

Vol12 Issue 02, Feb 2023 ISSN 2456 – 5083 www.ijiemr.org

COPY RIGHT

2023IJIEMR.Personal use of this material is permitted. Permission from IJIEMR must

be obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted

component of this work in other works. No Reprint should be done to this paper, all copy

right is authenticated to Paper Authors

IJIEMR Transactions, online available on 06th Feb 2023. Link

:http://www.ijiemr.org/downloads.php?vol=Volume-12&issue=ISSUE-02

DOI: 10.48047/IJIEMR/V12/ISSUE 02/25

Title Review Paper on Software Testing: Techniques and Test Cases

Volume 12, Issue 02, Pages: 155-161

Paper Authors

Kavya Muraharisetty, Sai Pallav Chitluri

 USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER

To Secure Your Paper As Per UGC Guidelines We Are Providing A Electronic

Bar Code

Volume 12 Issue 02, Feb 2023 ISSN 2456 – 5083 Page : 155

Review Paper on Software Testing: Techniques and Test
Cases

Kavya Muraharisetty
QA Analyst, TEKSystems Global Services, kavyamuraharisetty@gmail.com

Sai Pallav Chitluri
Salesforce Analyst, Accenture, chitluripallav@gmail.com

Abstract
Software Testing has been considered as the most significant stage of the software
development life cycle. Around 60% of resources and money are cast-off for the testing of
software. Testing can be manual or automated. Software testing is an activity that focuses

at assessing the capability of a program and dictates that it truly meets the quality results.
Testing is broadly classified into three levels: Unit Testing, Integration Testing, and System
Testing. Whenever we think of developing any software, we always concentrate on making
the software bug free and most reliable. At this point of time Testing is used to make the
software a bug free. There are many test cases that help in detecting the bugs so, in this
paper we describe about the most used test cases and testing techniques for the error
detection.

Keywords: Software Testing, Software Testing Strategies, Testing Techniques, Test
Cases.

Introduction
Software Engineering: It is defined as a
discipline for developing the high-quality
system that allocates with the software
development of the software product that

uses the clear-cut methods, techniques,
sub-routines and procedures. According
to IEEE’s definition, [1] Software
Engineering can be defined as “The
application of a systematic, well-defined,
disciplined and quantifiable approach to
the development, and maintenance of
software and the study of these
approaches that is considered as the
application of engineering to software”.
Software Engineering is the procedure of
making, testing and documentation of
the programs of computer.

Software Development Life Cycle:
SDLC, Software Development Life Cycle
is the task that is being used by the

industry of software that helps to design,
develop, and test the high-quality
software. [2] This concept of SDLC is
applied to the limit of both hardware and
software configurations as we know that
system is comprised of hardware only,
software only and the combination of
both the configurations. SDLC authorizes
the set of various activities that are to be

followed and designed to develop a
software product effective and efficient.
The substructure of this includes the list
of steps:

Fig 1: Stages of SDLC

Software Testing: Testing is defined as
“It is a process of gathering information by
making observations and comparing
them to the expectations”. Software
Testing plays a very important task in
SDLC. It is an appraisal of the software
that is against the requirements that are

collected from the system and the user
specifications. It is defined as the process
of executing the program with the
purpose of finding the bugs and a
procedure to test the code of computer
that it does for what it is designed for.

By whom Testing is done - Testing is
being done by all those who are intricate

mailto:kavyamuraharisetty@gmail.com
mailto:chitluripallav@gmail.com

Volume 12 Issue 02, Feb 2023 ISSN 2456 – 5083 Page : 156

to the software development. The various

professionals are indulged in testing the
software: Project Manager, Software
Tester, Software Developer and End
Users.

When Testing should be started - The
first stage of SDLC is software testing.
Starts from the requirement gathering
(Planning) phase to the last stage i.e.,
Deployment phase. In waterfall model,
Testing formally is being organized in the
phase of testing. [3] Testing at the
incremental model is implemented at the
last of every increment/ iteration and the
complete application is being tested at the
last.

When Testing should be stopped -
Testing the software is an everlasting
process. No one can profess that the
software is 100% bug free, instead of
testing the software. As the Domain to the
input is too large that we cannot verify
every input.

Fig 2: Software Testing Life Cycle
Software Testing Strategies:
There Are Various Testing Strategies
That Are Being Used For The Purpose Of
Testing:

Unit Testing - This type of testing is
performed at the bottom level by the

developers before it is moved to the team
of testing to execute the test cases. It is
the smallest module that can be tested
and verified at each section or lines of
code. In this output of one module
becomes the input of another module. if
the output of any one of the modules
fails so, then the output to which we give
the input also fails.

So, therefore it is nevertheless better to
test each module differently so that there
would be less chance of fails. In this,
white box testing method is
implemented.

When The Unit Testing Is
Accomplished: It Is Being Accomplished
Prior To Integration Testing.

By Whom Unit Testing Is
Accomplished: It is accomplished by
developers of software and their peers or
very rarely by the testers those who are
independent.

Integration Testing - Integration Testing
is performed immediately after the Unit
Testing. In this all the modules are
merged to form a larger module and deter
mine are they functioning in a proper way
and then the testing is implemented on
the modules. Testing is done so that in
case if any bug remained in the Unit
Testing it can be again tested in this
testing so as to remove all the bugs.

The basic idea of integration testing is to
test how different parts of the system are
grouped or work together. For example, a
unit test for database access code would
not be able to talk to a real database but

the integration testing would.
Testing is classified into two parts:

(i) Top-Down Testing

(ii) Bottom-Up Testing

When the Integration Testing is
accomplished: It is being accomplished
after Unit Testing and before System
Testing.

By whom Integration Testing is

accomplished: It is accomplished by
either the developers or by the Testers
those who are independent.

System Testing - This type of testing is

conducted to test the entire system. It is
needed to test all the integrated
components to test and verify whether it
meets the requirements and the
standards of quality. The basic purpose of
the testing is to assess the compliance of
the system within the desired specific
requirements. In this, black box testing
method is implemented.

Volume 12 Issue 02, Feb 2023 ISSN 2456 – 5083 Page : 157

When the System Testing is
accomplished: It is being accomplished
after Integration Testing and before
Acceptance Testing.

By whom System Testing is
accomplished: It is accomplished by the
Testers those who are independent.

Testing Techniques/ Methods:
There are various methods or techniques
for testing the software:

1. Black Box Testing

2. White Box Testing

Black Box Testing: In this type of
testing, the intramural structure/ details
of the data item are not known by or
accessible to its user. In this test cases
are generated or designed from the Input
/ Output value only and no knowledge of
design/ code is being required. [1] The
testers are only aware of knowing about
what is assumed to do, and not to know

how it does. These Types of tests can be
functional or non-functional.

Fig 4: Black Box Testing

Black Box Testing is named so because as
we know that in the tester’s eyes it is
named black box but inner side no one

sees. Black Box Testing is also known as
Functional testing, Specification,
Behavioural, Data Driven or Input-Output
Driven.
There are many test cases in Black Box
Testing:

I. Equivalence Class Partitioning

II. Boundary Value Analysis

III. Cause Effect Graph

IV. Comparison Testing

Equivalence Class Partitioning: This
type of technique partitions the program
input domain into the set of equivalence
classes from where we can derive the test
cases. This partition is done in such a
way that program’s behaviour is same to
every input data that is belonging to the
similar equivalent class. [6] The main
idea behind the defining of the equivalent
class is to test the code with only one
value that belongs to the equivalence
class is as better as testing the software
with some other value that belongs to
that equivalence class.

For Example:

≤

1-500

 501 and above

Boundary Value Analysis: It is
complementary to partitioning the
equivalence class instead of selecting the
arbitrary input value to partition; the
equivalence class chooses the values at
the extreme end of the class.

Cause Effect Graph: It is technique of
software test design that includes
identifying the cases (Input conditions)
and the effects (Output conditions). [2] A
weakness of the above mentioned 2
methods are that they don’t consider the
potential combination of input and output

Volume 12 Issue 02, Feb 2023 ISSN 2456 – 5083 Page : 158

condition. It connects the input classes

(causes) to output classes (effects) yielding
a directed graph. It utilizes 4 symbols:
NOT, OR, AND, IDENTITY.

Comparison Testing: For critical
applications that are required the fault
tolerance, several independent versions of
the software are developed for the similar
specification if the output for each version
is same then it is presumed that all the
implementations are correct but if output
is unique then each version is examined
to check what is responsible for the
different output.

Advantages of Black Box Testing

 Testing is being performed from the
viewpoint of users.

 Tester and Programmer both are
autonomous to each other.

 Test cases can be designed immediately
after the completion of specifications.

 Testers don’t know about the languages
of programming or how the software has
been accomplished

White Box Testing: In this type of

testing, the intramural structure/ details

of the data item is known by or

accessible to its user. [3] In this, test

cases are being made based on the code.

Programming very well knows about how

the implementation of knowledge is

significant.

Fig 5: White Box Testing

White Box Testing is named so because
as we know that in the tester’s eyes it is
named white box and inner side everyone
sees perfectly.

White Box Testing is also known as
Glass Box, Structural; Clear Box, Open
Box, Logic Driven, or Path Oriented.

For Example: Basically, a tester and a

developer study the code implemented of
any field on a webpage, decides
purposefully all the legal and the illegal
inputs and verifies the output for the
outcome that is expected. And also
decides by studying the code that is
implemented.

So, therefore we can say that white box
testing is like the work of a mechanic who
only needs to know why the car is not
working correctly.

Strategies applied to white box testing are:

the paths are tested.

the units the paths are tested.

the subsystems the paths are
tested.

For white box testing, unit testing is
applicable. There are many test cases in
White Box Testing:

I. Statement

II. Branch

III. Condition

IV. Path

V. Data Flow

VI. Mutation

VII. Domain and Boundary Testing

VIII. Loop Coverage Testing

IX. Logic Based

X. Fault Based
Advantages of White Box Testing

 We need not to wait for the GUI to
be implemented as testing is
began at a very first stage.

 Helps in code optimization.

Enhancement In

Testing Processes

Test Suite Prioritisation does
enhancement in the testing process by
Combinational Criteria. [1] The major
methodology behind such test case

prioritising is the conversion of the
weblogs into the test suites relevant with
the user session, and further writing it
down into an XML format. The Algorithm
used for this approach should be
accurately prioritised by the coverage
based on combinatorial test suites. The
usage of genetic algorithms (GAs) for the

Volume 12 Issue 02, Feb 2023 ISSN 2456 – 5083 Page : 159

purpose of automated test data

generation for testing the application is
yet another enhancement in the testing
process, as previously the dynamic
means of test data generation remained a
big issue in the software testing process,
so the usage of Genetic Algorithm based
testing is an effective of the test data
generation, it also capable of handling the
data generation keeping in line with the
complexity of program.

Test Automation:

The major enhancement in the testing
process leads the testing process towards
the Test Automation, which is the use of
particular software to carry out the
testing process as well as it makes the
comparison of actual results with the
expected results. Test Automation
technique is time effective, as it saves the
time of manual testing which can be
quite laborious.

In SDLC, [1] [2] Test Automation occurs
during the implementation as well as the
testing phase. Throughout the world,
Test Automation is being practised
instead of manual testing as it saves a
great amount of time accomplishing the
testing processes in shorter time span.
Test automation has taken over the
manual testing process by reducing its

need as well as by exposing the number
of errors, shortfalls that cannot be
acknowledged via the manual testing
process.

Regression Testing being one of the
major testing types requires much time
when done manually. It typically tests
whether the software or the application
works properly after the fixation of any
bugs or errors.

Because sometimes after the error
fixation, the code or application’s error or
bug ratio gets even higher. So, for the
avoidance of the time taken for
regression testing; a set of automated
test suites is made to form a regression
test suite for such purpose. Test
Automation also helps in finding the
problem at the much earlier stage, saving
heaps of modification cost and energy at
later stages.

The environment which caters a term
typically knows the automation testing

execution called Testing Framework. The

testing framework is mainly responsible
for executing the tests, as well as
defining the format in which to express
expectations and for the reporting of the
results. The standout feature of Testing
Framework that makes it widely
applicable in various domains worldwide
is its application independency. Testing
Frameworks are of certain kinds,
including Modular, Data Driven, Keyword
Driven and Hybrid. The Modular Testing
Framework is based on the principle of
abstraction which involves the creation of
different scripts for different modules of
the software or application that is to be
tested, thus abstracting each and every

component from another level. This
Modular division leads to the scalability
as well as easier maintenance of the
automated test suites. Also, once the
functionality is available in the library,
the creation of different driver scripts for
different types of tests becomes easy and
fast. The major con of such type of
framework is to embed data within them,
so when the modification or up gradation
is requisite in the test data, the whole
code of the test script needs to get
modified. It was the major cause that
served as a purpose for the invention of
the Data Driven Testing Framework. [12]
In this type of Framework the test data

and the expected results are ideally
stored within different files, helping in
the execution of single driver script being
able to execute all the test cases with
multiple sets of data. This kind of
Framework reduces the number of test
scripts as well as minimises the amount
of code desired for the generation of test
cases, gives more flexibility in fixation of
errors or bugs. Keyword driven testing
Framework utilises self-explanatory
keywords which are termed as Directives.
Such type of framework is used to
explain the actions that are expected to
be performed by the software or
application that is to be tested. This kind

of testing is a basically extension of Data
Driven Testing as the data as well as the
directives are kept in separate data files.
It encompasses all advantages of the
data-driven testing framework. Also,
reusability of the keywords is another
major advantage. The ill factor of this
kind of testing framework is that due to
the usage of keywords, it adds

Volume 12 Issue 02, Feb 2023 ISSN 2456 – 5083 Page : 160

complexity to the framework making test

cases longer and more complex. Hence,
to combine the strengths of all
frameworks mitigating the ill factors
being possessed by them. A hybrid
approach is considered best for the usage
as it is mainly a combination of all the
three approaches and this combination
integrates the advantages of all the
testing frameworks, making it the most
efficient one.

Testing Frameworks

in the Agile:

The agile lifecycle is another innovation
in software testing as it encompasses
short and speedy test cycles with

frequently modifying requirements. Thus,
the agile environment can encompass
any testing framework, but due to the
frequent iterations and rapid change in
specified requirements, its maintenance
of test automation suite becomes quite
difficult. Though testing frameworks
remains a bad fit for the agile
environment because achieving
maximum code and functionality
coverage remains difficult in it.

Test Driven

Development:

It is a technique that makes use of
automated unit tests for the purpose of
driving the design of software and forcing

the decoupling process of the
dependencies. With the usual testing
process, tester often finds one or more
defects or errors, but TDD gives a
crystal-clear measure of success when
the test no longer fails, enhancing the
confidence level about the system
meeting its core specifications. Using the
TDD approach a great amount of time
can be save that might get wasted over
the debugging process.

[3] BDD (Behaviour Driven Development)
is mainly an extension of Test-driven
Development focusing on the behavioural
aspects of the system rather than the

implementation level aspects. Hence,
giving a clear understanding of what
exactly the system is supposed to do
giving more efficiency to the testing
process. Thus, BDD is mainly Test-
driven Development incorporated with
Acceptance testing, which typically refers
to conducting a test to determine if the
specified requirement of the product or

software is met or not. If it is performed

by the intended customer or user, then it
is termed as User Acceptance Testing.

Bug Life Cycle:

A Defect is an error in an application that
is restricting the normal flow of an
application by mismatching the expected
behaviour of an application with the
actual one. [2] It occurs when any
mistake is made by a developer during
the building of an application and when
this flaw is found by a tester, it is termed
as a defect. It is the responsibility of a
tester to do thorough testing of an
application to find as many defects as
possible to ensure that a quality product
will reach the customer. It is important to

understand the defect life cycle before
moving to the workflow and different
states of the defect.

1) New: This is the first state of a defect
in the Defect Life Cycle. When any new
defect is found, it falls in a ‘New’ state,
and validations & testing are performed
on this defect in the later stages of the
Defect Life Cycle.

2) Assigned: In this stage, a newly
created defect is assigned to the
development team to work on the
defect. This is assigned by the project
lead or the manager of the testing team
to a developer.

3) Open: Here, the developer starts the
process of analysing the defect and
works on fixing it, if required.
If the developer feels that the defect is
not appropriate then it may get
transferred to any of the below four
states namely Duplicate, Deferred,
Rejected, or Not a Bug-based upon a
specific reason. We will discuss these

Volume 12 Issue 02, Feb 2023 ISSN 2456 – 5083 Page : 161

four states in a while.

 Rejected: If the defect is not
considered a genuine defect by
the developer, then it is marked
as “Rejected” by the developer.

 Duplicate: If the developer finds
the defect as same as any other
defect or if the concept of the
defect matches any other defect,
then the status of the defect is
changed to ‘Duplicate’ by the
developer.

 Deferred: If the developer feels
that the defect is not of very
important priority and it can get
fixed in the next releases or so

in such a case, he can change
the status of the defect as
‘Deferred’.

 Not a Bug: If the defect does not
have an impact on the
functionality of the application,
then the status of the defect gets
changed to “Not a Bug”.

4) Fixed: When the developer finishes
the task of fixing a defect by making the
required changes then he can mark the
status of the defect as “Fixed”.
5) Pending Retest: After fixing the
defect, the developer assigns the defect
to the tester to retest the defect at their
end, and until the tester works on
retesting the defect, the state of the
defect remains in “Pending Retest”.
6) Retest: At this point, the tester starts
the task of retesting the defect to verify
if the defect is fixed accurately by the
developer as per the requirements or
not.

7) Reopen: If any issue persists in the
defect, then it will be assigned to the
developer again for testing and the
status of the defect gets

8) changed to ‘Reopen’.
9) Verified: If the tester does not find
any issue in the defect after being
assigned to the developer for retesting

and he feels that if the defect has been
fixed accurately then the status of the
defect gets assigned to ‘Verified’.
10) Closed: When the defect does not
exist any longer, then the tester
changes the status of the defect to
“Closed”.

Conclusion

 Software testing is the basic
activity of software engineering.

 It is an activity that executes the
software with the aim of detecting
errors or bugs in it.

 This paper describes in detail
about the testing techniques, strategies
of testing the software.

 Important stages in the process of
testing are on the methods of designing
the test cases. And it is impossible to
find all the bugs from the software so
for that we have designed the number
of testing techniques that can be taken
to analyse.

References:

[1] P. Ron. Software testing. Vol. 2.
Indianapolis: Sam’s, 2001.

[2] S. Amland, "Risk-based testing:"
Journal of Systems and Software, vol.
53, no. 3, pp. 287–295, Sep. 2000.

[3] Redmill and Felix, “Theory and
Practice of Risk-based Testing”,
Software Testing

