

Vol 06 Issue 11 Nov 2017 ISSN 2456 – 5083 www.ijiemr.org

COPY RIGHT

2017 IJIEMR. Personal use of this material is permitted. Permission from IJIEMR must

be obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted

component of this work in other works. No Reprint should be done to this paper, all copy

right is authenticated to Paper Authors

IJIEMR Transactions, online available on 26 Nov 2017. Link :

http://www.ijiemr.org/downloads.php?vol=Volume-6&issue=ISSUE-11

Title: Low-Latency Virtual-Channel Routers for On-Chip Networks

Volume 06, Issue 11, Pages: 262 – 274.

Paper Authors

1
SYED USMAN,

2
SYED ALI HUSSAIN

 USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER

To Secure Your Paper As Per UGC Guidelines We Are Providing A Electronic Bar

Code

Volume 06 Issue 11 Nov 2017 ISSN: 2456 - 5083 Page 262

Low-Latency Virtual-Channel Routers for On-Chip Networks

1
SYED USMAN,

2
SYED ALI HUSSAIN

1,2
Assistant Professors In Deportment Of ECE .Nimra College Of Engineering and Technology, Jupudi, Ibrahimpatnam, AP, India.

 Abstract

The on-chip communication requirements of many systems are best served through the deployment of a

regular chip-wide network. This paper presents the design of a low-latency on-chip network router for such

applications. We remove control overheads (routing and arbitration logic) from the critical path in order to

minimise cycle-time and latency. Simulations illustrate that dramatic cycle time improvements are possible

without compromising router efficiency. Furthermore, these reductions permit flits to be routed in a single

cycle, maximising the effectiveness of the router’s limited buffering resources.

1. Introduction

The ability to fully exploit modern fabrication

technologies is tempered by both physical and

logical design complexity. The cost of this

complexity suggests the reuse of design and

verification effort wherever possible. This is often

achieved by composing systems from

commodityIP or by reusing custom blocks

repeatedly in the same design. The relatively poor

scaling of global interconnects and the need to

achieve architectural performance gains in an

energy-efficient manner, provide pressure to

decentralise computation. Together these trends

suggest a move towards an increasingly

communication-centric view of processor and

system architecture.

One proposed solution to the problem of chip-

wide communication is a network of top-level

point-to-point communication channels [1, 8, 12]

(See Figure 1). This highly regular wiring strategy

aims to reuse a small number of highly optimised

wiring layout and driver designs. As channel

layouts are reused to create the network, effort in

characterising delay, power and verifying signal

integrity is minimised. The simple behaviour of

the network also aids in predicting performance

and ensuring correctness. In contrast, large bus

based communication networks present a

complex verification task at every level. In

addition, the limited ability to scale interconnect

delays makes the presence of long global wires

and buses increasingly undesirable.

 Figure 1. On-Chip Network. Each tile may

contain identical logic, as in the case of a

multiprocessor or tiled system, or simply represent

apart it ioning of a SoC design.

Similar observations have already been made in

the case of inter-chip and wider-area

communication. While much of this work is

applicable, some important differences exist [8].

Volume 06 Issue 11 Nov 2017 ISSN: 2456 - 5083 Page 263

In particular, on-chip designs exploit a far greater

number of pins and wires, while inter-chip designs

are often pin limited. In addition, while inter-chip

router designs may exploit a large number of

buffers, on-chip designs must aim to minimise

buffer count in order to maximise the silicon real-

estate available for computation. Area pressures,

together with the need to minimise on-chip

communication latencies, suggest the

implementation of relatively simple on-chip

routers. This paper describes how router latency

may be significantly reduced by hiding control

overheads. The creation of a single-cycle

architecture also reduces latency and maximises

the impact of limited buffering resources.

Simulation results illustrate that while these

techniques offer dramatic cycle time reductions,

they do not compromise router efficiency. Initial

circuit-level simulations suggest a router cycle

time of 12-FO4 delays1 plus clock overhead is

possible. Previously published delay models have

suggested similar router designs require three

pipeline stages and a clock cycle-time of 20-FO4

delays [19]. We provide an overview of a generic

virtual-channel router implementation in Section

2. Section 3 introduces the techniques we use to

optimise the router’s control. The critical path of

the optimised router is analysed in Section 4.

Simulation results comparing a number of router

control implementations are presented in Section

5. Section 6 and 7 discuss related work and

conclude the paper.

2. Background

A network may be characterised by its topology,

routing strategy and method of flow-control [5].

For simplicity we assume a mesh network (with

bidirectional links) together with dimension-

ordered (XY) routing2.

The choice of flow control technique is guided by

the need to minimise buffer requirements and

latency in our on-chip network. Schemes that

reserve buffer space or apply flow-control at the

packet level, such as store-and-forward [20] or

virtual-cut through [13], are unsuitable for these

reasons. A wormhole-router provides the

necessary fine-grained flow control, while the

addition of virtual-channels [4, 6] aids in boosting

performance and circumventing message-

dependent deadlock. Furthermore, Quality-of-

Service (QoS) enhancements are possible by

prioritising the allocation of virtual-channels and

switch bandwidth.

The remainder of this section provides an

overview of the architecture of a generic virtual-

channel router.

2.1. Overview of a Virtual-Channel Router

Figure 2 illustrates the major components of a

generic virtual-channel router. The router has P

input ports and P output ports, supporting V

virtual-channels (VCs) per port.

Virtual-channel flow control exploits an array of

buffers at each input port. By allocating different

packets to each of these buffers, flits3 from

multiple packets may be sent in an interleaved

manner over a single physical channel. This

improves both throughput and latency by allowing

blocked packets to be bypassed.

Volume 06 Issue 11 Nov 2017 ISSN: 2456 - 5083 Page 264

The basic steps undertaken by a virtual-channel

router are enumerated below:

1. Routing. The first flit of a new packet arrives at

the router. The routing field is examined and a set

of valid output virtual-channels upon which the

packet can be routed is produced. The number of

output VCs produced by the routing logic will

depend on the routing function. Possibilities range

from a single output VC to a number of different

VCs potentially at different physical channels (i.e.

adaptive routing).

The selection of an output VC can also be

influenced by the class of the packet to be routed.

Packets from particular classes will often be

restricted to travelling on a subset of virtual-

channels to avoid message-dependent deadlock. A

common practise is to provide separate request

and reply virtual-networks.

2. Virtual-Channel Allocation. An attempt is

made to allocate an unused VC to the new packet.

A request is made for one of the virtual-channels

returned by the routing function. Allocation

involves arbitrating between all those packets

requesting the same output VC.

3. Switch Allocation. Each packet maintains state

indicating the availability of buffer space at their

assigned output VC. When flits are waiting to be

sent, and buffer space is available, an input VC

will request access to the necessary output channel

via the router’s crossbar. On each cycle the switch

allocation logic matches these requests to output

ports, generating the required crossbar control

signals.

4. Crossbar Traversal. Flits that have been

granted passage on the crossbar are passed to the

appropriate output channel.

The following sections describe in more detail

each of the router’s components.

2.2. Input Buffer and Bypass

Each new incoming flit is stored in the VC buffer

designated by its VC identifier. This identifier is

appended to every flit in the previous router stage.

If the VC buffer is empty and the flit is able to

access the crossbar immediately, a bypass path is

required to expedite its journey.

2.3. Routing Logic

In order for virtual-channel and switch allocation

to take place the routing function must first be

evaluated to determine which virtual-channel(s) at

which output port(s) the packet may request. To

ensure that this computation does not lie on the

router’s critical path, the computation may be

performed in the previous router in preparation for

use in the next. The idea that the route may be

calculated one step ahead of where it is required

was first employed by the SGI routing chip [10]

and is known as look-ahead routing.

2.4. Virtual-Channel Allocation

Peh and Dally detail the complexity of both

virtual-channel (VC) allocation and switch-

allocation logic in [19]. The following two

sections provide a brief overview of these

schemes.

The complexity of VC allocation is dependent on

the range of the routing function. In the simplest

case, where the routing function returns a single

VC, the allocation process simply consists of a

single arbiter for each output VC. As any of the

input VCs may request any output VC, each

arbiter must support P V inputs.

If the router function returns multiple output VCs

restricted to a single physical channel, an

additional arbitration stage is required to reduce

the number of requests from each input VC to one.

The winning request at each virtual channel buffer

then proceeds to the second stage as described

above. The complexity of such a scheme is

illustrated in Figure 3. The routing function

determines the output port and VCs that may be

requested prior to VC allocation. A VC which is

free to be allocated is then selected by the first

stage of arbitration. The result of this first stage of

Volume 06 Issue 11 Nov 2017 ISSN: 2456 - 5083 Page 265

arbitration is a request for a single VC at a

particular output port. This request is subsequently

sent to the appropriate second stage arbiter. While

this scheme does not guarantee to allocate all free

output VCs to potential waiting input VCs in a

single cycle, there is no performance penalty as

only one flit may be sent per cycle on an output

channel. In the most general case where the

routing channel may return any of P V VCs, the

number of inputs to the first stage of arbiters must

now be increased from V to P V. In this case some

performance degradationmay be expected as the

scheme makes little effort to perform a good

matching of requests to free output VCs.

Figure 3. Arbitration complexity of a virtual

channel allocator. In this example, the routing

function returns a single output port and one or

more VC requests.

2.5. Switch Allocation

Individual flits arbitrate for access to physical

channels via the crossbar on each cycle.

Arbitration may be performed in two stages [19].

The first reflects the sharing of a single crossbar

port by V input virtual-channels, this requires a V-

input arbiter for each input port. The second stage

must arbitrate between winning requests from

each input port (P inputs) for each output channel.

The scheme is illustrated in Figure 4. The request

for a particular output port is routed from the VC

which wins the first stage of arbitration.

In order to improve fairness, the state of the V-

input arbiter is only updated if the request is also

successful in the second stage of arbitration.We

assume this organisation wherever multiple stages

of arbitration are present.

This switch allocator organisation may reduce the

number of requests for different output ports in the

first stage of arbitration, resulting in some wasted

switch bandwidth.

2.6. Speculative Switch Arbitration

Virtual-channel flow control as discussed

performs VC allocation and switch allocation

sequentially. This guarantees that only packets

that have successfully obtained an output VC from

the VC allocator can make requests for their

desired output channel.

Peh and Dally [19] describe how this dependency

may be relaxed if we speculate that a waiting

packet will successfully be allocated an output

VC. In this way both VC and switch allocation can

be performed in parallel. To avoid a negative

impact on performance the switch allocator in the

speculative design must prioritise non-speculative

requests over speculative ones. This is achieved by

implementing two switch allocators, one handling

speculative requests (from packets that are

Volume 06 Issue 11 Nov 2017 ISSN: 2456 - 5083 Page 266

also requesting a VC be to allocated) and another

for non-speculative requests (from packets which

have already been allocated a VC). Only when no

non-speculative requests are granted for a

particular output port are successful speculative

requests granted.

In the case that a speculative request is granted we

must ensure that the VC has been allocated and it

is capable of receiving a new flit (has free buffer

space) before the flit is actually sent. Fortunately,

such checks may be performed in parallel with

crossbar traversal.

2.7. Crossbar

In the architecture illustrated in Figure 2 each

input port is forced to share a single crossbar port

even when multiple flits could be sent from

different virtual-channel buffers. This restriction

allows the crossbar size to be kept small and

independent of the number of virtual-channels.

Dally [6] and Chien [2] suggest that providing a

single crossbar input for each physical input port

will have little impact on performance as the data

rate out of each input port is limited by its input

bandwidth. While simulation results indicate some

advantage in providing larger crossbars (see

Figure 8) this is often unrealistic as crossbar

implementations scale very poorly. A more

effective use of area may simply be to increase the

size or number of VC buffers.

3. Low-Latency Router Control

The following section details how we may further

optimise the design of both the switch and the

virtual-channel allocation logic. While these ideas

apply equally to pipelined implementations, our

aim is to create a low-latency single cycle

implementation.

3.1. The Free Virtual Channel Queue

The first stage of arbitration in the virtual-channel

allocator ensures each VC makes a single request

for a output VC. The requests are generated as a

product of the routing function and a VC status

mask, indicating the availability of free VCs at a

particular output port. An alternative is to simply

queue free VC identifiers and provide a mask with

a single bit set (indicating the free VC at the head

of the queue), thus avoiding the need to arbitrate

between multiple free VCs. A separate queue is

provided for each output port and for each virtual-

network (traffic-class), e.g. two queues per output

port to provide request and reply networks. The

scheme effectively removes the need for

arbitration by predetermining the order of grants.

3.2. Tree Arbiters

A well understood method for creating arbiters

with a large number of inputs is to organise them

as a tree of smaller arbiters. In this scheme each

arbiter propagates requests eagerly up the tree

prior to determining which input they will actually

grant. The root arbiter’s grant is subsequently

propagated back down the tree, granting a single

input request.

The large P V-input arbiters used in the second

stage of VC allocation may be simplified by

adopting this approach.

Volume 06 Issue 11 Nov 2017 ISSN: 2456 - 5083 Page 267

Here the single P V-input arbiter is replaced by a

single

P-input arbiter and P groups of V-input arbiters.

The V-input arbiters arbitrate between requests

from the same input port (different VCs) and the

P-input arbiter selects the winning port. A VC

allocator exploiting free VC queues implemented

using this approach is illustrated in Figure 5

.

Figure 5. Virtual Channel Allocator logic. A free

VC queue and tree arbiter organisation is used to

simplify the implementation.

3.3. Precomputing Arbitration Decisions

An arbiter may provide a least recently served

priority scheme by maintaining a queue recording

the order in which requests have been granted.

When arbitration takes place the request with the

highest priority, indicated by its position in this

queue, is granted. Immediately after an input is

granted it is reduced to the lowest priority by

placing it at the end of the queue. The matrix-

arbiter [19] is an efficient circuit-level

implementation of such a scheme.

Figure 6(a) illustrates how a single grant output is

generated in such a design. Here the state

indicating that one request has priority over

another is stored in the upper triangle of a matrix

of flip-flops. The arbiter ensures a grant is

generated only if an input request with a higher

priority is not asserted. Such a design requires

each of the arbitration requests to be used in the

generation of each output (fanout of R).

Furthermore, each grant signal is generated by a

NOR gate with a fan-in of R. The flip-flop matrix

is updated after each clock cycle to reflect the new

request priorities.

Figure 6. R-input Arbiters. (a) A matrix arbiter.

The schematic shows howa single grant output is

produced

Volume 06 Issue 11 Nov 2017 ISSN: 2456 - 5083 Page 268

for a 4-input arbiter. Each arbreq signal has a fan-

out of R. (b) An arbiter which precomputes its

grant enable signals. An alternative design is

illustrated in Figure 6(b). Here arbitration

outcomes are determined one cycle before they are

required (the logic to do this is very similar to that

used in the matrix arbiter). On the cycle prior to a

grant being asserted grant enable signals are

generated and latched. The grant signals are

subsequently generated as the product of the

precomputed grant enable signals and incoming

arbitration requests. The scheme works if at least

one request is present on the preceding clock

cycle, if no requests are present we must be more

creative in the generation of grant-enable signals.

A number of options are available to us depending

on the environment in which the arbiter is

deployed:

Safe Environment The environment guarantees

that

only one new request may be added per clock

cycle. In this case it is safe to assert all the grant

enable signals when no arbitration requests were

present (or one request was present that was

granted) in the previous cycle (or on reset). The

next request is then granted instantly regardless of

its origin.

Unsafe Environment In this case the environment

may assert multiple new requests in a single clock

cycle. Our options are:

(a) To set a single grant-enable signal

speculatively, perhaps by examining the pattern of

previous requests. While this is safe, it does not

guarantee that a new request will be granted in a

single cycle.

(b) Again set a single grant-enable signal but with

the aid of a hint (again perhaps speculatively).

(c) Set all grant-enable signals. In this case we are

forced to detect the case where multiple requests

are granted and abort all the operations they

enabled.

The following sections describe for each instance

of an arbiter in the router design how it may be

replaced with a design that precomputes the

arbitration outcome. We assume a speculative

switch allocation scheme as described in Section

2.6.

3.3.1. Switch Allocation Logic (V:1) Arbiters In

the case of switch allocation we must consider the

speculative and non-speculative requests

separately.

Speculative Switch Arbitration Requests.

Speculative requests are made by header flits

which are awaiting VC allocation. The arbitration

outcome is precomputed by considering the

requests that remain after VC allocation. If no

requests remain it is safe to assert all grant-enable

signals as at most one new header flit may be

received in the following cycle. This corresponds

to the description of a safe environment in Section

3.3.

Non-speculative Switch Arbitration Requests

are produced by each input VC meeting the

following criteria:

1. Currently holding a flit

2. Current packet has already been allocated a VC

3. Output VC in question has free buffer space

Grant enable signals can be generated after VC

allocation has taken place (criteria 2) and credits

indicating free buffer space have been received

and processed (criteria 3). If no request is asserted

at the end of the cycle it is guaranteed that no

request will be made on the following cycle

(remember new flits make speculative requests).

In this case we simply assert no grant-enable

signals.

3.3.2. Switch Allocation Logic (P:1) Arbiters

The second stage of switch allocation arbitrates

between winning requests from participating input

ports. The result of precomputing the first stage of

requests (detailed above) may be used to

determine which input ports will make requests on

Volume 06 Issue 11 Nov 2017 ISSN: 2456 - 5083 Page 269

the next cycle. This allows the arbitration outcome

for the second stage to be precomputed. Again we

must consider the special case where no requests

are present when generating grant enables in both

the speculative and non-speculative cases.

Non-speculative Switch Arbitration Requests

If at the end of a clock cycle no flit is present that

has been allocated an output VC, no non-

speculative switch arbitration requests will be

made on the following cycle. Any new flits

arriving at the router will make speculative

requests to the switch allocator.

Speculative Switch Arbitration Requests

In some cases it is difficult to precompute grant-

enable signals. Consider the case where no flits

are buffered in the router and two flits arrive (at

different input ports) destined for the same output

port.Here arbitration needs to take place on the

cycle the flits are received, the outcome cannot

easily be predetermined. This situation may arise

in the case of the second stage speculative switch

arbiters.

In Section 3.3 we outlined possible solutions to

this problem. The first was to predict where the

next request would originate from. While possible,

this is likely to incur a significant latency penalty

for packets whose arrival could not be predicted.

A more accurate prediction could be assisted by

the neighbouring routers indicating the possibility

that they may make a request in the following

clock cycle. While this is a possibility, we choose

to simply assert all grant-enable signals in the case

where no requests are present in the current cycle

(option C in Section 3.3). If multiple requests are

received on the following cycle by the same

arbiter all operations enabled by the grant signals

must be aborted.

In many scenarios this will have little impact on

performance. In the case of a lightly loaded

network, the probability that multiple requests will

be made to the same output in this way is small.

Even if this is the case, and a one cycle penalty is

necessary, the latency will be increased regardless

as both packets must be sent on the same output

channel. In the case of a more heavily loaded

network, flit buffer occupancy is likely to be

higher making the case that no requests remain at

the end of a cycle less likely.

3.3.3. VC Allocation Logic (V:1) Arbiters

Requests made for the same output VC from the

same input port arbitrated by P groups of V-input

arbiters at each output port. Grant-enable signals

are precomputed regardless of the state of the VC

(whether it is free or not). This is safe as each

arbiter is dedicated to a particular output VC and

requests will only be made if the VC is free. In the

case where no requests are made, all the grant-

enable signals for the arbiter may be asserted. This

environment is safe since at most one new flit may

be received per cycle at one input port.

3.3.4. VC Allocation Logic (P:1) Arbiters These

arbiters face the same problem as the second stage

P-input arbiters in the speculative switch allocator.

If no request is present on the preceding clock

cycle it cannot easily be determined from which

input port the next flit will be received. Again we

may proceed by asserting all grant-enable signals

and aborting granted operations in the case that

two or more requests are subsequently received.

Note that the reorganisation of the monolithic P V-

input arbiters as a tree arbiter simplifies the

precomputation of grant signals.

Volume 06 Issue 11 Nov 2017 ISSN: 2456 - 5083 Page 270

Figure 7 illustrates the dependencies within our

optimised router design. Virtual-channel flit

FIFOs are assumed to be able to receive a flit in

one clock cycle ready for use in the next. The case

where the flit is needed on the same cycle is

handled by a bypass.

The fast allocator is used to generate VC and

switch grant signals from the precomputed grant

enables. The presence of precomputed grant-

enables at the start of the clock cycle means that

the logic required to generate the crossbar and

crossbar input multiplexer control signals becomes

trivial. Cases where the fast allocator produces

invalid control signals are quickly detected and the

associated operations aborted (in these cases valid

control signals are guaranteed to be generated on

the next clock cycle). The permitted grants and

existing requests are then used to calculate the

request signals guaranteed to be present on the

next cycle (of course new requests may also be

made as new flits arrive). The permitted grants are

also used to update the state of the matrix arbiters.

Once the requests present on the next cycle have

been computed and updated VC buffer state

information is available, grant enables for the next

cycle may be computed.

One concern is the need to update VC buffer state

information prior to precomputing the grant-

enable signals for the P:1 non-speculative switch

arbiters. One possibility is to precompute grant-

enable signals using the older state before it is

updated. Unfortunately, the buffer state of

multiple output VCs assigned to VCs at a single

input port may be updated in a single cycle. This

prevents us from setting all grant-enable signals

safely. Although this could be done if we are able

to abort grants in the case that two or more

requests are subsequently received. In the

simulations that follow we assume that this

dependency is not on the router’s critical path and

may be tolerated. In our implementation we have

adopted a simple on/off channel flow control

mechanism which simplifies the logic needed to

maintain the buffer state. Such a scheme would be

less desirable if the router did not operate in a

single cycle.

Initial results from preliminary extracted layout

(180nm technology) suggest that the design will

operate at our target cycle time of 12 FO4 delays

plus clock overhead. This is approximately twice

the tile frequency in our planned system. In our

test network each flit carries 64-bits of data and

routers are placed 1mm apart. All signal

transitions (in each output channel and the

crossbar) are in the same direction during

evaluation avoiding worse-case crosstalk. Typical

case communication delays between routers are

within 2 FO4 delays. Inter-wire capacitance values

for communication channels were calculated using

QuickCap [11]. The precomputation of grant-

enable signals is essential in meeting our cycle

time. Our best 5-input matrix-arbiter designs have

a typical latency of approximately 3 FO4 delays.

The complete control logic takes the majority of

the clock cycle in the optimised design, although

almost none of this is now on the critical path.

5. Simulation Results

Volume 06 Issue 11 Nov 2017 ISSN: 2456 - 5083 Page 271

A parameterised network model was constructed

using HASE (Hierarchical Architectural

Simulation Environment) [3]. The underlying

simulation system is multi-threaded and event-

driven. Each tile or node generates packets with

random destinations. Packets are generated at a

constant rate and queued until they are able to

enter the network. The interval between the

creation of individual packets is random

(geometric distribution) to prevent packets being

injected into the network synchronously. Network

latency is measured from the time the first flit is

created to the time the last flit in the packet is

received at its destination, including any time

spent buffered at the source node. Each node

injects 1000 packets into the network and

performance statistics are gathered after an initial

warm-up period of 100 packets/node. The network

is an 8x8 mesh, each router has 5 input and 5

output ports. Packets are 5 flits in length. In all

simulations we assume a single cycle router

implementation.

Figure 8. Latency versus throughput for P and PV-

input (restricted/unrestricted) crossbar

implementations. 2 virtual channels per input port

and 4 flit buffers per virtual channel.

We explore the impact on network performance of

a number of different switch and virtual-channel

allocator implementations:

Sequential Virtual-channel allocation is

performed

prior to switch allocation. This removes the need

for the switch allocation logic to speculate on the

ability of new packets to acquire VCs.

Parallel-NoSpec Virtual-channel allocation is

performed in parallel with switch allocation but no

speculative requests are made to the switch

allocator. Only when a packet is allocated a VC

may it proceed to switch allocation (a new packet

will require at least one cycle to obtain a VC

before it can arbitrate for access to the crossbar).

Parallel-Spec Virtual-channel and switch

allocation

are performed in parallel. Packets that are awaiting

VC allocation are permitted to make speculative

requests for switch allocation. This enables flits to

be received and routed on an output in a single

cycle.

Parallel-Spec-PreComp Extends the Parallel-

Spec

implementation to model the precomputation of

grant enable signals. In cases where the arbiters

operates in an unsafe environment, an arbiter

which sets all grant enable signals is modelled. In

the case where two or more requests are received

on the subsequent clock cycle, no input is granted

(option c. in Section 3.3).

Results are shown in Figure 9 for a range of buffer

sizes and virtual-channel configurations. An initial

inspection of the results shows that all but the

Parallel-NoSpec model have very similar

performance characteristics. At closer inspection

and perhaps surprisingly the Sequential scheme

does not necessary outperform the parallel

schemes. This behaviour is the result of two

effects. Firstly, the speculative switch allocator

prioritises packets during switch allocation that

have held a VC for at least one cycle. This can be

modelled in the sequential case, slightly

improving performance. Secondly, in the case of

Volume 06 Issue 11 Nov 2017 ISSN: 2456 - 5083 Page 272

the speculative allocator two requests from each

input port may be considered after the first stage

of arbitration. This potentially increases the

chance of finding a more complete matching of

waiting flits and ready output ports. Performance

could be potentially improved further in the

parallel schemes by ensuring speculative requests

are only made if at least one free VC is available

at the required output port.

Figure 8 illustrates the performance impact of

restricting the number of inputs to the crossbar, as

discussed in Section 2.7. The unrestricted case

models the provision of a crossbar input for every

input virtual-channel. The restricted case models

the case where virtual-channels at each input port

share a single crossbar port.

6. Related Work

The techniques that have been described allow

router and arbitration latency to be hidden. This is

achieved by predetermining the outcome of

routing and arbitration decisions one cycle before

they are required. Routing and arbitration latency

may also be eliminated by statically scheduling

buffer and channel resources [21]. For many

applications this is prohibitively expensive due to

the size of the routing memory required. Statically

scheduled schemes also suffer from the inability to

handle dynamic traffic. Flit-reservation flow-

control [18] exploits the ability to preschedule

resources but achieves greater flexibility by

deferring scheduling decisions until run-time.

Channel and buffer usage is scheduled by sending

control flits ahead of data flits on an independent,

less congested, network. Scheduling decisions are

recorded in reservation tables

Volume 06 Issue 11 Nov 2017 ISSN: 2456 - 5083 Page 273

Figure 9. Latency versus throughput for a number

of different VC and switch allocation

implementations (5-flit packets). For each graph,

V is the number of virtual-channels per input port

and B is the number of buffers per virtual-channel.

associated with each input and output port.

Arbitrated access to output reservation tables

together with the relatively complex scheduling

operations add significantly to the complexity of

the router. A preliminary investigation also

suggests that our cycle time would be extended by

such an approach. While the ability to schedule

resources more than a cycle before their use is a

powerful technique, this will always incur a

bookkeeping overhead in recording and generating

a schedule. A detailed analysis of an

implementation of flit-reservation flow-control is

presented in .

7. Conclusion

This paper has demonstrated a low-cost approach

to significantly reducing the cycle-time of on-chip

routers. Simulation results have shown that the

critical path is reduced significantly without

compromising router efficiency. Preliminary

layout of the major components of the router has

been completed and a 0.18 m VLSI

implementation clocked at 1.2GHz is planned. The

design is supported by a novel grid-based

distributed clocking scheme to ensure minimal

skew between adjacent routers.

References

[1] L. Benini and G. D. Micheli. Networks on

Chips: A New SOC Paradigm. IEEE Computer,

2002.

[2] A. A. Chien. A cost and speed model for k-ary

n-cube wormhole routers. In Proceedings of Hot

Interconnects, 1993.

[3] P. Coe, F. Howell, R. Ibbett, and L. Williams.

A Hierarchical Computer Architecture Design and

Simulation Environment. ACM Transactions on

Modeling and Computer Simulation,

8(4), October 1998.

[6] L.-S. Peh and W. J. Dally. A Delay Model and

Speculative Architecture for Pipelined Routers. In

Volume 06 Issue 11 Nov 2017 ISSN: 2456 - 5083 Page 274

International Symposium on High-Performance

Computer Architecture, pages 255–266, Jan 2001.

[7] A. S. Tanenbaum. Computer Networks.

Prentice-Hall, Englewood Cliffs, NJ, 1981.

[8] M. B. Taylor et al. The Raw Microprocessor:

A Computational Fabric for Software Circuits and

General

Purpose Programs. IEEE Micro, March/April

2002.

[4] W. J. Dally. Communication

Wire-Efficient VLSI Multiprocessor Networks. In

P. Losleben, editor,

Proceedings of the Stanford Conference on

Advanced Research in VLSI. MIT Press, March

1987.

[5] W. J. Dally. VLSI and Parallel Processing,

chapter Network and Processor Architectures for

Message-Driven Computing. Morgan Kaufmann,

1989.

