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 ABSTRACT--- The multiplier receives and outputs the data with binary representation and uses 

only one-level Carry Save Adder (CSA) to avoid the carry propagation at each addition 

operation. This CSA is also used to perform operand pre computation and format conversion 

from the carry save format to the binary representation, leading to a low hardware cost and short 

critical path delay at the expense of extra clock cycles for completing one modular 

multiplication. To overcome the weakness, a Configurable CSA (CCSA), which could be one 

full-adder or two serial half-adders, is proposed to reduce the extra clock cycles for operand pre 

computation and format conversion by half. The mechanism that can detect and skip the 

unnecessary carry-save addition operations in the one-level CCSA architecture while 

maintaining the short critical path delay is developed. The extra clock cycles for operand pre 

computation and format conversion can be hidden and high throughput can be obtained. AES is 

based on a design principle known as a substitution-permutation network, combination of both 

substitution and permutation, and is fast in both software and hardware. AES does not use a 

Feistel network. AES is a variant of Rijndael which has a fixed block size of 128 bits, and a key 

size of 128, 192, or 256 bits. By contrast, the Rijndael specification per se is specified with block 

and key sizes that may be any multiple of 32 bits, both with a minimum of 128 and a maximum 

of 256 bits.AES operates on a 4×4 column-major order matrix of bytes, termed the state, 

although some versions of Rijndael have a larger block size and have additional columns in the 

state. Most AES calculations are done in a special finite field.  

Keywords--Carry-save addition, low-cost architecture, Montgomery modular multiplier, public-

key cryptosystem 

 1. INTRODUCTION 

 In Many public-key cryptosystems [1]–[3], 

modular multiplication (MM) with large 

integers is the most critical and time-

consuming operation. Therefore, numerous 

algorithms and hardware implementation  

 

have been presented to carry out the MM 

more quickly, and Montgomery’s algorithm 

is one of the most well-known MM 

algorithms. Montgomery’s algorithm [4] 

determines the quotient only depending on  
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the least significant digit of operands and 

replaces the complicated division in 

conventional MM with a series of shifting 

modular additions to produce S = A × B × 

R−1 (mod N), where N is the k-bit modulus, 

R−1 is the inverse of R modulo N, and R = 

2k mod N. As a result, it can be easily 

implemented into VLSI circuits to speed up 

the encryption/decryption process. However, 

the three-operand addition in the iteration 

loop of Montgomery’s requires long carry 

propagation for large operands in binary 

representation. To solve this problem, 

several approachesof based on carry-save 

addition were proposed to achieve a 

significant speedup of Montgomery MM. 

Based on the representation of input and 

output operands, these approaches can be 

roughly divided into semi-carry-save (SCS) 

strategy and full carry-save (FCS) strategy. 

In the SCS strategy [5]–[8], the input and 

output operands (i.e., A, B, N, and S) of the 

Montgomery MM are represented in binary, 

but intermediate results of shifting modular 

additions are kept in the carry-save format to 

avoid the carry propagation. However, the 

format conversion from the carry-save 

format of the final modular product into its 

binary representation is needed at the end of 

each MM. This conversion can be 

accomplished by an extra carry propagation 

adder (CPA) [5] or reusing the carry-save 

adder (CSA) architecture [8] iteratively. 

Contrary to the SCS strategy, the FCS 

strategy [9], [10] maintains the input and 

output operands A, B, and S in the carry-save 

format, denoted as (AS, AC), (BS, BC), and 

(SS, SC), respectively, to avoid the format  

 

conversion, leading to fewer clock cycles for 

completing a MM. Nevertheless, this 

strategy implies that the number of operands 

will increase and that more CSAs and 

registers for dealing with these operands are 

required. Therefore, the FCS-based 

Montgomery modular multipliers possibly 

have higher hardware complexity and longer 

critical path than the SCS-based multipliers. 

2.PREVIOUSLY PROPOSED 

ARCHITUCTURE  

2.1. Montgomery Modular Multiplier  

In propose a new SCS-based Montgomery 

MM algorithm to reduce the critical path 

delay of Montgomery multiplier. In 

addition, the drawback of more clock cycles 

for completing one multiplication is also 

improved while maintaining the advantages 

of short critical path delay and low hardware 

complexity [2].  

2.2. Critical Path Delay Reduction  

The critical path delay of SCS-based 

multiplier can be reduced by combining the 

advantages of FCS-MM-2 and SCS-MM-2. 

That is pre compute D = B + N and reuse the 

one-level CSA architecture to perform B+N 

and the format conversion. Figure.1 shows 

the modified SCS-based Montgomery 

multiplication (MSCS-MM) algorithm and 

possible hardware architecture, respectively 

[3]. 
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The Zero_D circuit is used to detect whether 

SC is equal to zero, which can be 

accomplished using one NOR operation. 

The Q_L circuit decides the qi value. The 

carry propagation addition operations of B +  

N and the format conversion are performed 

by the one-level CSA architecture of the 

MSCS-MM multiplier through repeatedly 

executing the carry-save addition (SS, SC) = 

SS + SC + 0 until SC = 0.In addition, we 

also pre compute Ai and qi in iteration i−1 

(this will be explained more clearly in 

Section III-C) so that they can be used to 

immediately select the desired input operand 

from 0, N, B, and D through the multiplexer 

M3 in iteration I [5] .Therefore, the critical 

path delay of the MSCS-MM multiplier can 

be reduced into TMUX4 + TFA. However, 

in addition to performing the three-input 

carry-save additions k + 2 times, many extra 

clock cycles are required to perform B + N 

and the format conversion via the one-level 

CSA architecture because they must be 

performed once in every MM. Furthermore, 

the extra clock cycles for performing B+N 

and the format conversion through 

repeatedly executing the carry-save addition 

(SS, SC) = SS+SC+0 are dependent on the 

longest carry propagation chain in SS + SC. 

If SS = 111…1112 and SC = 000…0012, the 
one-level CSA architecture needs k clock 

cycles to complete SS + SC. That is, 3k 

clock cycles in the worst case are required 

for completing one MM. Thus, it is critical 

to reduce the required clock cycles of the 

MSCS-MM multiplier [1].  

 

 

 

2.3. Clock Cycle Number Reduction  

To decrease the clock cycle number, a 

CCSA architecture which can perform one 

three-input carry-save addition or two serial 

two-input carry-save additions is proposed 

to substitute for the one-level CSA 

architecture [4]. Two cells of the one-level 

CSA architecture in Figure.2each cell is one 

conventional FA which can perform the 

three-input carry-save addition. Two cells of 

the proposed configurable FA (CFA) circuit. 

If α = 1, CFA is one FA and can perform 
one three-input carry-save addition (denoted 

as 1F_CSA). 

 
Otherwise, it is two half-adders (HAs) and 

can perform two serial two-input carry-save 

additions (denoted as 2H_CSA). In this case, 

G1 of CF Aj and G2 of CFAj+1 will act as 

HA1 j and G3, G4, and G5 of CF Aj will 

behave as HA2j. Moreover, we modify the 

4-to-1 multiplexer M3 into a simplified 

multiplier SM3 because one of its inputs is 

zero, where the INVERT operation. Note 

that M3 has been replaced by SM3 in the 

proposed one-level CCSA architecture.  
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3.PROPOSED ADVANCED 

ENCRYPTION STANDARD 

AES is based on a design principle known as 

a substitution-permutation network, 

combination of both substitution and 

permutation, and is fast in both software and 

hardware. Its predecessor DES, AES does 

not use a Festal network. AES is a variant of 

Rijndael which has a fixed block size of 128 

bits, and a key size of 128, 192, or 256 bits. 

By contrast, the Rijndael specification per se 

is specified with block and key sizes that 

may be any multiple of 32 bits, both with a 

minimum of 128 and a maximum of 256 bits 

[9]. AES operates on a 4×4 column-major 

order matrix of bytes, termed the state, 

although some versions of Rijndael have a 

larger block size and have additional 

columns in the state. Most AES calculations 

are done in a special finite field. The key 

size used for an AES cipher specifies the 

number of repetitions of transformation 

rounds that convert the input, called the 

plaintext, into the final output, called the 

cipher text. The numbers of cycles of 

repetition are as follows:  

 10 cycles of repetition for 128-bit 

keys.  

 12 cycles of repetition for 192-bit 

keys.  

 14 cycles of repetition for 256-bit 

keys.  

 

Each round consists of several processing 

steps, each containing four similar but 

different stages, including one that depends 

on the encryption key itself [9]. A set of  

 

reverse rounds are applied to transform 

cipher text back into the original plaintext 

using the same encryption key.  

3.1. High-Level Description Of The 

Algorithm  

 Key Expansions  

 Round keys are derived from the 

cipher key using Rijndael's key 

schedule. AES requires a separate  

 

128-bit round key block for each 

round plus one more.  

 Initial Round  

 Add Round Key—each byte of the 

state is combined with a block of the 

round key using bitwise xor.  

 Rounds  

 Sub Bytes—a non-linear substitution 

step where each byte is replaced with 

another according to a lookup table.  

 Shift Rows—a transposition step 

where the last three rows of the state 

are shifted cyclically a certain 

number of steps.  

 Mix Columns—a mixing operation 

which operates on the columns of the 

state, combining the four bytes in 

each column.  

 Add Round Key  

 Final Round (no Mix Columns)  

 Sub Bytes  

 Shift Rows  

 Add Round Key.  

3.2 The Subbytes Step  

In the Sub Bytes step, each byte  in the 

state matrix is replaced with a Sub Byte

 using an 8-bit substitution box, the  
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Rijndael S-box. This operation provides the 

non-linearity in the cipher. The S-box used 

is derived from the multiplicative inverse 

over GF (28), known to have good non-

linearity properties. To avoid attacks based 

on simple algebraic properties, the S-box is 

constructed by combining the inverse 

function with an invertible affine 

transformation[4]. The S-box is also chosen 

to avoid any fixed points (and so is a 

derangement), i.e.,  , and also 

any opposite fixed points, i.e., 

 . While performing the 

decryption, Inverse Sub Bytes step is used, 

this requires first taking the affine 

transformation and then finding the 

multiplicative inverse. 

 
3.3 THE SHIFT ROWS STEP  

The Shift Rows step operates on the rows of 

the state; it cyclically shifts the bytes in each 

row by a certain offset. For AES, the first 

row is left unchanged. Each byte of the 

second row is shifted one to the left. 

Similarly, the third and fourth rows are 

shifted by offsets of two and three 

respectively [7]. For blocks of sizes 128 bits 

and 192 bits, the shifting pattern is the same. 

Row n is shifted left circular by n-1 bytes. In 

this way, each column of the output state of  

 

the Shift Rows step is composed of bytes 

from each column of the input state. 

(Rijndael variants with a larger block size 

have slightly different offsets). 

 
 

For a 256-bit block, the first row is 

unchanged and the shifting for the second, 

third and fourth row is 1 byte, 3 bytes and 4 

bytes respectively. This change only applies 

for the Rijndael cipher when used with a 

256-bit block, as AES does not use 256-bit 

blocks. The importance of this step is to 

avoid the columns being linearly 

independent, in which case, AES 

degenerates into four independent block 

cipher[10].  

3.4. The Mix columns Step  

In the Mix Columns step, the four bytes of 

each column of the state are combined using 

an invertible linear transformation. The Mix 

Columns function takes four bytes as input 

and outputs four bytes, where each input 

byte affects all four output bytes. Together 

with Shift Rows, Mix Columns provides 

diffusion in the cipher. 
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Matrix multiplication is composed of 

multiplication and addition of the entries, 

and here the multiplication operation can be 

defined as this: multiplication by 1 means no 

change, multiplication by 2 means shifting 

to the left, and multiplication by 3 means 

shifting to the left and then performing XOR 

with the initial UN shifted value.  After 

shifting, a conditional XOR with 0x1B 

should be performed if the shifted value is 

larger than 0xFF. (These are special cases of 

the usual multiplication in GF (28).) 

Addition is simply XOR. In more general 

sense, each column is treated as a 

polynomial over GF (28) and is then 

multiplied modulo x4+1 with a fixed 

polynomial c(x) = 0x03 · x3 + x2 + x + 

0x02 [11]. The coefficients are displayed in 

their hexadecimal equivalent of the binary 

representation of bit polynomials from GF 

(2) [x]. The Mix Columns step can also be 

viewed as a multiplication by the shown 

particular MDS matrix in the finite field GF 

(28). This process is described further in the 

article Rijndael mix columns.  

3.5. The Add round key Step  

In the Add Round Key step, the sub key is 

combined with the state. For each round, a 

sub key is derived from the main key using 

Rijndael's key schedule; each sub key is the 

same size as the state. The sub key is added 

by combining each byte of the state with the 

corresponding byte of the sub key using 

bitwise XOR. 

 

 

 

 

 

 
 

On systems with 32-bit or larger words, it is 

possible to speed up execution of this cipher 

by combining the Sub Bytes and Shift Rows 

steps with the Mix Columns step by 

transforming them into a sequence of table 

lookups. This requires four 256-entry 32-bit 

tables, and utilizes a total of four kilobytes 

(4096 bytes) of memory one kilobyte for 

each table. A round can then be done with 

16 table lookups and 12 32-bit exclusive-or 

operations, followed by four 32-bit 

exclusive-or operations in the Add Round 

Key. If the resulting four-kilobyte table size 

is too large for a given target platform, the 

table lookup operation can be performed 

with a single 256-entry 32-bit (i.e. 1 

kilobyte) table by the use of circular rotates. 

Using a byte-oriented approach, it is 

possible to combine the Sub Bytes, Shift  
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Rows, and Mix Columns steps into a single 

round operation [12]. 

5. RESULT 

 
6. CONCLUSION  

To enhance the performance of Montgomery 

MM while maintaining the low hardware 

complexity, this paper has modified the 

SCS-based Montgomery multiplication 

algorithm a low-cost and high-performance 

Montgomery modular multiplier. The 

multiplier used one-level CCSA architecture 

and skipped the unnecessary carry-save 

addition operations to largely reduce the 

critical path delay and required clock cycles 

for completing one MM operation. FCS-

based multipliers maintain the input and 

output operands of the Montgomery MM in 

the carry-save format to escape from the 

format conversion, leading to fewer clock 

cycles but larger area than SCS-based 

multiplier.In Future, for cryptographers, a 

cryptographic "break" is anything faster than 

a brute force performing one trial decryption 

for each key (see Cryptanalysis). This 

includes results that are infeasible with 

current technology. The largest successful  

 

publicly known brute force attack against 

any block-cipher encryption was against a 

64-bit RC5 key.  
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