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 ABSTRACT Large-scale disasters generally involve processes that operate over a wide range 

of length and time scales, and provide compelling challenges. To effectively model and prevent 

large-scale disasters, we need to describe detailed scientific phenomena occurring at multiple 

scales (nano, micro, meso, macro, and mega scales) by capturing information at small scales and 

examining their effects on the mega scale level. Many problems will remain unresolved without 

the capability to bridge these scales for modeling and simulation of large-scale disasters. The 

study of large-scale disasters has been driven by the need for information to guide restoration, 

policy, and logistics because they are vital for human safety. However, the challenge is to 

develop more effective modeling and simulation tools that can be used for prediction and disaster 

management. This will require a systematic, multidisciplinary approach consisting of basic 

science, mathematical descriptions, and computational techniques that can address large-scale 

disasters across time and space scales, involving cellular automata and neural networks in 

multiple orders of magnitude gives an excellent results. 
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I.APPLICATION OF MODELING 

METHODS TO LARGE-SCALE 

1. DISASTERS  

Multiscale modeling and simulation is 

concerned with the methods for computing, 

manipulating, and analyzing information 

and data at different spatial and time 

resolution levels. The techniques of 

multiscale modeling in various fields have 

undergone tremendous advances during the 

past decade because of the cost effectiveness 

of the hardware environment.  Advances in 

computational methods and the distributed 

hardware have enabled the development of  

 

 

 

new mathematical and computational 

methods that enable multiple simulations. 

To establish the validity of a model and its 

application in simulations, both verification 

and validation aspects need to be addressed 

(Dolling, 1996). Verification involves 

checking the model for correctly solving the 

governing equations mathematically, 

whereas the validation involves checking 

that the right equations are solved from the 

perspectives of the model applications.  
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Validations require advances in 

experimental measurement and data 

gathering, as well as advances in 

instrumentations. Figure.1 shows an 

overview of the multiscale methods over 

multiple spatial and temporal scales that can 

be used in developing a multiscale 

methodology for investigating large-scale 

disaster applications. Discrete modeling 

methods employ reduced models and 

integrate stochastic equations of motion. The 

advantages of these models include explicit 

atomistic detail and incorporation of 

stochastic phenomena. 

 

The disadvantages include slow 

convergence and difficulty in scaling. 

Continuum modeling methods are 

deterministic and offer the advantages of 

good convergence, are highly scalable, and 

provide connections to other continuum 

mechanics behaviors.  

2. MULTISCALE MODELING 

TECHNIQUES  

In recent years, several researchers from 

various fields have developed multiscale 

modeling techniques by taking into account 

various phenomena at multiple scales. For 

example, these include computational 

materials science (Gates et al., 2005; 

Nieminen, 2002), computational mechanics 

(Liu et al., 2004), biomedical engineering  

 

(Ayati et al., 2006), and nanotechnology 

(Fish, 2006). Traditional multiscale 

techniques, such as the multigrid method, 

domain decomposition, adaptive mesh 

refinement, the fast multipole method, and 

the conjugate gradient method (Reddy, 

2006), have focused on efficiently resolving 

the fine scale. Recent techniques reduce 

computational complexity by adopting 

different computational approaches and 

different laws of physics on various space 

and time scales. For example, on the 

macroscale (> millimeters), fluids are 

accurately described by density, 

temperature, and velocity fields that obey 

continuum NavierStokes equations. 

However, on the scale of the mean free path 

of the fluid particles, it is necessary to use 

kinetic theory (Boltzmann’s equations) to 

get a more detailed description. Averaging, 

where the leading order behavior of a slow 

time-varying variable is replaced by its time-

average value, and homogenization (Fish et 

al., 2005), where approximate equations are 

obtained to leading order in the ratio of fine 

and coarse spatial scales, are examples of 

powerful analytical techniques. The quasi-

continuum (QC) method (Knap and Ortiz, 

2001), gap-tooth technique (Gear et al., 

2003), and the heterogeneous multiscale 

method (HMM; Weinan et al., 2003a, b) are 

examples of recently developed methods.  

Multiscale methods offer powerful modeling 

and simulation techniques for the 

characterization and prediction of large-

scale disasters. In this chapter, some of the 

recent development in multiscale methods 

from other research areas are reviewed for 

application to large-scale disasters.  
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3. MOLECULAR DYNAMICS 

METHOD  

Alder and Wainwright (1959) developed the 

molecular dynamics method (MD), which 

describes the behavior of a collection of 

atoms by their position and momentum. In 

this framework, the macro scale process is 

the molecular dynamics of the nuclei, and 

the micro scale process is the state of the 

electrons that determines the potential 

energy of the system. The MD simulations 

provide the results of structural information, 

transport phenomena, and time dependence 

of physical properties. There are various 

MD simulations addressing specific issues 

related to thermodynamics of biological 

processes, polymer chemistry, and material 

crystal structures. Most molecular dynamics 

simulations are performed under conditions 

of constant number of atoms (N), volume 

(V) and energy (E) or constant number of 

atoms (N), temperature (T), and pressure (P) 

to better simulate experimental conditions. 

The basic steps in the MD simulation 

include (1) establishing initial coordinates of 

existing atoms in the minimized structure 

and assigning them initial velocities, (2) 

establishing thermal dynamics conditions 

and performing equilibration dynamics to 

rescale the velocities and checking the 

temperature, and (3) performing dynamic 

analysis of trajectories using Newton’s 

second law. The result of the MD simulation 

is a time series of conformations or the path 

followed by each atom.  In general, MD 

simulations generate information about 

atomic positions and velocities at the 

nanolevel. The conversion of this position 

and velocity information to macroscopic  

 

quantities (pressure, energy, heat) that can 

be observed requires the use of statistical 

mechanics. Usually, an experiment is carried 

out on a representative macroscopic unit that 

contains an extremely large number of 

atoms or molecules, representing an 

enormous number of conformations. 

Averages corresponding to experimental 

measurements are defined in terms of 

ensemble averages in statistical mechanics. 

To ensure a proper average, an MD 

simulation must account for a large number 

of representative conformations.For 

example, the total energy (E) of a particle 

(atom, molecule, etc.) can be written as  

 
Where ‘T’ is the kinetic energy and ‘V’ is 

the potential energy. For example, the 

average potential energy of the system is 

defined (Gates et al., 2005) as  

 
Where M is the number of configurations in 

the molecular dynamics trajectory and Vi is 

the potential energy of each configuration. 

Similarly, the average kinetic energy (K) is 

given by 

 
Where M is the number of configurations in 

the simulation, N is the number of atoms in 

the system, mi is the mass of the particle i, 

and vi is the velocity of particle i. Once the 

total energy is calculated, the potential can 

be calculated as the difference of the 

energies of different particles, and the 

molecular forces can be calculated from the  
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derivatives of the potentials. 

4. COARSE-GRAINED METHODS  

 Due to inherent difficulties in numerical 

and computational boundaries in MD 

simulations, the size and time scales of the 

model may be limited. Even though, MD 

methods may provide the details necessary 

to resolve molecular structure and localized 

interactions, they are computationally 

expensive. However, coarse-grained 

methods may overcome these limitations by 

representing molecular chains as simpler, 

bead–spring models (Rudd, 2004). Although 

the coarse-grained models lack the atomistic 

details, they preserve many of the important 

aspects of the structural and chemical 

information. The connection to the more 

detailed atomistic model can be made 

directly through an atomistic-to-coarse-

grained mapping procedure that when 

reversed allows one to model well-

equilibrated atomistic structures by 

performing this equilibration by using the 

coarse-grained model; it helps overcome the 

time scale upper limits of MD simulations. 

Several approaches to coarse graining have 

been proposed for both continuous and 

lattice models. The continuous models seem 

to be preferable for dynamic problems such 

as might occur when considering dynamic 

changes in volume. The systematic 

development of the coarse-grain models 

requires determining the degree of coarse 

graining and the geometry of the model, 

choosing the form of the intra- and inters 

chain potentials, and optimizing the free 

parameters (Hahn et al., 2001). Coarse-

grained models are usually constructed 

using Hamilton’s equations from MD under  

 

fixed thermodynamic conditions. To 

preserve the average position and 

momentum of the fine scale atoms, 

representative atoms are enforced in the 

model. Coarse-grained models have shown a 

four orders of magnitude decrease in CPU 

time in comparison to MD simulations 

(Lopez et al., 2002).  

5. MONTE CARLO METHODS  

Due to the time scales (femtoseconds to 

microseconds) involved in the various 

physical and chemical phenomena in large-

scale disasters, linking diverse time scales is 

very challenging. The kinetic Monte Carlo 

(KMC)-based methods can be used to 

address the time scales (Binder, 1995). Also, 

the coarse-grain models are often linked to 

Monte Carlo (MC) simulations to provide a 

solution in time. The KMC method is used 

to simulate stochastic events and provide 

statistical approaches to numerical 

integration. The integration scheme in the 

KMC method is simply implemented to 

integrate a function over a complicated 

domain D by picking randomly selected 

points over some simple domain D′, which 

is a superset of D. The area of D is estimated 

as the area of D′ multiplied by the fraction 

of points within domain D. The integral of a 

function f in a multidimensional volume V 

is determined by picking N randomly 

distributed points X1,..., XN as follows, 
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There are three important characteristic 

steps in the MC simulation: (1) translating 

the physical problem into an analogous 

probabilistic or statistical model, (2) solving 

the probabilistic model by a numerical 

sampling experiment, and (3) analyzing the 

resultant data by using statistical methods. 

To deal with stochastic in modeling micro- 

and macroscale processes (discrete or 

continuous), MC methods can be used. 

Traditional MC methods are robust, but 

slow to converge, and require many trials to 

compute high-order moments with adequate 

resolution. Coupling discrete-stochastic 

models with continuous stochastic or 

deterministic models, where appropriate, 

would enable the simulation of many 

complex disaster-related problems.  

III. CELLULAR AUTOMATA  

Cellular automata (CA)-based modeling 

techniques are powerful methods to 

describe, simulate, and understand the 

behavior of complex physical systems 

(Chopard and Droz, 1998). The original CA 

model proposed by Von Neumann 

(Wolfram, 1986) is a two- dimensional 

square lattice in which each square is called 

a cell. Each cell can be in a different state at 

any given time. The evolution of each cell 

and the updating of the internal states of 

each cell occur synchronously and is 

governed by a set of rules. The cellular 

space thus created is a complete discrete 

dynamic system. Earlier work by Wolfram 

(1986, 1994) showed that the CA as a 

discrete dynamic system exhibits many of 

the properties of a continuous dynamic 

system, yet CA provide a simpler frame- 

work. A CA is an array (1D string or 2D  

 

grid or 3D solid) of identically programmed 

“cells” that interact with one another. The 

cells are usually arranged as a rectangular 

grid, honeycomb, or other form. The 

essential features of a CA are the State, its 

Neighborhood, and its Program. The State is 

a variable that takes a separate value for 

each cell, and the State can be either a 

number or a property. The Neighborhood is 

the set of cells with which it interacts. The 

Program is the set of rules that define how 

its state changes in response to its current 

state, and that of its neighbors. If we 

consider a three-dimensional space, then the 

CA on a cubic lattice over a period of time 

would occur as follows. In the lattice, each 

cell position is labeled as r= (i, j, k), where i, 

j , and k are the indices in three directions, 

respectively. A function ft (r) is applied to 

the cubic lattice to describe the state of each 

cell at iteration, t. This value can be Boolean 

0 or 1, or it can be a continuous value by 

using a probabilistic function. The rule R 

specifies how the state changes are to be 

computed from an initial state configuration 

of f0(r) starting at t = 0. The state of the 

lattice at t = 1 is obtained by applying the 

rule to each cell in the entire lattice. CA has 

been successfully applied to model various 

physical phenomena from forest fires, game 

of life, and diffusion to coalescence and self-

organizing systems (Chopard and Droz, 

1998). The CA-based modeling techniques 

can be used to model for urban land- use 

simulations (Lau and Kam, 2005) and also 

to describe, simulate, and understand the 

spread of CBR agents into building 

surroundings and estimate the damage, as 

shown in Figure 
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IV. NEURAL NETWORKS  

Neural networks (NNs) are intelligent 

arithmetic computing elements that can 

represent, by learning from examples, 

complex functions with continuous valued 

and discrete outputs, as well as a large 

number of noisy inputs (Russell and Norvig, 

1995). These networks imitate the learning 

process in the brain and can be thought of as 

mathematical models for the operation of the 

brain. The simple arithmetic elements 

correspond to the neurons—the cells that 

process information inside the brain. The 

network as a whole corresponds to the 

collection of interconnected neurons. Each 

link has a numeric weight associated with it. 

Weights are the primary means of long-term 

storage in neural networks, and learning 

usually takes place by updating these 

weights. The weights are adjusted so as to 

bring the network’s input/output behavior 

more in line with that of the phenomena 

being modeled by the network. Each node 

has a set of input links from other nodes, a 

set of output links to other nodes, a current 

activation level, and a means of computing 

the activation level at the next step, given its 

inputs and weights. The computation of 

activation level is based on the values of  

 

each input signal received from a 

neighboring node and the weights on each 

input link. The most popular method for 

learning in multilayer networks is called 

back-propagation, first invented by Bryson 

and Ho (1969). In such a network, learning 

starts with presenting the examples to the 

network and comparing the output vector 

computed by the feed forward network with 

the target vector (known outcomes for the 

given examples). If the network output and 

the target vector match, nothing is 

done.However, if there is an error (a 

difference between the outputs and the 

target), then the weights are adjusted to 

reduce this error. The trick here is to assess 

the blame for an error and divide it among 

the contributing weights, thereby 

minimizing the error between each target 

output and the output computed by the 

network. More details can be found in 

Russell and Norvig (1995). Artificial NNs 

are capable of realizing a variety of 

nonlinear relationships of considerable 

complexity and have been applied to solve 

many engineering problems. The prediction 

of climate change parameters with varying 

input parameters can be modeled using NN, 

as shown in Figure  

V.MATHEMATICAL 

HOMOGENIZATION  

Homogenization and averaging are the 

mathematical/computational processes by 

which local properties are obtained on a 

coarse space/time grid from the variables on 

fine scales. Several analytical studies of 

homogenization problems in random and 

periodic heterogeneous. 
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Materials can be found in Schwab and 

Matache (2000). Homogenization was first 

developed for periodic structures involving 

boundary value problems in material 

sciences, continuum mechanics, quantum 

physics, and chemistry. Homogenization 

results in a coarse scale description of 

processes that occur on different space and 

time scales. Usually, the process is described 

by an initial boundary value problem for a 

partial differential equation, and the medium 

considered is periodical. For example, the 

transport process of water and solutes occurs 

at micro and mesoscales, and depends on the 

aggregate and grain size distribution, 

porosity, and the porous media properties. 

The particles and pore sizes may range from 

subnano, nano, to micro- and macro pores.  

VI. SUMMARY 

Large-scale disasters, both natural and 

manmade, continue to cause intense 

suffering anddamage to people and property 

around the world. Research and 

technological advances are focused on 

identifying more effective mechanisms for 

preventing, predicting, and responding to 

these disasters. Historically, the overriding 

concern for human safety and welfare led to 

the study of large-scale disasters from the 

perspective of restoration, policy, and  

 

logistics. However, the challenge is to 

develop more effective tools that can be 

used for prediction as well as disaster 

management. This will require a systematic, 

multidisciplinary approach consisting of 

basic science, mathematical descriptions, 

and computational techniques that can 

address large-scale disasters across time and 

space scales, involving multiple orders of 

magnitude. Due to the multiscale nature of 

large-scale disasters, multiscale modeling 

methods offer a promising methodology for 

the characterization and prediction of large-

scale disasters. The idea of multiscale 

modeling is straightforward—one computes 

information at a smaller (finer) scale and 

passes it on to a model at a larger (coarser) 

scale, by leaving out degrees of freedom as 

one moves from finer to coarser scales.  
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