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 Abstract  

The on-chip communication requirements of many systems are best served through the deployment of a 

regular chip-wide network. This paper presents the design of a low-latency on-chip network router for such 

applications. We remove control overheads (routing and arbitration logic) from the critical path in order to 

minimise cycle-time and latency. Simulations illustrate that dramatic cycle time improvements are possible 

without compromising router efficiency. Furthermore, these reductions permit flits to be routed in a single 

cycle, maximising the effectiveness of the router’s limited buffering resources.  

 

1. Introduction  

The ability to fully exploit modern fabrication 

technologies is tempered by both physical and 

logical design complexity. The cost of this 

complexity suggests the reuse of design and 

verification effort wherever possible. This is often 

achieved by composing systems from 

commodityIP or by reusing custom blocks 

repeatedly in the same design. The relatively poor 

scaling of global interconnects and the need to 

achieve architectural performance gains in an 

energy-efficient manner, provide pressure to 

decentralise computation. Together these trends 

suggest a move towards an increasingly 

communication-centric view of processor and 

system architecture.  

One proposed solution to the problem of chip-

wide communication is a network of top-level 

point-to-point communication channels [1, 8, 12] 

(See Figure 1). This highly regular wiring strategy 

aims to reuse a small number of highly optimised 

wiring layout and driver designs. As channel 

layouts are reused to create the network, effort in 

characterising delay, power and verifying signal 

integrity is minimised. The simple behaviour of 

the network also aids in predicting performance 

and ensuring correctness. In contrast, large bus 

based communication networks present  a 

complex verification task at every level. In 

addition, the limited ability to scale interconnect 

delays makes the presence of long global wires 

and buses increasingly undesirable. 

 

 
 Figure 1. On-Chip Network. Each tile may 

contain identical logic, as in the case of a 

multiprocessor or tiled system, or simply represent 

apart it ioning of a SoC design.  

Similar observations have already been made in 

the case of inter-chip and wider-area 

communication. While much of this work is 

applicable, some important differences exist [8]. 



 

Volume 06 Issue 11 Nov 2017          ISSN: 2456 - 5083 Page 263 

 

In particular, on-chip designs exploit a far greater 

number of pins and wires, while inter-chip designs 

are often pin limited. In addition, while inter-chip 

router designs may exploit a large number of 

buffers, on-chip designs must aim to minimise 

buffer count in order to maximise the silicon real-

estate available for computation. Area pressures, 

together with the need to minimise on-chip 

communication latencies, suggest the 

implementation of relatively simple on-chip 

routers.  This paper describes how router latency 

may be significantly reduced by hiding control 

overheads. The creation of a single-cycle 

architecture also reduces latency and maximises 

the impact of limited buffering resources. 

Simulation results illustrate that while these 

techniques offer dramatic cycle time reductions, 

they do not compromise router efficiency. Initial 

circuit-level simulations suggest a router cycle 

time of 12-FO4 delays1 plus clock overhead is 

possible. Previously published delay models have 

suggested similar router designs require three 

pipeline stages and a clock cycle-time of 20-FO4 

delays [19].  We provide an overview of a generic 

virtual-channel router implementation in Section 

2. Section 3 introduces the techniques we use to 

optimise the router’s control. The critical path of 

the optimised router is analysed in Section 4. 

Simulation results comparing a number of router 

control implementations are presented in Section 

5. Section 6 and 7 discuss related work and 

conclude the paper. 

 

2. Background  

A network may be characterised by its topology, 

routing strategy and method of flow-control [5]. 

For simplicity we assume a mesh network (with 

bidirectional links) together with dimension-

ordered (XY) routing2.  

The choice of flow control technique is guided by 

the need to minimise buffer requirements and 

latency in our on-chip network. Schemes that 

reserve buffer space or apply flow-control at the 

packet level, such as store-and-forward [20] or 

virtual-cut through [13], are unsuitable for these 

reasons. A wormhole-router provides the 

necessary fine-grained flow control, while the 

addition of virtual-channels [4, 6] aids in boosting 

performance and circumventing message-

dependent deadlock. Furthermore, Quality-of-

Service (QoS) enhancements are possible by 

prioritising the allocation of virtual-channels and 

switch bandwidth.  

The remainder of this section provides an 

overview of the architecture of a generic virtual-

channel router.  

2.1. Overview of a Virtual-Channel Router  

Figure 2 illustrates the major components of a 

generic virtual-channel router. The router has P 

input ports and P output ports, supporting V 

virtual-channels (VCs) per port.  

Virtual-channel flow control exploits an array of 

buffers at each input port. By allocating different 

packets to each of these buffers, flits3 from 

multiple packets may be sent in an interleaved 

manner over a single physical channel. This 

improves both throughput and latency by allowing 

blocked packets to be bypassed.
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The basic steps undertaken by a virtual-channel 

router are enumerated below:  

1. Routing. The first flit of a new packet arrives at 

the router. The routing field is examined and a set 

of valid output virtual-channels upon which the 

packet can be routed is produced. The number of 

output VCs produced by the routing logic will 

depend on the routing function. Possibilities range 

from a single output VC to a number of different 

VCs potentially at different physical channels (i.e. 

adaptive routing).  

The selection of an output VC can also be 

influenced by the class of the packet to be routed. 

Packets from particular classes will often be 

restricted to travelling on a subset of virtual-

channels to avoid message-dependent deadlock. A 

common practise is to provide separate request 

and reply virtual-networks.  

2. Virtual-Channel Allocation. An attempt is 

made to allocate an unused VC to the new packet. 

A request is made for one of the virtual-channels 

returned by the routing function. Allocation 

involves arbitrating between all those packets 

requesting the same output VC.  

3. Switch Allocation. Each packet maintains state 

indicating the availability of buffer space at their 

assigned output VC. When flits are waiting to be 

sent, and buffer space is available, an input VC 

will request access to the necessary output channel 

via the router’s crossbar. On each cycle the switch 

allocation logic matches these requests to output 

ports, generating the required crossbar control 

signals.  

4. Crossbar Traversal. Flits that have been 

granted passage on the crossbar are passed to the 

appropriate output channel.  

The following sections describe in more detail 

each of the router’s components.  

2.2. Input Buffer and Bypass  

Each new incoming flit is stored in the VC buffer 

designated by its VC identifier. This identifier is 

appended to every flit in the previous router stage. 

If the VC buffer is empty and the flit is able to 

access the crossbar immediately, a bypass path is 

required to expedite its journey.  

2.3. Routing Logic  

In order for virtual-channel and switch allocation 

to take place the routing function must first be 

evaluated to determine which virtual-channel(s) at 

which output port(s) the packet may request. To 

ensure that this computation does not lie on the 

router’s critical path, the computation may be 

performed in the previous router in preparation for 

use in the next. The idea that the route may be 

calculated one step ahead of where it is required 

was first employed by the SGI routing chip [10] 

and is known as look-ahead routing.  

2.4. Virtual-Channel Allocation  

Peh and Dally detail the complexity of both 

virtual-channel (VC) allocation and switch-

allocation logic in [19]. The following two 

sections provide a brief overview of these 

schemes.  

The complexity of VC allocation is dependent on 

the range of the routing function. In the simplest 

case, where the routing function returns a single 

VC, the allocation process simply consists of a 

single arbiter for each output VC. As any of the 

input VCs may request any output VC, each 

arbiter must support P V inputs.  

If the router function returns multiple output VCs 

restricted to a single physical channel, an 

additional arbitration stage is required to reduce 

the number of requests from each input VC to one. 

The winning request at each virtual channel buffer 

then proceeds to the second stage as described 

above. The complexity of such a scheme is 

illustrated in Figure 3. The routing function 

determines the output port and VCs that may be 

requested prior to VC allocation. A VC which is 

free to be allocated is then selected by the first 

stage of arbitration. The result of this first stage of 
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arbitration is a request for a single VC at a 

particular output port. This request is subsequently 

sent to the appropriate second stage arbiter. While 

this scheme does not guarantee to allocate all free 

output VCs to potential waiting input VCs in a 

single cycle, there is no performance penalty as 

only one flit may be sent per cycle on an output 

channel.  In the most general case where the 

routing channel may return any of P V VCs, the 

number of inputs to the first stage of arbiters must 

now be increased from V to P V. In this case some 

performance degradationmay be expected as the 

scheme makes little effort to perform a good 

matching of requests to free output VCs. 

 

Figure 3. Arbitration complexity of a virtual 

channel allocator. In this example, the routing 

function returns a single output port and one or 

more VC requests.  

2.5. Switch Allocation  

Individual flits arbitrate for access to physical 

channels via the crossbar on each cycle. 

Arbitration may be performed in two stages [19]. 

The first reflects the sharing of a single crossbar 

port by V input virtual-channels, this requires a V-

input arbiter for each input port. The second stage 

must arbitrate between winning requests from 

each input port (P inputs) for each output channel. 

The scheme is illustrated in Figure 4. The request 

for a particular output port is routed from the VC 

which wins the first stage of arbitration.  

In order to improve fairness, the state of the V-

input arbiter is only updated if the request is also 

successful in the second stage of arbitration.We 

assume this organisation wherever multiple stages 

of arbitration are present.  

This switch allocator organisation may reduce the 

number of requests for different output ports in the 

first stage of arbitration, resulting in some wasted 

switch bandwidth.  

2.6. Speculative Switch Arbitration 

Virtual-channel flow control as discussed 

performs VC allocation and switch allocation 

sequentially. This guarantees that only packets 

that have successfully obtained an output VC from 

the VC allocator can make requests for their 

desired output channel.  

Peh and Dally [19] describe how this dependency 

may be relaxed if we speculate that a waiting 

packet will successfully be allocated an output 

VC. In this way both VC and switch allocation can 

be performed in parallel. To avoid a negative 

impact on performance the switch allocator in the 

speculative design must prioritise non-speculative 

requests over speculative ones. This is achieved by 

implementing two switch allocators, one handling 

speculative requests (from packets that are 
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also requesting a VC be to allocated) and another 

for non-speculative requests (from packets which 

have already been allocated a VC). Only when no 

non-speculative requests are granted for a 

particular output port are successful speculative 

requests granted.  

In the case that a speculative request is granted we 

must ensure that the VC has been allocated and it 

is capable of receiving a new flit (has free buffer 

space) before the flit is actually sent. Fortunately, 

such checks may be performed in parallel with 

crossbar traversal.  

2.7. Crossbar 

In the architecture illustrated in Figure 2 each 

input port is forced to share a single crossbar port 

even when multiple flits could be sent from 

different virtual-channel buffers. This restriction 

allows the crossbar size to be kept small and 

independent of the number of virtual-channels. 

Dally [6] and Chien [2] suggest that providing a 

single crossbar input for each physical input port 

will have little impact on performance as the data 

rate out of each input port is limited by its input 

bandwidth. While simulation results indicate some 

advantage in providing larger crossbars (see 

Figure 8) this is often unrealistic as crossbar 

implementations scale very poorly. A more 

effective use of area may simply be to increase the 

size or number of VC buffers. 

3. Low-Latency Router Control  

The following section details how we may further 

optimise the design of both the switch and the 

virtual-channel allocation logic. While these ideas 

apply equally to pipelined implementations, our 

aim is to create a low-latency single cycle 

implementation. 

3.1. The Free Virtual Channel Queue 

The first stage of arbitration in the virtual-channel 

allocator ensures each VC makes a single request 

for a output VC. The requests are generated as a 

product of the routing function and a VC status 

mask, indicating the availability of free VCs at a 

particular output port. An alternative is to simply 

queue free VC identifiers and provide a mask with 

a single bit set (indicating the free VC at the head 

of the queue), thus avoiding the need to arbitrate 

between multiple free VCs. A separate queue is 

provided for each output port and for each virtual-

network (traffic-class), e.g. two queues per output 

port to provide request and reply networks. The 

scheme effectively removes the need for 

arbitration by predetermining the order of grants. 

3.2. Tree Arbiters  

A well understood method for creating arbiters 

with a large number of inputs is to organise them 

as a tree of smaller arbiters. In this scheme each 

arbiter propagates requests eagerly up the tree 

prior to determining which input they will actually 

grant. The root arbiter’s grant is subsequently 

propagated back down the tree, granting a single 

input request.  

The large P V-input arbiters used in the second 

stage of VC allocation may be simplified by 

adopting this approach.  
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Here the single P V-input arbiter is replaced by a 

single  

P-input arbiter and P groups of V-input arbiters. 

The V-input arbiters arbitrate between requests 

from the same input port (different VCs) and the 

P-input arbiter selects the winning port. A VC 

allocator exploiting free VC queues implemented 

using this approach is illustrated in Figure 5 

.  

Figure 5. Virtual Channel Allocator logic. A free 

VC queue and tree arbiter organisation is used to 

simplify  the implementation. 

 

 

3.3. Precomputing Arbitration Decisions 

An arbiter may provide a least recently served 

priority scheme by maintaining a queue recording 

the order in which requests have been granted. 

When arbitration takes place the request with the 

highest priority, indicated by its position in this 

queue, is granted. Immediately after an input is 

granted it is reduced to the lowest priority by 

placing it at the end of the queue. The matrix-

arbiter [19] is an efficient circuit-level 

implementation of such a scheme.  

Figure 6(a) illustrates how a single grant output is 

generated in such a design. Here the state 

indicating that one request has priority over 

another is stored in the upper triangle of a matrix 

of flip-flops. The arbiter ensures a grant is 

generated only if an input request with a higher 

priority is not asserted. Such a design requires 

each of the arbitration requests to be used in the 

generation of each output (fanout of R). 

Furthermore, each grant signal is generated by a 

NOR gate with a fan-in of R. The flip-flop matrix 

is updated after each clock cycle to reflect the new 

request priorities. 

 

 

Figure 6. R-input Arbiters. (a) A matrix arbiter. 

The schematic shows howa single grant output is 

produced  
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for a 4-input arbiter. Each arbreq signal has a fan-

out of R. (b) An arbiter which precomputes its 

grant enable signals. An alternative design is 

illustrated in Figure 6(b). Here arbitration 

outcomes are determined one cycle before they are 

required (the logic to do this is very similar to that 

used in the matrix arbiter). On the cycle prior to a 

grant being asserted grant enable signals are 

generated and latched. The grant signals are 

subsequently generated as the product of the 

precomputed grant enable signals and incoming 

arbitration requests. The scheme works if at least 

one request is present on the preceding clock 

cycle,  if no requests are present we must be more 

creative in the generation of grant-enable signals. 

A number of options are available to us depending 

on the environment in which the arbiter is 

deployed:  

Safe Environment The environment guarantees 

that  

only one new request may be added per clock 

cycle. In this case it is safe to assert all the grant 

enable signals when no arbitration requests were 

present (or one request was present that was 

granted) in the previous cycle (or on reset). The 

next request is then granted instantly regardless of 

its origin.  

Unsafe Environment In this case the environment  

may assert multiple new requests in a single clock 

cycle. Our options are:  

(a) To set a single grant-enable signal 

speculatively, perhaps by examining the pattern of 

previous requests. While this is safe, it does not 

guarantee that a new request will be granted in a 

single cycle.  

(b) Again set a single grant-enable signal but with 

the aid of a hint (again perhaps speculatively).  

(c) Set all grant-enable signals. In this case we are 

forced to detect the case where multiple requests 

are granted and abort all the operations they 

enabled.  

The following sections describe for each instance 

of an arbiter in the router design how it may be 

replaced with a design that precomputes the 

arbitration outcome. We assume a speculative 

switch allocation scheme as described in Section 

2.6.  

3.3.1. Switch Allocation Logic (V:1) Arbiters In 

the case of switch allocation we must consider the 

speculative and non-speculative requests 

separately.  

Speculative Switch Arbitration Requests. 

Speculative requests are made by header flits 

which are awaiting VC allocation. The arbitration 

outcome is precomputed by considering the 

requests that remain after VC allocation. If no 

requests remain it is safe to assert all grant-enable 

signals as at most one new header flit may be 

received in the following cycle. This corresponds 

to the description of a safe environment in Section 

3.3.  

Non-speculative Switch Arbitration Requests 

are produced by each input VC meeting the 

following criteria:  

1. Currently holding a flit  

2. Current packet has already been allocated a VC 

3. Output VC in question has free buffer space  

Grant enable signals can be generated after VC 

allocation has taken place (criteria 2) and credits 

indicating free buffer space have been received 

and processed (criteria  3). If no request is asserted 

at the end of the cycle it is guaranteed that no 

request will be made on the following cycle 

(remember new flits make speculative requests). 

In this case we simply assert no grant-enable 

signals.  

3.3.2. Switch Allocation Logic (P:1) Arbiters 

The second stage of switch allocation arbitrates 

between winning requests from participating input 

ports. The result of precomputing the first stage of 

requests (detailed above) may be used to 

determine which input ports will make requests on 
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the next cycle. This allows the arbitration outcome 

for the second stage to be precomputed. Again we 

must consider the special case where no requests 

are present when generating grant enables in both 

the speculative and non-speculative cases.  

Non-speculative Switch Arbitration Requests  

If at the end of a clock cycle no flit is present that 

has been allocated an output VC, no non-

speculative switch arbitration requests will be 

made on the following cycle. Any new flits 

arriving at the router will make speculative 

requests to the switch allocator.  

Speculative Switch Arbitration Requests  

In some cases it is difficult to precompute grant-

enable signals. Consider the case where no flits 

are buffered in the router and two flits arrive (at 

different input ports) destined for the same output 

port.Here arbitration needs to take place on the 

cycle the flits are received, the outcome cannot 

easily be predetermined. This situation may arise 

in the case of the second stage speculative switch 

arbiters.  

In Section 3.3 we outlined possible solutions to 

this problem. The first was to predict where the 

next request would originate from. While possible, 

this is likely to incur a significant latency penalty 

for packets whose arrival could not be predicted. 

A more accurate prediction could be assisted by 

the neighbouring routers indicating the possibility 

that they may make a request in the following 

clock cycle. While this is a possibility, we choose 

to simply assert all grant-enable signals in the case 

where no requests are present in the current cycle 

(option C in Section 3.3). If multiple requests are 

received on the following cycle by the same 

arbiter all operations enabled by the grant signals 

must be aborted.  

In many scenarios this will have little impact on 

performance. In the case of a lightly loaded 

network, the probability that multiple requests will 

be made to the same output in this way is small. 

Even if this is the case, and a one cycle penalty is 

necessary, the latency will be increased regardless 

as both packets must be sent on the same output 

channel. In the case of a more heavily loaded 

network, flit buffer occupancy is likely to be 

higher making the case that no requests remain at 

the end of a cycle less likely.  

3.3.3. VC Allocation Logic (V:1) Arbiters 

Requests made for the same output VC from the 

same input port arbitrated by P groups of V-input 

arbiters at each output port. Grant-enable signals 

are precomputed regardless of the state of the VC 

(whether it is free or not). This is safe as each 

arbiter is dedicated to a particular output VC and 

requests will only be made if the VC is free. In the 

case where no requests are made, all the grant-

enable signals for the arbiter may be asserted. This 

environment is safe since at most one new flit may 

be received per cycle at one input port.  

3.3.4. VC Allocation Logic (P:1) Arbiters These 

arbiters face the same problem as the second stage 

P-input arbiters in the speculative switch allocator. 

If no request is present on the preceding clock 

cycle it cannot easily be determined from which 

input port the next flit will be received. Again we 

may proceed by asserting all grant-enable signals 

and aborting granted operations in the case that 

two or more requests are subsequently received.  

Note that the reorganisation of the monolithic P V-

input arbiters as a tree arbiter simplifies the 

precomputation of grant signals. 
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Figure 7 illustrates the dependencies within our 

optimised router design. Virtual-channel flit 

FIFOs are assumed to be able to receive a flit in 

one clock cycle ready for use in the next. The case 

where the flit is needed on the same cycle is 

handled by a bypass.  

The fast allocator is used to generate VC and 

switch grant signals from the precomputed grant 

enables. The presence of precomputed grant-

enables at the start of the clock cycle means that 

the logic required to generate the crossbar and 

crossbar input multiplexer control signals becomes 

trivial. Cases where the fast allocator produces 

invalid control signals are quickly detected and the 

associated operations aborted (in these cases valid 

control signals are guaranteed to be generated on 

the next clock cycle). The permitted grants and 

existing requests are then used to calculate the 

request signals guaranteed to be present on the 

next cycle (of course new requests may also be 

made as new flits arrive). The permitted grants are 

also used to update the state of the matrix arbiters. 

Once the requests present on the next cycle have 

been computed and updated VC buffer state 

information is available, grant enables for the next 

cycle may be computed.  

One concern is the need to update VC buffer state 

information prior to precomputing the grant-

enable signals for the P:1 non-speculative switch 

arbiters. One possibility is to precompute grant-

enable signals using the older state before it is 

updated. Unfortunately, the buffer state of 

multiple output VCs assigned to VCs at a single 

input port may be updated in a single cycle. This 

prevents us from setting all grant-enable signals 

safely. Although this could be done if we are able 

to abort grants in the case that two or more 

requests are subsequently received. In the 

simulations that follow we assume that this 

dependency is not on the router’s critical path and 

may be tolerated. In our implementation we have 

adopted a simple on/off channel flow control 

mechanism which simplifies the logic needed to 

maintain the buffer state. Such a scheme would be 

less desirable if the router did not operate in a 

single cycle.  

Initial results from preliminary extracted layout 

(180nm technology) suggest that the design will 

operate at our target cycle time of 12 FO4 delays 

plus clock overhead. This is approximately twice 

the tile frequency in our planned system. In our 

test network each flit carries 64-bits of data and 

routers are placed 1mm apart. All signal 

transitions (in each output channel and the 

crossbar) are in the same direction during 

evaluation avoiding worse-case crosstalk. Typical 

case communication delays between routers are 

within 2 FO4 delays. Inter-wire capacitance values 

for communication channels were calculated using 

QuickCap [11]. The precomputation of grant-

enable signals is essential in meeting our cycle 

time. Our best 5-input matrix-arbiter designs have 

a typical latency of approximately 3 FO4 delays. 

The complete control logic takes the majority of 

the clock cycle in the optimised design, although 

almost none of this is now on the critical path.  

5. Simulation Results  
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A parameterised network model was constructed 

using HASE (Hierarchical Architectural 

Simulation Environment) [3]. The underlying 

simulation system is multi-threaded and event-

driven. Each tile or node generates packets with 

random destinations. Packets are generated at a 

constant rate and queued until they are able to 

enter the network. The interval between the 

creation of individual packets is random 

(geometric distribution) to prevent packets being 

injected into the network synchronously. Network 

latency is measured from the time the first flit is 

created to the time the last flit in the packet is 

received at its destination, including any time 

spent buffered at the source node. Each node 

injects 1000 packets into the network and 

performance statistics are gathered after an initial 

warm-up period of 100 packets/node. The network 

is an 8x8 mesh, each router has 5 input and 5 

output ports. Packets are 5 flits in length. In all 

simulations we assume a single cycle router 

implementation. 

 
Figure 8. Latency versus throughput for P and PV-

input (restricted/unrestricted) crossbar 

implementations. 2 virtual channels per input port 

and 4 flit buffers per virtual channel.  

We explore the impact on network performance of 

a number of different switch and virtual-channel 

allocator implementations:  

Sequential Virtual-channel allocation is 

performed  

prior to switch allocation. This removes the need 

for the switch allocation logic to speculate on the 

ability of new packets to acquire VCs.  

Parallel-NoSpec Virtual-channel allocation is  

performed in parallel with switch allocation but no 

speculative requests are made to the switch 

allocator. Only when a packet is allocated a VC 

may it proceed to switch allocation (a new packet 

will require at least one cycle to obtain a VC 

before it can arbitrate for access to the crossbar).  

Parallel-Spec Virtual-channel and switch 

allocation  

are performed in parallel. Packets that are awaiting 

VC allocation are permitted to make speculative 

requests for switch allocation. This enables flits to 

be received and routed on an output in a single 

cycle.  

Parallel-Spec-PreComp Extends the Parallel-

Spec  

implementation to model the precomputation of 

grant enable signals. In cases where the arbiters 

operates in an unsafe environment, an arbiter 

which sets all grant enable signals is modelled. In 

the case where two or more requests are received 

on the subsequent clock cycle, no input is granted 

(option c. in Section 3.3).  

Results are shown in Figure 9 for a range of buffer 

sizes and virtual-channel configurations. An initial 

inspection of the results shows that all but the 

Parallel-NoSpec model have very similar 

performance characteristics. At closer inspection 

and perhaps surprisingly the Sequential scheme 

does not necessary outperform the parallel 

schemes. This behaviour is the result of two 

effects. Firstly, the speculative switch allocator 

prioritises packets during switch allocation that 

have held a VC for at least one cycle. This can be 

modelled in the sequential case, slightly 

improving performance. Secondly, in the case of 
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the speculative allocator two requests from each 

input port may be considered after the first stage 

of arbitration. This potentially increases the 

chance of finding a more complete matching of 

waiting flits and ready output ports. Performance 

could be potentially improved further in the 

parallel schemes by ensuring speculative requests 

are only made if at least one free VC is available 

at the required output port.  

Figure 8 illustrates the performance impact of 

restricting the number of inputs to the crossbar, as 

discussed in Section 2.7. The unrestricted case 

models the provision of a crossbar input for every 

input virtual-channel. The restricted case models 

the case where virtual-channels at each input port 

share a single crossbar port.  

 

6. Related Work  

The techniques that have been described allow 

router and arbitration latency to be hidden. This is 

achieved by predetermining the outcome of 

routing and arbitration decisions one cycle before 

they are required. Routing and arbitration latency 

may also be eliminated by statically scheduling 

buffer and channel resources [21]. For many 

applications this is prohibitively expensive due to 

the size of the routing memory required. Statically 

scheduled schemes also suffer from the inability to 

handle dynamic traffic. Flit-reservation flow-

control [18] exploits the ability to preschedule 

resources but achieves greater flexibility by 

deferring scheduling decisions until run-time. 

Channel and buffer usage is scheduled by sending 

control flits ahead of data flits on an independent, 

less congested, network. Scheduling decisions are 

recorded in reservation tables 
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Figure 9. Latency versus throughput for a number 

of different VC and switch allocation 

implementations (5-flit packets). For each graph, 

V is the number of virtual-channels per input port 

and B is the number of buffers per virtual-channel. 

 

 

associated with each input and output port. 

Arbitrated access to output reservation tables 

together with the relatively complex scheduling 

operations add significantly to the complexity of 

the router. A preliminary investigation also 

suggests that our cycle time would be extended by 

such an approach. While the ability to schedule 

resources more than a cycle before their use is a 

powerful technique, this will always incur a 

bookkeeping overhead in recording and generating 

a schedule. A detailed analysis of an 

implementation of flit-reservation flow-control is 

presented in .  

7. Conclusion  

This paper has demonstrated a low-cost approach 

to significantly reducing the cycle-time of on-chip 

routers. Simulation results have shown that the 

critical path is reduced significantly without 

compromising router efficiency. Preliminary 

layout of the major components of the router has 

been completed and a 0.18 m VLSI 

implementation clocked at 1.2GHz is planned. The 

design is supported by a novel grid-based 

distributed clocking scheme to ensure minimal 

skew between adjacent routers.  
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