and 

capacitors. In comparison digital filters are  

 

so good that the performance of the filter is 

frequently ignored. The emphasis shifts to 

the limitations of the signals and the 

theoretical issues  regarding their 

processing.  Multiplying a variable by a set 

of known constant coefficients is a common 

operation in many digital signal processing 

(DSP) algorithms. Compared to other 

common operations in DSP algorithms, such 

as addition, subtraction, using delay 

elements, etc., multiplication is generally the 

most expensive. There is a trade-off between 

the amount of logic resources used (i.e. the 

amount of silicon in the integrated circuit) 

and how fast the computation can be done. 

Compared to most of the other operations, 

multiplication requires more time given the 

same amount of logic resources and it 

requires more logic resources under the 

constraint that each operation must be  

completed within the same amount of time.  
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A general multiplier is needed if one 

performs multiplication between two 

arbitrary variables. However, when 

multiplying by a known constant, we can 

exploit the properties of binary 

multiplication in order to obtain a less 

expensive logic circuit that is functionally 

equivalent to simply asserting the constant 

on one input of a general multiplier. In many 

cases, using a cheaper implementation for 

only multiplication still results in significant 

savings when considering the entire logic 

circuit because multiplication is relatively 

expensive. Furthermore, multiplication 

could be the dominant operation, depending 

on the application.Multipliers are key 

components of many high performance 

systems such as FIR filters, 

microprocessors, digital signal processors, 

etc. A system’s performance is generally 

determined by the performance of the 

multiplier because the multiplier is generally 

the slowest clement in the system. 

Furthermore, it is generally the most area 

consuming. Hence, optimizing the speed and 

area of the multiplier is a major design issue. 

However, area and speed are usually 

conflicting constraints so that improving 

speed results mostly in larger areas. As a 

result, a whole spectrum of multipliers with 

different area-speed constraints have been 

designed with fully parallel. Multipliers at 

one end of the spectrum and fully serial 

multipliers at the other end. In between are 

digit serial multipliers where single digits 

consisting of several bits are operated on. 

These multipliers have moderate 

performance in both speed and area. 

However, existing digit serial multipliers  

 

have been Plagued by complicated 

switching systems and/or irregularities in 

design. Radix 2^n multipliers which operate 

on digits in a parallel fashion instead of bits 

bring the pipelining to the digit level and 

avoid most of‘the above problems. They 

were introduced by M. K. Ibrahim in 1993. 

These structures are iterative and modular. 

The pipelining done at the digit level brings 

the benefit of constant operation speed 

irrespective of the size of’ the multiplier. 

The clock speed is only determined by the 

digit size which is already fixed before the 

design is implemented. 

Although binary calculations are the 

dominant in most machines, they are not 

suitable for commercial, banking, and 

business applications due to the 

unacceptable inexact decimal to binary 

conversion errors they produce. A real 

example shows the extreme effect of these 

wrong approximations, where it stated that if 

a communication company approximates a 

5% sales tax on an item  (such as a $0.70 

telephone call), the yearly loss is over than a 

$5 million.In Processors (DSP) and 

microprocessor data path units, adder is an 

important element. As such, extensive 

research continues to be focused on 

improving the power-delay performance of 

the adder. In VLSI implementations, 

parallel-prefix adders are known to have the 

best performance. Reconfigurable logic such 

as Field Programmable Gate Arrays 

(FPGAs) has been gaining in popularity in 

recent years because it offers improved 

performance in terms of speed and power 

over DSP-based and microprocessor-based 

solutions for many practical designs  
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involving mobile DSP and 

telecommunications applications and a 

significant reduction in development time 

and cost over Application Specific 

Integrated Circuit (ASIC) designs. The 

power advantage is especially important 

with the growing popularity of mobile and 

portable electronics, which make extensive 

use of DSP functions. However, because of 

the structure of the configurable logic and 

routing resources in FPGAs, parallel-prefix 

adders will have a different performance 

than VLSI implementations. In particular, 

most modern FPGAs employ a fast-carry 

chain which optimizes the carry path for the 

simple Ripple Carry Adder (RCA). 

PARALLEL PREFIX ADDERS  

Binary addition is the most fundamental and 

frequently used arithmetic operation. A lot 

of work on adder design has been done so 

far and many architectures have been 

proposed. When high operation speed is 

required, tree structures like parallel-prefix 

adders are used. The Parallel Prefix addition 

is done in three steps, which is shown in 

fig1. The fundamental generate and 

propagate signals are used to generate the 

carry input for each adder. Two different 

operators black and gray are used here. 

 
Fig 1. Addition procedure using Parallel 

Prefix tree structures 

 

 In every bit (i) of the two operand block, 

the two input signals (ai and bi) are added to 

the corresponding carry-in signal (carryi) to 

produce sum output (sumi) The equation to 

produce the sum output is: 

      Sumi = ai ^ bi ^ carryi          (1) 

 Computation of the carry-in signals at every 

bit is the most critical and time – consuming 

operation. In the carry- look ahead scheme 

of adders (CLA), the focus is to design the 

carry-in signals for an individual bit 

additions. This is achieved by generating 

two signals, the generate (gi) and propagate 

(pi) using the equations: 

                      Gi = ai ^ bi                (2) 

                     Pi = ai ^ bi                 (3) 

The carry in signal for any adder block is 

calculated by using the formula 

                 Ci+1 = gi V (pi)            (4) 

Where ci must be expanded to calculate ci+1 

at any level of addition Parallel Prefix 

adders compute carry-in at each level of 

addition by combining generate and 

propagate signals in a different manner. Two 

operators namely black and gray are used in 

parallel prefix trees are shown in fig 2(a), fig 

2(b) respectively. 

 
(a) black operator            (b) gray operator 

Fig 2 Operators used in Parallel Prefix trees 
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The black operator receives two sets of 

generate and propagate signals (gi , pi),(gi-1 

,pi-1), computes one set of generate and 

propagate signals (go , po) by the following 

equations: 

       Go = gi V (pi ^ gi-1)                         (5) 

       Po = pi ^ pi-1                                    (6) 

The gray operator receives two sets of 

generate and propagate signals (gi, pi),(gi-1 

,pi-1), computes only one generate signal 

with the same equation as in equation (5).It 

is readily apparent that a key advantage of 

the tree-structured adder is that the critical 

path due to the carry delay is on the order of 

log 2N for an N-bit wide adder. The 

arrangement of the prefix network gives rise 

to various families of adders. For a 

discussion of the various carry-tree 

structures, see [1, 3]. For this study, the 

focus is on the Kogge-Stone adder , known 

for having minimal logic depth and fanout. 

Here we designate BC as the black cell 

which generates the ordered pair in equation 

(1); the gray cell (GC) generates the left 

signal only, following . The interconnect 

area is known to be high, but for an FPGA 

with large routing overhead to begin with, 

this is not as important as in a VLSI 

implementation. The regularity of the Kogge 

-Stone prefix network has built in 

redundancy which has implications for fault-

tolerant designs. The sparse Kogge -Stone 

adder, shown in Fig 1(b), is also studied. 

This hybrid design completes the summation 

process with a 4 bit RCA allowing the carry 

prefix network to be simplified 

 

 

 

 

 
Fig 3 16 bit  Kogge-Stone adder 

BRENT KUNG  

The Brent Kung adder computes the prefixes 

for 2 bit groups. These prefixes are used to 

find the prefixes for the 4 bit groups, which 

in turn are used to compute the prefixes for 

8 bit groups and so on. These prefixes are 

then used to compute the carry out of the 

particular bit stage. These carries will be 

used along with the Group Propagate of the 

next stage to compute the Sum bit of that 

stage. Brent Kung Tree will be using 2log2N 

- 1 stages. Since we are designing a 32-bit 

adder the number of stages will be 9. The 

fanout for each bit stage is limited to 2. The 

diagram below shows the fanout being 

minimized and the loading on the further 

stages being reduced. But while actually 

implemented the buffers are generally 

omitted. 

 
Figure 16-bit Brent Kung Adder 
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CARRY SELECT ADDER 

The carry select adder is constructed by 

cascading each single-bit full-adder. In the 

carry ripple adder, each full-adder starts its 

computation till previous carry-out signal is 

ready. Therefore, the critical path delay in a 

carry ripple adder is determined by its carry-

out propagation path. For an N-bit full-adder 

as illustrated in Fig. 6.1, the critical path is 

N-bit carry propagation path in the full-

adders. As the bit number N increases, the 

delay time of carry ripple adder will increase 

accordingly in a linear way. In order to 

improve the shortcoming of carry ripple 

adder to remove the linear dependency 

between computation delay time and input 

word length, carry select adder is presented. 

The carry select adder divides the carry 

ripple adder into M parts, while each part 

consists of a duplicated (N/M)-bit carry 

ripple adder pair, as illustrated in Fig. 6.2 as 

M=16 and N=4. This duplicated carry ripple 

adder pair is to anticipate both possible carry 

input values, where one carry ripple adder is 

calculated as carry input value is logic “0” 

and another carry ripple adder is calculated 

as carry input value is logic “1”. When the 

actual carry input is ready, either the result 

of carry “0” path or the result of carry “1” 

path is selected by the multiplexer according 

to its carry input value. An example of 5-bit 

carry select adder is illustrated in Fig. 6.3. 

To anticipate both possible carry input 

values in advance, the start of each M part 

carry ripple adder pair no longer need to 

wait for the coming of previous carry input. 

As a result, each M part carry ripple adder 

pair in the carry select adder can compute in 

parallel. In this way, the critical path of N  

 

bit adder can be greatly reduced. In the 

conventional N-bit carry ripple adder design, 

the critical path is N-bit carry propagation 

path plus one summation generation stage. 

Alternatively, the critical path is (N/M)-bit 

carry propagation path plus M stage 

multiplexer with one summation generation 

stage in the N-bit carry select adder. Since 

M is much smaller than N and delay in the 

multiplexer is smaller than that in the full 

adder, the computation delay in the carry 

select adder is much shorter than that in the 

carry ripple adder. However, implementing 

the adder with duplicated carry generation 

circuit costs almost twice hardware and 

twice power consumption as compared with 

the carry ripple adder.  

 16-B REGULAR  CSLA 

The carry-select adder generally consists of 

two ripple carry adders and a multiplexer. 

Adding two n-bit numbers with a carry-

select adder is done with two adders 

(therefore two ripple carry adders). In order 

to perform the calculation twice, one time 

with the assumption of the carry-in being 

zero and the other assuming it will be one. 

After the two results are calculated, the 

correct sum, as well as the correct carry-out, 

is then selected with the multiplexer once 

the correct carry-in is known. The number of 

bits in each carry select block can be 

uniform, or variable. In the uniform case, the 

optimal delay occurs for a block size of √n . 
When variable, the block size should have a 

delay, from addition inputs A and B to the 

carry out, equal to that of the multiplexer 

chain leading into it, so that the carry out is 

calculated just in time. The √n delay is 
derived from uniform sizing, where the ideal  

https://en.wikipedia.org/wiki/Adder_(electronics)#Multiple-bit_adders
https://en.wikipedia.org/wiki/Multiplexer
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number of full-adder elements per block is 

equal to the square root of the number of 

bits being added, since that will yield an 

equal number of MUX delays. 

 
BRENT KUNG CARRY SELECT ADDER 

Conventional Carry Select Adder consists of 

dual Ripple Carry Adders and a multiplexer. 

Brent Kung Adder has reduced delay as 

compared to Ripple Carry Adder. So, 

Regular Linear BK CSA is designed using 

Brent Kung Adder.  Regular Linear KS CSA 

consists of a single Brent Kung adder  fo r 

Cin=O and a Ripple Carry Adder for Cin=1. 

It has four  groups of same size. Each group 

consists of single Brent Kung  adder, single 

RCA and multiplexer. We use tree structure 

form in Brent Kung adder to increase the 

speed of arithmetic operation. The schematic 

diagram of Regular Linear BK CSA is 

shown in Fig. 3. 

 
KOGGE STONE CARRY SELECT 

ADDER 

The CSLA is used in many computational 

systems design to moderate the problem of 

carry propagation delay by independently 

generating multiple carries and then select a 

carry to generate the sum. It uses 

independent ripple carry adders (for Cin=O 

and Cin=l) to generate the resultant sum. 

However, the Regular CSLA (RCSLA) is 

not area and speed efficient because it uses 

multiple pairs of Kogge Stone Adders 

(KSA) to generate partial sum and carry by 

considering carry input. The final sum and 

carry are selected by the multiplexers (mux). 

Due to the use of two independent KSA the 

area will increase which leads an increase in 

delay. To overcome the above problem, the 

basic idea of the proposed work is to use n-

bit first zero finding logic. This logic can be 

replaced in KSA for "Cin=l" to further 

reduces the area. Using a fust zero finding 

logic instead of KSA in the RCSLA will 

achieve lower area of Modified CSLA 

(MCSLA). The main advantage of this zero 

finding logic comes from the lesser number 

of logic gates than the Full Adder (FA) 

structure because the number of gates used 

will be decreased. 

 
The structure of 64 bit Linear Kogge Stone 

Carry Select Adder is shown in Fig.2. It has 

sixteen groups of same size KSA. Each 

group consists of two identical 4 bit Kogge 

stone adders and one 10:5 multiplexer 

except fust group which has single 4bit KSA 

only. In which we have given Cin=O to one 

4bit KSA and Cin=1 to another 4bit KSA. 

Depending upon the previous carry the 

selection of either one of the 4bit KSA 

output is fed to the 10:5 multiplexer along  
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with carry.Methodology for delay and area 

evaluations are same for Kogge Stone 

Linear Carry Select Adder with Cin=O and 

Cin=1 .Depending upon the selection input 

i.e carry from previous group, final sum and 

carry differ in delays[5]. Where as Area 

evaluation for each group except group 1 

remains same. 

CONCLUSION AND FUTURE SCOPE 

This work can be extended for higher 

number of bits also. By using parallel prefix 

adder, delay and power consumption of 

different adder architectures is reduced. As, 

parallel prefix adders derive fast results 

therefore Brent Kung adder is used. The 

calculated results conclude that BK Carry 

Select Adder is better in terms of power 

consumption and high speed when 

compared with RCA adder architectures and 

can be used in different applications of 

adders like in multipliers, to execute 

different algorithms of Digital Signal 

Processing like Finite Impulse Response, 

Infinite Impulse Response etc. 
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