

Vol 09 Issue12, Dec2020 ISSN 2456 – 5083 www.ijiemr.org

COPY RIGHT

2020 IJIEMR.Personal use of this material is permitted. Permission from IJIEMR must be

obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted

component of this work in other works. No Reprint should be done to this paper, all copy

right is authenticated to Paper Authors

IJIEMR Transactions, online available on 1st

Jan 2021. Link

:http://www.ijiemr.org/downloads.php?vol=Volume-09&issue=ISSUE-12

DOI: 10.48047/IJIEMR/V09/I12/139

Title: GENERATING CLOUD MONITORS FROM MODELS TO SECURE CLOUDS

Volume 09, Issue 12, Pages: 818-822

Paper Authors

M.SIRISHA, M BHARATHI, MANCHALA RAMYA, K.SONY

 USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER

To Secure Your Paper As Per UGC Guidelines We Are Providing A Electronic

Bar Code

Vol 09 Issue 12 Dec 2020 ISSN 2456 - 5083 Page 818

GENERATING CLOUD MONITORS FROM MODELS TO SECURE CLOUDS

M.SIRISHA
1
, M BHARATHI

2
, MANCHALA RAMYA

3
, K.SONY

4

1,2,3,
 B TECH Students, Department of CSE, Princeton Institute of Engineering & Technology For Women,

Hyderabad, Telangana, India.

4
 Assistant Professor, Department of CSE, Princeton Institute of Engineering & Technology For Women,

Hyderabad, Telangana, India.

ABSTRACT:

Authorization is an important security concern in cloud computing environments. It aims at regulating

an access of the users to system resources. A large number of resources associated with REST APIs

typical in cloud make an implementation of security requirements challenging and error-prone. To

alleviate this problem, in this paper we propose an implementation of security cloud monitor. We rely on

model-driven approach to represent the functional and security requirements. Models are then used to

generate cloud monitors. The cloud monitors contain contracts used to automatically verify the

implementation. We use Django web framework to implement cloud monitor and OpenStack to validate

our implementation.

Keywords: UML diagram, dataset, scientific program, provenance.

1. INTRODUCTION

Open source cloud frameworks allow their

customers to build their own private

Infrastructure as a Service (IaaS). IaaS provides

Virtual Machines (VMs) under the pay-per-use

business model. The source code of Open

Source (OS) clouds is distributed publicly.

Moreover, often software is developed in a

collaborative manner that makes it a subject of

frequent updates. These updates might introduce

or remove a variety of features and hence,

violate the security properties of the previous

releases. Assuring the security of opensource

clouds is an important concern for cloud

providers. Often open source clouds use REST

architectural style to offer their APIs. REST

offers a different architectural style to invoke

remote services in contrast to contemporary

SOAP-based services. Its different architectural

style motivates the need to develop novel design

and security assurance methodologies to handle

its stateless protocol for developing stateful

services. Stateful services can have different

states that a service must go through during its

lifecycle. It requires a certain sequence of

method invocations that must be followed in

order to fulfil the functionality a service

promises to deliver to its users. In this work, we

propose a methodology that consists of creating

a (stateful) wrapper that emulates the usage

scenarios and contains an explicit representation

of security and functional requirements as

contracts. We adopt a model-driven approach –

Security and Rest compliant UML Models

(SecReUM) – that builds on the theory

presented in [22] to create a security-validating

wrapper. We define the structural interface of a

REST API using UML class diagram. The usage

scenarios – the dynamic behaviours – are

represented as state diagrams. These models

lead to RESTful interfaces, describe the

behaviour of operations in terms of

Vol 09 Issue 12 Dec 2020 ISSN 2456 - 5083 Page 819

preconditions and post conditions and also

facilitate the specification of the authentication

mechanism. In this work, we demonstrate how

to generate contracts defining the security

properties as pre- and post-conditions using

these models and implement them as a wrapper

for the cloud implementation. The approach is

implemented as a wrapper in Django Web

Framework for the KeyStone component of

OpenStack. OpenStack is an open-source

software platform for cloud computing that

offers REST interfaces to provide IaaS

(Infrastructure as a Service) Keystone offers

identity service in OpenStack for authentication

and authorization.

2. LITERATURE SURVEY

Here let us consider a volume resource that is

offered by the Cinder API of OpenStack [8].

Cinder is one of the services that is a part of the

modular architecture of OpenStack. It provides

storage resources (volume) to the end users,

which can be consumed by the virtual servers

[8]. A volume is a detachable block storage

device that acts like a hard disk. Cinder API

exposes the volume resource via

(/{projectid}/volumes/). Any user of the project

(e.g., project administrator, service architect or

business analyst) with the right credentials can

invoke the GET method on volume to learn its

details. However, only the project administrator

and service architect can update the existing

volumes or add new volumes, and only the

project administrator can delete a volume. To

offer scalability, REST advocates the stateless

interaction between the components. This

allows the REST services to cater to a large

number of clients. Without storing the state

between the requests, the server frees resources

rather quickly that ensures system scalability.

However, to construct the advanced scenarios

using a stateless protocol, we should enforce a

certain sequence of steps to be followed. Hence,

we can treat such a behavior as a stateful one,

where the response to a method invocation

depends on the state of the resource. For

example, a POST request from the authorized

user on the volumes resource would create a

new volume resource if the project has not

exceeded its share of the allowed volumes,

otherwise it will not be created. Similarly, a

DELETE request on the volume resource by an

authorized user would delete the volume if it is

not attached to any instance, otherwise it would

be ignored. The security requirements combined

with the functional requirements specifying the

conditions under which a method can be

invoked and its expected output result in a large

volume of information. Moreover, such

information should be defined for each resource,

which becomes overwhelming for any cloud

developer. In addition, if an API is developed in

a distributed manner, i.e., by several developers

working on implementing different parts of API,

then the design errors and inconsistencies

become inevitable. Therefore, we should

propose an automated approach that would

facilitate implementing correct security policies

for each resource of the system and assure that

the right users have an access to the right

resources.

3. RELATED STUDY

. A cloud developer uses IaaS to develop a

private cloud for her/his organization that would

be used by different cloud users within the

organization. In some cases, this private cloud

may be implemented by a group of developers

working collaboratively on different machines.

The REST API provided by IaaS is used to

Vol 09 Issue 12 Dec 2020 ISSN 2456 - 5083 Page 820

develop the private cloud according to the

specification document and required security

policy. The cloud monitor is implemented on

top of the private cloud. The main original

components of our work are highlighted as grey

boxes in Figure 1. The security analyst develops

the required design models based on the

specification document and security policies.

These models define the behavioral interface for

the private cloud and specify its functional and

security requirements. In addition, our design

models define all the information required to

build the stateful scenarios using REST as the

underlying stateless architecture. In our

approach, the construction of the design models

serves several purposes:

1) The models specify the system from different

viewpoints and hence, the security analysts can

choose to specify in detail only those part of the

system that they consider to be critical;

2) The models provide a graphical

representation of the expected behavior of the

system with the contracts, which can be

communicated with a relative ease compared to

the textual specifications;

3) The models serve as the specification

document and facilitate reusability;

4) They are used to generate code skeletons with

the integrated behavioral and security contracts;

and finally,

5) We can use several existing model-based

testing approaches to facilitate functional and

security testing of private clouds. We build on

our partial code-generation tool that is capable

of generating the code skeletons from the design

models. We extend this work by targeting the

security requirements, i.e., the access rights over

the resources, and propose an automated

approach to representation the security

requirements in the code. The generated code

skeletons are then completed by the developer

with the desired implementation of the methods.

Fig.3.1. Architecture of the Cloud Monitoring

Framework.

4. PROPOSED SYSTEM

The projects are created by the cloud

administrator using Keystone and users or user

groups are assigned the roles in these projects. It

defines the access rights of the cloud users in the

project. A volume can be created, if the project

has not exceeded its quota of the permitted

volumes and a user is authorized to create a

volume in the project. Similarly, a volume can

be deleted, if the user of the service is

authorized to do so, and the volume is not

attached to any instance, i.e., its status is not in-

use. We represent the behavioral interface of the

REST API by a UML state-machine. Figure 3

(right) shows an excerpt from the behavioral

interface of Cinder API for a project. It contains

the information about the methods, which a user

can invoke on the volume resource and the

invocation conditions. In the example shown, at

any given time a project can be only in one of

three states. A project initially starts with no

Vol 09 Issue 12 Dec 2020 ISSN 2456 - 5083 Page 821

volumes attached to it. A volume is added to the

project by the POST request. The request

method can only be triggered, if the user

belongs to the user group admin or member. As

a result, the project transits to the project with

volume and not full quota state. The subsequent

POST requests on the project will keep it either

in the same state or transfer to the project with

volume and full quota state, depending on the

guard conditions. The DELETE method can

only be invoked, if the status of the volume is

not in-use and user belongs to the user group

admin. The change of the project state depends

on the guard conditions. We define the invariant

of a state using OCL as a boolean expression

over the addressable resources. In this way, the

stateless nature of REST remains

uncompromised because no hidden information

about the state of the service gets stored

between the method calls.

AUTHONTICATION:

Authorization in OpenStack, and other

open source clouds is based on RBAC model. In

RBAC, the access rights of a user are defined by

his/her role. We assume that the information

about the roles and the corresponding access

rights to the resources is well-defined and

available for the cloud developer and security

analyst. In the current industrial practice, this

information is usually given in a tabular format.

We specify this information as the guards in the

OCL format, which makes it amenable to an

automated translation into the method contracts.

In the behavioural model, each method should

be labeled with a corresponding security

requirement represented as a comment on a

transition or state, as shown in Figure 3. When a

state or transition with the requirement

annotation is traversed, we get an indication

which security requirement is met. This

provides traceability of security requirements

during the validation phase.

Fig.3.2. Cloud Monitor.

The current implementation continues our work

on developing the wrapper. It focuses on

validation of the authorization policy and its

implementation in the cloud environment. The

main steps in our implementation are as follows:

• We look for the resources in the class diagram

to implement database tables in models.py. For

each resource we create a table in the database,

and analyze its associations to define their

relationships with their keys. This creates a local

copy of the resource structures as required by

our monitor.

• urls.py contains the relative URLs of each
resource and ways to access their respective

views. This information is fully defined in the

class diagram. By traversing the tags on the

associations between the resources, we compose

the paths of each resource. We always start from

the corresponding collection, especially if we

are referencing an item in the collection.

• The views.py file contains the main
functionality of the system, i.e., the code that

will run when accessing a resource through its

URL according to the request (GET, PUT,

POST or DELETE). These concepts are defined

in the state machine diagram. The population of

views.py is done in four steps:

Vol 09 Issue 12 Dec 2020 ISSN 2456 - 5083 Page 822

1) Add information regarding the permitted

methods over the resources;

2) Extract the functional contracts from the

behavioral model as explained in section V and

add them to the appropriate views;

3) Add the authorization information from the

guards into the appropriate views;

4) Read security requirements from the

comments on the transitions and add them as the

corresponding variables in the code.

5. CONCLUSION

In this paper, we have presented an approach

and associated tool for monitoring security in

cloud. We have relied on the model-driven

approach to design APIs that exhibit REST

interface features. The cloud monitors,

generated from the models, enable an automated

contract-based verification of correctness of

functional and security requirements, which are

implemented by a private cloud infrastructure.

The proposed semi-automated approach aimed

at helping the cloud developers and security

experts to identify the security loopholes in the

implementation by relying on modelling rather

than manual code inspection or testing. It helps

to spot the errors that might be exploited in data

breaches or privilege escalation attacks. Since

open source cloud frameworks usually undergo

frequent changes, the automated nature of our

approach allows the developers to relatively

easily check whether functional and security

requirements have been preserved in new

releases.

REFERENCES

[1] C. Perez, The Deep Learning A.I. Playbook :

Strategy for Disruptive Artificial

Intelligence,I.M.:Intution Machine, 2017

[2] V. Joaquin, S. Larisa, “Expos´e: An

Ontology for Data Mining Experiments”, Third

Generation Data Mining Workshop at ECML

PKDD 2010.

[3] I. Mitsuru, S. Kazuhisa, K. Osamu, M.

Riichiro, “Task ontology: Ontology for building

conceptual problem solving models”, In

proceeding of ECAI98 Workshop on

Applications of Ontologies and Problem-

Solving model, pp.126-133, ECA, 1998.

[4] A. F. Martins, R. A. F. De, “Models for

Representing Task Ontologies”, Proceeding of

the 3rd Workshops on Ontologies and their

Application, 2008.

[5] S. Kanjana, S. Maleerat, “Ontology

Knowledge-Based Framework for Machine

Learning Concept”, iiWAS '16 Proceedings of

the 18th International Conference on

Information Integration and Webbased

Applications and Services, pp. 50-53, 2016.

[6] P. Gustavo Correa, E. Diego, L. Agnieszka,

P. Panče, S. Larisa, S. Tommaso, V. Joaquin, Z.
Hamid, “ML Schema: Exposing the Semantics

of Machine Learning with Schemas and

Ontologies”, ICML 2018 - RML Workshop.

[7] G. Eason, B. Noble, and I. N. Sneddon, ͆
MEX Interfaces: Automating Machine Learning
Metadata Generation, ͇
https://www.researchgate.net/publication/30514

3958, 2016.

[8] E. Diego, N. M. Pablo, M. Diego, C. D.

Julio, Z. Amrapali, L. Jens, “MEX Vocabulary:

A Lightweight Interchange Format for Machine

Learning Experiments”, SEMANTiCS 2016

Proceedings of the 12th International

Conference on Semantic Systems, pp. 17- 24,

2016.

