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Abstract: 

Time series of a system replicates its behavior. Studies on time series help in analyzing the nature 

of the dynamical systems. Among all the methods used to analyze time series, phase space reconstruction 

is one, where its trajectory in phase space helps in looking into the system. In physics, the phase space of 

a dynamical system depicts the system evolution. A straightforward way to figure out the dynamics of a 

system is, by solving its equations of motion. Time series evolving from complex systems like heart, 

brain, sunspots etc., are challenging. Assuming the time series of some variable generated by a dynamical 

system, one can reconstruct the phase space. Delay coordinate embedding is one of the methods used to 

reconstruct the phase space trajectory of time series. Phase space of a time series allows analyzing the 

nonlinearity of time series by measuring the invariant properties like the Lyapunov exponents, entropies, 

correlation and fractal dimensions. We discussed the methods in order to reconstruct the phase space 

trajectory of the univariate EEG time series. 

 

Keywords: EEG signals, embedded dimension, embedded time-delay, phase-space, reconstruction, time 

series. 

 

1. Introduction 

The analysis of signals generated from 

complex systems is an intricate process and 

choosing methods to uncover the underlying 

behavior of systems is challenging. Time series 

of systems like heart, brain and sunspots are 

widely studied using the methods of nonlinear 

analysis [1]. Due to the complexity of time 

series, the concepts of chaos theory translates its 

underpinned nature [2]. Using of chaos theory 

has an increasing frequency in the area of health 

sciences [3]. For any chaotic system, it is 

possible to find the deterministic nature of a 

system by investigating its time series. The 

brain, one such complex system, whose time 

series recorded by electroencephalogram (EEG) 

are nonlinear. The nonlinear analysis of the 

brain signals is important in understanding its 

neurophysiology [4]. EEG has been used in 

various clinical applications in identifying sleep 

stages and to classify the normal and abnormal 

brains in patients with Alzheimer’s Disease 

(AD) [5]. The chaotic analysis helps in studying 

the epileptic recordings of ictal, pre-ictal and 

post-ictal segments, using the nonlinear 

parameters like the Lyapunov exponents, 

entropies, correlation and fractal dimensions [6 - 

9]. In non-linear methods, phase space 
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reconstruction has been used to embed the time 

series in phase space for further analysis [10 - 

12]. Phase space of a time series requires 

calculating the parameters, embedding time 

delay (𝜏) and embedding dimension(𝑚) [13 - 

15]. Various methods are available to calculate 

these parameters to fit the time series in phase 

space. Phase space reconstruction of biomedical 

signals significantly classifies the variability of 

signals generated from different states of health 

conditions, behavioral states etc. In this paper, 

we discussed the phase space reconstruction 

methods and applied them to draw the phase 

space plots of EEG signals. 

2. Electroencephalogram (EEG) 

EEG is a non-invasive neuro imaging 

modality which measures the electrical activity 

of brain. It’ high temporal resolution captures 

the significant changes in dynamical brain. 

Cerebral cortex, an outer surface of brain, have 

complex functionality like, thought-process, 

action etc. Variations in EEG recorded signals in 

subjects, reliably helps in classifying the states 

of pathological functioning in comparison with 

normals. Epilepsy is the most common 

neurological disorder which arises due to non-

functioning of brain regions, due to brain 

tumors, strokes etc. EEG has been widely used 

to study the episodes of epileptic subjects based 

on pre-ictal, ictal and post-ictal intervals [16]. 

Onset recording of epileptic nature helps in pre-

surgical medication in subjects. EEG predicts 

epileptic behavior in autism patients [17]. The 

measured signals from EEG reveals the chaotic 

nature of the brain and such chaotic systems are 

well analyzed through nonlinear studies. 

3. Time series analysis 

3.1. Phase Space Reconstruction 

Any system’s properties are represents by 

variables, which can have a range of values. 

Each value possessed by the system represents 

the state of the system. The time evolution of 

states depicts a trajectory in the coordinate space 

called phase space. A system is dynamical, when 

the state of it evolves with time, by obeying 

some rule. By giving some initial conditions to 

it, the evolution with time generates a trajectory 

in the phase space. Chaos theory helps in 

determining the dynamics of systems. A 

dynamical system is chaotic, when the state of 

the system used as a new initial condition. By 

using the context of embedding theorem [18, 19] 

enables us to reconstruct the phase space of a 

univariate time series. According to embedding 

theorem, each point in the time series represents 

state of the system and is written as scalar 

sequence  𝑥(𝑡)= {𝑥0, 𝑥1, 𝑥2, 𝑥3, … … . . , 𝑥𝑖 , … . 𝑥𝑁} ,                          (1) 

 

where 𝑥𝑖 is the measured value of the variable at 

time 𝑡. Takens theorem [18] suggested that, each 

point in the time series represents a vector in the 

reconstructed space  

 𝑦𝑖(𝑚)= {𝑥𝑖, 𝑥𝑖+1, 𝑥𝑖+2, … … , 𝑥𝑖+(𝑚−1)𝜏},                       (2) 

 

where 𝑦𝑖(𝑚) is the 𝑖𝑡ℎ reconstructed vector 

and 𝜏, 𝑚 are embedded delay and embedded 

dimension respectively. According to the Takens 

theorem, suitably large value of 𝑚, helps in one-

to-one mapping of the attractor and original 

system, which is the evidence for invariance of 

nonlinear properties of measured signal in phase 

space. 

  

 The successful estimation of 𝜏 and 𝑚, is 

required in reconstruction of attractor. Choosing 𝜏 value follows the criteria that, at first its value 

is large enough so that the delay between 𝑥𝑖 and 
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 𝑥𝑖+1 differ from each other and it provides the 

information between the interaction of 

components of the system. In second case, 𝜏 

should not be larger than typical values so that it 

avoids losing information about its initial state. 

Similarly, 𝑚 suggests the dimension of phase 

space to fit the reconstructed attractor [20]. 

 

 Time delay constant: 

There is no restriction on choosing the 

value of time delay constant τ [21]. Fraser and 

Swinney [22] suggested that using mutual 

information between xi and xi+1, one could find 

the amount of information about  xi+1 by

 presuming we know about xi.  I(τ)= ∑ PAB(xi, xi+τ) log2 [ PAB(xi, xi+τ)PA(xi)PB(xi+τ)]N
n=1 ,               (3) 

where PA(xi) and PB(xi+τ) are probabilities of 

occurrence of variable xi and  xi+τ in systems A and B and PAB(xi, xi+τ) is joint probability of xi and  xi+τ in  A, B. As τ increases, I(τ) 

decreases and then it usually rises again. At this 

moment, Fraser and Swinney suggested the first 

minimum of I(τ), to select the value of  τ. 

3.2. Embedded Dimension 

A minimum number of dimension is 

required to fit the given scalar time series. 

Methods like, finding the invariants on attractor 

while increasing the dimension [23], singular 

value decomposition (SVD) [24] and the method 

of false nearest neighbors (FNN) [25], are 

independent of delay constant τ. In comparison 

with these methods, Caos [26] proposed that a 

good choice of embedding dimension is in 

contrast with embedded time delay. Remarkably, 

different choice of time delay constants leads to 

different minimum dimensions, a good choice of 

time delay constant (τ) necessary. Caos used 

equation (4) to determine the value of embedded 

dimension, m.  E(m)= 1N − mτ ∑ a(i, m),N−mτ
i=1                               (4) 

where (i, m) is the ratio of maximum norm 

(Euclidean distance) of i𝑡ℎ and n(i, m)𝑡ℎ 
reconstructed vector in m and m+1 embedding 

dimension a(i, m)= ‖yi(m + 1) − yn(i,m)(m + 1)yi(m) − yn(i,m)(m) ‖         (5) 

and n(i, m) (1 ≤ n(i, m) ≤ N − mτ) is an 

integer such that yn(i,m)(m) is the nearest 

neighbour (NN) of yi(m). The invariance of 

distance between any two neighbouring points in 

phase space are analyzed using the ratio E1(m)= E(m + 1)E(m)                                             (6) 

There is no change in E1(m) when m is greater 

than some value m0. Then (m+1) is the 

minimum embedding dimension to fit the scalar 

time series. 

4. Results and discussion 

 

Firstly, we applied the time series methods 

to the well-known system, a simple sinusoidal 

function to check its validity. Sinusoidal 

functions are continuous functions whose phase 

space trajectories are periodic and limits to 2D 

space. Mutual information and Caos functions 

are confirmed periodic nature of sinusoidal 

waves, whose trajectory is in a plane. Figure 1 

shows the simple phase space reconstruction of a 

sine wave. In figure 1, phase space 

reconstruction of a periodic signal is plotted with 
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the embedding delay and embedding dimension. 

The same functions applied to an EEG recorded 

signal, whose attractor confirms the chaotic 

nature of brain electrical activity. Onset activity 

of epileptic signals can be well studied under 

nonlinear time series analysis, because EEG 

demonstrates the physiological aspects of 

abnormalities causes in cortical activity. EEG 

has also been used to classify the seizure 

disorders like idiopathic, focal etc.  

 

Figure 1 and 2 shows the reconstructed 

attractor for aperiodic and EEG signal, where a) 

represents the time series of signal, b) is 

measured embedded time delay value, c) is 

embedded dimension from Caos method and d) 

is reconstructed attractor of time series 

respectively.

 

 

 

a) 

 
 
 

 

b) 

 
 

  

c)

 
 

d) 

 

 

Figure: 1. (a) time series of sinusoidal signal, (b) embedded delay, (c) embedded dimension, (d) phase space 

plot 
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a) 

 

b) 

 

c) 

 

d) 

 

Figure 2:  a) time series of EEG signal, b) embedded delay, c) embedded dimension and d) phase space plot 

 

5. Conclusions: 

Nonlinear time series analysis of EEG 

signals is studied by reconstructing its phase 

space using embedding theorem. This 

analysis concludes that phase space 

trajectory of EEG signals have chaotic 

nature. Further, we are interested in applying 

these techniques to the wide variety of brain 

signals like epileptic, sleep disorder and 

stroke patients. Classification of these 

signals creates clear understanding of 

pathological evidence of brain’s health. One 

can easily find the transitions of signal 

variations in ictal periods. Identifying the 

origins of epileptic regions helps in better 

medication before surgical operations. In 

comparison between phase space plots, time 

series analysis of EEG signals is purely 

chaotic in nature. Variability of nonlinear 

parameters helps in recognizing the signals 

emerging, due to dysfunctions with in the 

brain. 
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