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Abstract:

IoT devices are playing a greater role in business specially in wireless communication. IoT devices are achieving
higher maturity as seen in smartdust. The aim of this research is to study the functionality of MOTES in smartdust to
integrate with [oT architecture and infrastructure for optimization of wireless communication specially linked with
2.4Ghz and 5Ghz band. MOTES are being modeled in MALTAB using Artificial Neural Network integrated with
optimization for speed, power and frequency linked with IoT architecture. The result proves that smartdust
architecture if utilized in IoT architecture, the over all performances result of IoT devices is increased specially in
bandwidth and power consumption. All the modeling result were compared for general sensor data bandwidth in
ESP8266 for 2.4 Ghz, and mathematical model are presented for SGhz using smartdust MOTES. It is been proposed
that using Al optimization technique like Ant Colonization Optimization or Particle Swarm Optimization we can
mathematically model smartdust Architecture.
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Introduction

Smart dust is a little gadget with supernatural
abilities. ~ Smart  dust integrates  detecting,
computation, wireless communication, and self-
powering capabilities in a dimension of only a few
millimetres, all at a cheap cost. Such gadgets are
designed to be so tiny and light that they can float
around in the surroundings like a regular dust
particle. Smart Dust's qualities will make it valuable
for observing real-world phenomena while causing
minimal disruption to the underlying procedure.
Smart Dust can now be made in a Smm cube size,
however we anticipate that it will soon be as tiny as a
package of dust. Due to their microscopic size, smart
dust sensors are mounted alluded to it as motes. The
fast  integration and convergence of  three
fundamental technological

innovations: digital circuits, communication systems
which are wireless, and Micro Electro Mechanical
Systems has made this possible (MEMS).
Developments in hardware science and engineering
design have resulted in size, electricity consumption,
and efficiency improvements in each of these areas.
This has allowed for the creation of incredibly small,
self-contained nodes with one or even more sensors,

processing and transmission capabilities, and a power
source.

Micro Electro Mechanical Systems (MEMS)
production enables compact, low-cost, increased
performance sensors and actuators, making MEMS
an enabling technological innovation for the Internet
of Things (IoT). This section provides an overview at
some of the most helpful and beneficial
characteristics of MEMS technology for IoT. MEMS
technology that has the potential to propel IoT
devices to new heights. Human senses have
developed to be fairly effective at certain functional
capacities, but in comparison to MEMS sensing
technologies, they are severely constrained.

Whereas the Internet of Things is still taking shape,
its impacts have already begun to make significant
progress as a global alternative media for the linked
world. The construction of associated fields is always
paved by specialized architectural studies.
Researchers are now struggling to get through to the
scope of Internet of Things-centric techniques
leading to a shortage of comprehensive architectural
expertise. This literature review examines Internet of
Things-oriented designs that are interested in
improving programmer comprehension of relevant
tool, technologies, and technique.
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The designs discussed attempt to tackle real-world
issues by constructing and deploying strong Internet
of Things concepts, either explicitly or implicitly.
Inventory control, smart corporate offices, fingertip
inertial sensors virtual computer monitors, defence
networks that could be deployed quickly by
unmanned aerial vehicles (UAV), nodes something
which track the movement patterns of birds, small
animals, and now even insects, as well as
environmental infrastructures which also supervise
farming and livestock conditions are just a few
examples.

The Internet of Things (IoT), Wireless Sensor
Networks (WSNs), Ubiquitous Sensor Networks
(USNs), Machine to Machine (M2M), and the
Internet of Everything (IoE) have all developed into
Cyber Physical Systems (CPSs), which were recently
formed [1]. These technologies are collectively
known as the Internet of Things (IoT), and they make
use of wireless telecommunication technologies to
link individuals to things and gadgets to each other in
order to deliver smart technology and products [2].
Sensor network dynamic configuration will allow the
use of the field gateway and sensor data transfer
through IoT devices in almost real-time. This work
presents an open smart dust architecture of the IoT
virtualized platform integrated with sensor networks,
IoT sensors, smart dust and cloud computing
technologies using Artificial Neural Network
[3].Because of the product's intricacy and variety,
several alternatives and possibilities for platform
connectivity must be defined. Artificially intelligent
techniques may be used at the IoT and Cloud
computing level to develop better computations
independent of the network system.

The Smart Dust Architecture: -

Figure 1 shows a conceptual architecture diagram of
a Smart Dust mote.

Figure 1.:- Showcasing the Smart-Dust Architecture
with different MEMS
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As previously stated, a good smartdust system would
include the following characteristics:

1. A high level of energy density
2. A high ratio of active volume to packaging volume

3. Low cell potential (0.5-1.0 V) to allow digital
circuits to operate.

4. Compactness of sensors and its data flows
5. Less consumption of power
6. Functional with low data bandwidth

Researchers were able to compress several different
types of sensors into small sizes while retaining or
even exceeding the performance of the original
transducers [4, 5]. Due to the obvious reductions in
parasitic capacitance and space wasted to pads,
homogeneously merging sensors altogether or with
other equipment such as electronics might be
desirable, although putting them on disparate chips
can be useful for stacking and packing considerations
of micro fabricated architectures.

The Internet Of Thing (Iot) Architecture: -

Distributed detection, monitoring, and classification
are important tasks in wireless sensor networks or the
Internet of Things. Sensor nodes take measurements
and transmit them to a base station/gateway, which
then sends them to that of an database server in the
Internet protocol, which can subsequently make a
judgement or inference based on the nodes'
measurements. Digital forensics to identify breaches
or  questionable  occurrences, environmental
monitoring to identify and record pollution problems,
and structure health management to avoid system
failures are just a few of the uses available.
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- Figure 1.2 As per state of the art, the three most
prominent frameworks for distributing machine
learning to many devices are [9], [10], and [11].
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If quick inference is required and the data is
multidimensional, the nodes may be required to
communicate significant amounts of data towards the
core network, which is bandwidth intensive and may
be infeasible with current IoT networks and design
systems. Furthermore, allowing the nodes to
exchange the entire measurements is wasteful since
they generally contain redundant and associated data.
The amount of transmissions which can be supplied
and associated information bits will be severely
constrained unless we minimise the amount of data
transferred.

Some standard approaches for Iot network, including
such global source coding [6], distribution estimate
[7], and widespread detection [8,] might be utilised to
decrease the quantity of data to communicate.
Nevertheless, these strategies often need a thorough
understanding of underlying relationship model
between associated with a particular at various
sensors. Consolidated source coding as well as
distribution detection, for instance, rely upon node
correlations, and distribution estimation need
understanding of the assessment model and system
status, that may be difficult to get in complicated
systems.

Deep Learning (DL), which is now the highly
advanced in machine learning (ML) and is
extensively employed in multiple surveillance
applications using [oT [12], [13], is an alternatives to
the model-based method discussed above. The
collect-then-infer method of DL somehow doesn't
expand well with growing numbers of nodes and
applications in IoT systems, nevertheless, because
transferring enormous amounts of high-dimensional
original information from vast IoT nodes would
overcrowd the TIoT network (massive IoT).
Distributed learning is a possible answer to the
scalability and flexibility. In the IoT, there seem to be
two hurdles to employing distributed machine
learning. One seems to be IoT networks' restricted
capacity, which necessitates reducing data transfer
both in strength and conditioning and interpretation
stages. The other one is the IoT nodes' limited
processing, storage, and thermodynamic efficiency,
which necessitates tailoring the ML model just at [oT
nodes to actual capabilities.

ANALYSIS OF IEEE 802.11 WLANS FOR 10T
COMMUNICATIONS:-

The AP on a Wi-Fi equipment can operate as a
Network interface, forming a star topology. Wi-Fi
has a higher output power than previous wireless

www.ijiemr.org

local area network implementations. For Wi-Fi
networks, comprehensive insurance of Broadband
internet is required, therefore dead spots are avoided
by using many antennas in the access point. The 2.4
and 5 GHz frequencies are used for Wi-Fi. Its 5 GHz
functioning allows it to utilise more bandwidth and
deliver better data speeds. Indoors (e.g., within
buildings), nevertheless, the bandwidth of a 5 GHz
transmitter is smaller than that of a 24 GHz
transmitter. IEEE 802.11b and IEEE 802.11g use the
2.4 GHz ISM frequency to communicate. Numerous
inputs and various output techniques (MIMO) are
included in IEEE 802.11n, which improves on prior
versions of the standard [14]. It has a high bandwidth
range of 54 to 600 megabits per second [15]. IEEE
802.11ac is indeed an upgraded version of IEEE
802.11n that gradual implementation wireless
personal area networks (WLANS) in the 5 GHz band
with more system platforms and greater transmission
with MIMO, leading to data rates of more to 433.33
Mbps [16].

Overview Of DI Frameworks

In networks with multiple nodes, there are three
major strategies to distribute ML jobs (see Fig. 1.2):
(a) to distribute data samples among the nodes, (b) to
distribute distinct data characteristics among the
nodes, and (c) to distribute the model among the
nodes. We'll take a look at these techniques today.
We depict the data as a matrix in Fig. 1.2 for
demonstration purposes, with rows representing
samples and columns representing characteristics.
The fundamental distinction between the three
frameworks is how the distributed nodes learn an
ANN. Our major goal is to overcome the limitations
of the IoT framework by incorporating the benefits of
the Smart-dust framework into a machine learning
network for positive outcomes.

A. Learning with distributed datasets

Developing a unified theory with dispersed datasets
necessitates training an unified framework with many
nodes, each one with local data points in the same
features domain. Cellphones, for example, might use
their personal portfolios to train and improve the ML
model for photo classification, as well as
communicate some model information with one
another to improve the model's accuracy. It minimises
the amount of raw data sent between nodes, which is
particularly important during the learning phase. As a
result, this architecture is particularly suited to
situations where deductions required just information
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from a single point and several nodes are using the
same comprehensive model.

Worker nodes and a master are the most popular
distributed structure. Federated Learning [17], [20], a
promising example of the framework, tries to achieve
a universal ML model for all employees in a
collaborative manner without the requirement to
acquire raw data from them all at once. Before
sending information back to the master node, each
worker node obtains a global model and changes it
with local data. The master node then updates the
global model by averaging the local models. Because
each node has a complete ML model on hand, all it
takes to draw an inference is for the node to enter its
measures into the ML model. For completely
distributed ML (without a master node), where the
worker nodes coordinate through communication
networks with any topologies, similar algorithmic
principles have been applied (see [10] and references
therein). So will see that the design parameters are the
only thing that various entities have in common.
Because learning on a distributed dataset necessitates
data instances with the same feature space on all
nodes, it is not suitable for large-scale monitoring that
employs various IoT nodes to gather data with varied
characteristics. Similar distributed data-sets may be
established for MOTES in smart-dust and modelled
for IoT networks using the same parameter.

B. Learning with distributed features

FL is fundamentally distinct from learning utilizing
dispersed features. When many nodes detect distinct
aspects, it naturally occurs. In surveillance video
networking, for illustration, each camera takes
footage from several perspectives, resulting in
diverse characteristics. The readings of various types
of sensors at different places yield diverse aspects in
large-scale environmental surveillance, such as
forecasting the weather. The simplest approach to
dealing with dispersed features seems to be to collect
all of the data on a particular node, from which the
ML model may be trained centrally. When the
amount of the original information at each node is
big, nevertheless, this is expensive. Distributed
learning methods are required to solve such
challenges. The disadvantage of IoT systems is that
nodes cannot manage massive amounts of data;
nevertheless, the system may be improved using the
smart-dust architecture and decentralized
intelligence.

www.ijiemr.org

In the literature, distributed learning algorithms that
allow feature decomposition across nodes, such as
those based on the dynamic diffusion approach [21]
and the adaptive direction multiplier technique [22],
have been examined. The nodes in these systems
compute the inner product of the data and the model
and exchange the findings with others. In terms of
privacy, the work in [18] offered a features
distribution machine learning (FDML) system in
which each data owner performs ML locally using
local information and communicates the local
prediction to a master node. The master node
computes the weighted total among these localized
predictions and sends it to an activation function for
final inference. In comparison, the suggested system
comprises numerous layers at the master node to
provide improved inference accuracy, with maximum
data flow and minimal power utilisation.
Furthermore, rather than making a local inference,
the proposed MOTES in our proposed framework
aim to condense the information.

C. Learning distributed models

This paradigm is concerned with how the model is
distributed rather than how data is disseminated.
Once the MOTES are setup, the model of MOTES or
distributed nodes are fully concentrated The
framework distributes the ML model among
numerous nodes once the ML model is created on a
single node. A node is particularly responsible for
learning a subset of model parameters. Because ANN
has numerous layers, the most common technique to
distribute the model parameters is to divide the ANN
into layers. More layers might be allocated to a node
with superior storage and computing capabilities.
Inference is performed progressively from one node
to the next, with intermediate findings shared across
nodes until the last node when final inference is
performed.

A system[19] describes that translates an ANN onto
heterogeneous nodes. During training, each node
represents a layer of the ANN and conducts a local
parameter update. This spreads the computational
strain over numerous nodes, resulting in speedier
training and inference.

Oursmart-dust framework uses the idea of learning
with distributed features and the learning of
distributed models, but we propose to greatly improve
the communication efficiency of the ML in IoT
networks by integrating the smart-dust architecture.
Briefly speaking, on the IoT nodes optimization, it is
a feature distributed framework such that each IoT

Vol10 Issue 11, Nov 2021

ISSN 2456 - 5083

Page 87




International Journal for Innovative

€ngineering and Management Research

A Peer Revieved Open Access International Journal

node makes some preliminary compression and
inference based on its local measurement with
decision making ability with respect to node’s
dataflow bandwidth.

Proposed Communication Efficient ANN for IoT
with Smart-Dust Framework

To allow ANN to grow with huge IoT, we need a new
communication-efficient ANN
framework/architecture. In this part, we will present
our suggested IoT and Smart-Dust architectural
framework for network optimization.

A. System architecture

Consider an IoT network of N distant IoT nodes
connected to a cloud application server through base
stations, as is characteristic of cellular IoT structures
[23]. The system's purpose is to produce an inference
based on a feature vector x of dimension d, which
comprises of the feature vectors xi, xj of dimension
di,dj recorded by nodes I and j. The nodes are utilised
for a monitoring task that identifies events that
correspond to one of the various classifications. ML
is used to develop an inference rule that, given an
input data measured by the nodes as created by the
event, yields the true class to which the event
belongs. We must remember that xj and dj are
independent variables that rely on the configuration
of the motes and their interactions with the nodes.

Each node sends some information ci to the base
station in order to execute the inference. We may
make ci = xi, which means that each node sends its
whole feature vector. This, however, is inefficient.
The size of ci should be as minimal as feasible to
ensure optimal communication.Let ci = Ci(xi) be a
compressed version of xi, where Ci() is a
compressible function. compress function will be
created for the smart-dust architecture parameter.

It's important to mention that we use the term
compression to describe the process of lowering the
amount of data from original data to information sent
from a node. The procedure might include extraction,
synthesis, coding, and other steps. When the IoT node
is waiting for its transmission window, it can perform
this compression process. The base stations and the
cloud perform the inference T after collecting ci from
all nodes as c. (c). The compression method
minimises communication latency and consequently
the total time of the interpretation by reducing the

www.ijiemr.org

quantity of data to be transferred. Once The main
challenge in creating this communication-efficient
ANN is creating appropriate compression functions
Ci() and Cj(.) as well as the inference function T().
We then show how we can build them as ANNs and
then train the ANNS to get the function coefficients.

B. IoT as ANN

The ANN inference network and the IoT
communication network both have a multi-layered
structure.sigmoid.Thus, it is natural to think of IoT
networks as ANNs, with IoT nodes representing the
shallow layers of the entire ANN and responsible for
extracting information to reduce the amount of data
to transmit, and base stations and cloud representing
the deep layers of the ANN and responsible for
making inferences based on the information sent
from the IoT nodes. As a result, we can use ML to
jointly learn the compression functions Ci(.), Cj(.),
and the inference function T(.). We create Ci(.) Cj(.)
and T(.) to represent the layers structure of a DNN,
including the types of layers and the number of
neurons at each layer. The compression and inference
functions are then used to create the model
parameters for the DNN to be learned. A fully
connected layer, for example, corresponds to a
function (Wxin + b), where xin is the input of this
layer. A fully connected layer, for instance,
corresponds to the function (Wxin + b), where xin
represents the layer's origin and end, W and b
represent the gradient form of the effective to be
learned, and () represents an activation function, such
as a sigmoid function. Wwhere is predIf W is a fatty
matrices, the result has less dimensions than the
source, and the level relates to compressing; else, the
layer projections a lesser input to a higher-
dimensional vectors, that can be wused for
interpretation. Once the model parameters of each
ANN layer have been trained, as discussed in Section
ITI.C, the compression and inference functions are
composed of multiple functions, each of which
corresponds to a layer in the ANN. The entire system
can be thought of as an ANN, with the nodes
representing the shallow disjoint parts of the ANN
and the base station and cloud representing the deep
part.

We can then find the optimal functions Ci(.), Cj(.)
and T(.) by minimizing a loss function that captures
the inference accuracy and complexity of the
functions Ci(), Cj(.) and T(.) using the training data
collected by the IoT nodes. The compress and
inference functions of the ANN may be done by
layering the levels in the ANN after the model
parameters have been trained. Layers include things
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like convolutional layers, pooling layers, fully linked
layers, and recurrent layers. At the output,
differentiated security may be employed to secure
data privacy throughout the inference step. To reduce
extraneous material, the summarising idea [24] might
be employed. To cut down on the amount of bits
transferred, compression might be applied at the
nodes' terminals. Because we want a communication-
efficient framework, the nodes should compress the
information by reducing the size of their outputs, and
the base station should expand the inputs at the first
hidden layer to extract the compressed information.

We don't require deep ANNs on the nodes or ground
station sides in our architecture because we focus on
performance efficiency. Instead, we demand that the
nodes' output be as minimal as possible without
compromising inference efficiency.

C. Training of the model parameters

Because we design the compression and inference
functions as layers of a DNN, the coefficients of these
functions are the DNN's model parameters. We can
use a centralized method to obtain the coefficients. A
centralized cloud center, in particular, collects all
training data and the corresponding desired output.
Then, it centrally trains the parameters of the entire
DNN and returns the models to the nodes and base
station. During inference, the IoT nodes and base
station use the trained model. More specifically,
denote by X; € R%” the training data of IoT node 1,
where m is the sample size. Then, the training data
samples of the system X€& R% is achieved by
stacking X, for all i. We denote ¥the corresponding
output. Let w = {wq,...,wy} be the ML model
parameters of the entire DNN, where wy is the model
parameters of 7(-), and w;(i = 1,...,N) is the model
parameters of Ci(-). Then, the loss function for the
training can be written as

L(EV;w)
:Z?:ORE(IVI) + D(T(Cl (X-l;Wi) wse 'JCN(X-N; H’:\,), Wo),}-")

where the first term R(.) is the regularisation that
corresponds to the ML model's complexity and the
second term D(.,.) is the loss term that corresponds to
the inference's accuracy. The model w is learned by
minimizing L(, ;w), which can be accomplished
through iterative updating.

w—w—nVy, LEV;w),

where is a predefined learning step size When the
training fish catches a fish, the central cloud sends wi
to [oT node i. It only requires that the IoT nodes have
enough storage capacity to store the model as well as
the computational capacity to calculate ci based on its
measurements and trained model.

Similarly
More specifically, denote by X; € R¥*" the training

data of Smardust MOTES j, where m is the sample
size. Then, the training data samples of the system
X€ R¥™ is achieved by stacking X, for all j. We
denote ¥the corresponding output. Let w =
{wo,...,wn} be the ML model parameters of the entire
DNN, where wy is the model parameters of 7(-), and
w; (i = 1,...,N) is the model parameters of Ci(-). As an

outcome, the training's error rate may be stated asin

L(xLyLwl)

N
o= R}(IV]) +D (T(Cl (fl; Mr'l) ey C,V('EN; “":'v), ‘UO)J }-

"’MH

where the first term R(:) is the regularization that
corresponds to the complexity of the ML model, and
the second term D(:,-) is the loss term that
corresponds to the accuracy of the inference. The

model wl is learned by minimizing L(H,y_i;wl),
which can be done by iteratively updating

wl —wl - Vg L(x1yTwl),

where #n is a predefined step size of learning. The
central cloud delivers wj to IoT motes j when the
training fishes. It simply requires that the Smartdust
motews have the storage capacity to hold the model
and enough compute ability to calculate cj based on
the measurements and trained model. We might
alternatively train the ANN in a distributed fashion,
in which the nodes and base station each train their
own local parameters. The nodes and the base station,
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in particular, initially set their local settings. Each
node generates its codes as the result of its
compression function and delivers the codes ci =
Ci(;wi) and ¢j = Cj(;wj) in relation to the base station
using the model parameters and a batch of training
data.

&0 8T &Rp

V., L— +—
W AT Sw | “1-eny Swp

and performs an update of the inference function
parameters as w0 w0 — L After that, the gradients are
delivered to the nodes. Based on the gradients
received from the base station, each node calculates
the gradients with regard to its local parameters.

Sej &R;

VwiL= | 0. Jﬂ\" | +5_‘-"r'i
L 8Rj
Vi L= |""~0;.1|:_,,'}"‘1}| |,1 Bwj

where 0L/0Ciwo is calculated and transmitted by the
base station The IoT node then updates the settings
using w w— wi L. The updating of parameters
continues until convergence is reached. During the
training process, the nodes do not broadcast the raw
training data or their local model parameters,
ensuring data privacy. This networked approach
implies that the Nodes have sufficient processing
power and storage capabilities to compute the
regional gradients and store the training data.

If the IoT nodes' local computation and storage
capacity are insufficient for training, they can offload
the task and training data to a trusted device, such as
a private gateway or server, and retrieve the local ML
model once the training is completed.

Application and Numerical QOutcomes

In this part, we'll use simulations and smart-dust
motes to test the performance of proposed networked
ML framework for IoT node optimization. We
assume that the data transfer is perfect, in the sense
that the receiving and decoding data is equal to the
data transmission, which can be achieved by error -
correcting encoding and repetition. The whole
simulation of the models where done in MATLAB,
the numerical data was all randomly generated for
test purpose. ESP8266 microcontroller was modeled
and consider as the nodes or optimized MOTES in
MATLAB

www.ijiemr.org
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Fig. 3. Comparison of the classification accuracy
achieved by our framework with different
quantization’s.

Summary And Future Directions

The aim of this research is to study the functionality
of MOTES in Smartdust to integrate with IoT
architecture and infrastructure for optimization of
wireless communication specially linked with 2.4Gz
and 5Ghz band. MOTES are modeled in MALTAB
utilising an  Artificial Neural Network with
performance, energy, and frequency optimization
coupled to an Tot ecosystem. The result proves that
smartdust architecture if utilized in IoT architecture,
the over all performances result of IoT devices is
increased specially in bandwidth and power
consumption. Modeling the Internet of Things as an
efficient Artificial Neural combined with the Smart-
Dust architecture variable is also suggested in this
paper. We suggested a distributed ML framework
that combines compression at the nodes and motes
(FOR SMART-DUST) with reasoning at the ground
stations, allowing nodes to send just a minimal
quantity of data to the base station. When compared
to the scheme that sends all raw data, the numerical
results showed that our framework only loses 1.52
percent in inference accuracy while saving 91 percent
in data transmission. Using the smart-dust
framework, one can create extremely efficient IoT
systems for monitoring and inference.

There are numerous interesting topics that should be
researched further in order to improve system
performance. One alternative is to look into the trade-
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off between transmission speed and average
accuracy. Is there a way for calculating the contact
characteristics between such a collection of Nodes
and Motes that is more efficient and systematic?
Which layers have the potential to increase
communication while minimising the impact on
inference performance? It will be vital to develop the
ML layer upon layer and having to learn in a way that
the codes generated by the nodes and motes result in
better inferential showings for numerous monitoring
applications: this process is achieved using computer
methods based such as Particle Swarm Optimization
and Ant Colonization Enhancement.

References

[1] Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami,
M. Internet of Things (IoT): A vision, architectural
elements, and future directions. Future Gener.
Comput. Syst. 2013, 29, 1645-1660.

[2] Jun, Z.; Simplot-Ryl, D.; Bisdikian, C.; Mouftah,
H.T. The internet of things. IEEE Commun. Mag.
2011, 49, 30-31.

[3]"CLOUD, FOG, DEW AND SMART DUST
PLATFORM FOR ENVIRONMENTAL
ANALYSIS",Rossitza  GOLEVAI1,  Aleksandar
SAVOV, Ivelin ANDREEV ,Rumen STAINOV,
Jugoslav ACHKOSKI, Nikola KLETNIKOV,Igorche
KARAFILOVSKI; The 13th Annual International
Conference on Computer Science and Education in
Computer Science, 30 June — 3 July 2017, Albena,
Bulgaria

[4] Lj. Ristic [ed], Sensor Technology and Devices,
Artech House, London, 1994.

[51 G.T.A. Kovacs, Micromachined Transduceers
Sourcebook, WCB McGraw-Hill, San Francisco,
1998

[6] Z. Xiong, A. D. Liveris, and S. Cheng,
“Distributed source coding for sensor networks,”
IEEE Signal Process. Mag., vol. 21, no. 5, pp. 80-94,
2004.

[7]11.-]. Xiao, A. Ribeiro, Z.-Q. Luo, and G. B.
Giannakis,“Distributed compression-estimation using
wireless sensor

networks,” IEEE Signal Process. Mag., vol. 23, no. 4,
pp- 2741, 2006.

[8] J.-F. Chamberland and V. V. Veeravalli,
“Wireless  sensors in  distributed  detection
applications,” IEEE Signal Process. Mag., vol. 24,
no. 3, pp. 16-25, 2007.

[9] J. Konecn™ y, H. B. McMahan, F. X. Yu, P.
Richtarik, A. T. Suresh, and D. Bacon, “Federated
learning: Strategies for improving communication
efficiency,” https://arxiv.org/abs/1610.05492, 2016,
[Accessed on 2019-12-01].

[10] Y. Hu, D. Niu, J. Yang, and S. Zhou, “FDML: A
collaborative machine learning framework for

distributed features,” in Proc. ACM SIGKDD, 2019,
pp- 2232-2240.

[11] S. Teerapittayanon, B. McDanel, and H.-T.
Kung, “Distributed deep neural networks over the
cloud, the edge and end devices,” in Proc. IEEE
ICDCS, 2017, pp. 328-339.

[12] A. Abeshu and N. Chilamkurti, “Deep learning:
the frontier for distributed attack detection in fog-to-
things computing,”

IEEE Comm. Mag., vol. 56, no. 2, pp. 169-175,
2018.

[13] X. Wang, X. Wang, and S. Mao, “RF sensing in
the internet of things: A general deep learning
framework,” IEEE Comm. Mag., vol. 56, no. 9, pp.
62-67,2018.

[14] F. Rusek, D. Persson, B. K. Lau, E. G. Larsson,
T. L. Marzetta, O. Edfors, et al., "Scaling up MIMO:
Opportunities and challenges with very large arrays,"
IEEE Signal Processing Magazine, vol. 30, pp. 40-
60, 2013.

[15] E. Perahia and R. Stacey, Next Generation
Wireless LANs: 802.11 n and 802.11 ac: Cambridge
university press, 2013.

[16] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam,
and E. Cayirci, "Wireless Sensor Networks: A
Survey,"

Computer Networks, vol. 38, pp. 393-422, 2002
[17]). Koneen™ y, H. B. McMahan, F. X. Yu, P.
Richtarik, A. T. Suresh, and D. Bacon, “Federated
learning: Strategies for’

Improving communication efficiency,”
https://arxiv.org/abs/1610.05492, 2016, [Accessed on
2019-12-01].

[18]Y. Hu, D. Niu, J. Yang, and S. Zhou, “FDML: A
collaborative machine learning framework for
distributed features,” in Proc. ACM SIGKDD, 2019,
pp. 2232-2240.

[19]S. Teerapittayanon, B. McDanel, and H.-T.
Kung, “Distributed deep neural networks over the
cloud, the edge and end

devices,” in Proc. IEEE ICDCS, 2017, pp. 328-339.
[20]H. B. McMahan, E. Moore, D. Ramage, S.
Hampson, et al., “Communication-efficient learning
of deep networks from decentralized data,”
https://arxiv.org/abs/1602.05629, 2016, [Accessed on
2019-12-01]. optimization,” Proceedings of the
IEEE, vol. 106, no. 5, pp. 953-976, 2018.

[21]B. Ying, K. Yuan, and A. H. Sayed, “Supervised
learning under distributed features,” IEEE Trans.
Signal Process., vol. 67, no. 4, pp. 977-992, 2018.
[22]Y. Hu, P. Liu, L. Kong, and D. Niu, “Learning
privately over distributed features: An ADMM
sharing approach,” https: //arxiv.org/abs/1907.07735,
2019, [Accessed on 2019-12-01].

Vol10 Issue 11, Nov 2021

ISSN 2456 - 5083 Page 91

www.ijiemr.org



International Journal for Innovative

€ngineering and Management Research

A Peer Revieved Open Access International Journal
www.ijiemr.org

[23]A. D. Zayas and P. Merino, = “The 3GPP NB-
IoT system architecture for the internet of things,”in
Proc. IEEE ICC Workshops, 2017, pp. 277-282.
[24]K. Muhammad, T. Hussain, M. Tanveer, G.
Sannino, and V. H. C. de Albuquerque, “Cost-
effective video summarization using deep cnn with
hierarchical weighted fusion for iot surveillance
networks,” IEEE Internet Things J., 2019,

Vol10 Issue 11, Nov 2021 ISSN 2456 - 5083 Page 92



