

Vol 06 Issue10, Nov 2017 ISSN 2456 – 5083 www.ijiemr.org

COPY RIGHT

2017 IJIEMR.Personal use of this material is permitted. Permission from IJIEMR must

be obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted

component of this work in other works. No Reprint should be done to this paper, all copy

right is authenticated to Paper Authors

IJIEMR Transactions, online available on 3
rd

 Nov 2017. Link

:http://www.ijiemr.org/downloads.php?vol=Volume-6&issue=ISSUE-10

Title: VLSI IMPLEMENTATION OF HIGH PERFORMANCE MONTGOMERY MODULAR

MULTIPLICATION FOR CRYPTO GRAPHICAL APPLICATION

Volume 06, Issue 10, Pages: 7 – 14.

Paper Authors

ANGIREKULA ANUSHA, KOTESHWAR RAO

GANAPATHI ENGINEERING COLLEGE

 USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER

To Secure Your Paper As Per UGC Guidelines We Are Providing A Electronic

Bar Code

Vol 06 Issue10, Nov 2017 ISSN 2456 – 5083 Page 7

VLSI IMPLEMENTATION OF HIGH PERFORMANCE

MONTGOMERY MODULAR MULTIPLICATION FOR CRYPTO

GRAPHICAL APPLICATION

1
ANGIREKULA ANUSHA,

2
KOTESHWAR RAO

 PG Student, Dept. of ECE,Ganapathi Engneering COLLEGE

Assistant Professor, Dept. of ECE,Ganapathi Engneering COLLEGE

 ABSTRACT--- The multiplier receives and outputs the data with binary representation and uses

only one-level Carry Save Adder (CSA) to avoid the carry propagation at each addition

operation. This CSA is also used to perform operand pre computation and format conversion

from the carry save format to the binary representation, leading to a low hardware cost and short

critical path delay at the expense of extra clock cycles for completing one modular

multiplication. To overcome the weakness, a Configurable CSA (CCSA), which could be one

full-adder or two serial half-adders, is proposed to reduce the extra clock cycles for operand pre

computation and format conversion by half. The mechanism that can detect and skip the

unnecessary carry-save addition operations in the one-level CCSA architecture while

maintaining the short critical path delay is developed. The extra clock cycles for operand pre

computation and format conversion can be hidden and high throughput can be obtained. AES is

based on a design principle known as a substitution-permutation network, combination of both

substitution and permutation, and is fast in both software and hardware. AES does not use a

Feistel network. AES is a variant of Rijndael which has a fixed block size of 128 bits, and a key

size of 128, 192, or 256 bits. By contrast, the Rijndael specification per se is specified with block

and key sizes that may be any multiple of 32 bits, both with a minimum of 128 and a maximum

of 256 bits.AES operates on a 4×4 column-major order matrix of bytes, termed the state,

although some versions of Rijndael have a larger block size and have additional columns in the

state. Most AES calculations are done in a special finite field.

Keywords--Carry-save addition, low-cost architecture, Montgomery modular multiplier, public-

key cryptosystem

 1. INTRODUCTION

 In Many public-key cryptosystems [1]–[3],

modular multiplication (MM) with large

integers is the most critical and time-

consuming operation. Therefore, numerous

algorithms and hardware implementation

have been presented to carry out the MM

more quickly, and Montgomery’s algorithm

is one of the most well-known MM

algorithms. Montgomery’s algorithm [4]

determines the quotient only depending on

Vol 06 Issue10, Nov 2017 ISSN 2456 – 5083 Page 8

the least significant digit of operands and

replaces the complicated division in

conventional MM with a series of shifting

modular additions to produce S = A × B ×

R−1 (mod N), where N is the k-bit modulus,

R−1 is the inverse of R modulo N, and R =

2k mod N. As a result, it can be easily

implemented into VLSI circuits to speed up

the encryption/decryption process. However,

the three-operand addition in the iteration

loop of Montgomery’s requires long carry

propagation for large operands in binary

representation. To solve this problem,

several approachesof based on carry-save

addition were proposed to achieve a

significant speedup of Montgomery MM.

Based on the representation of input and

output operands, these approaches can be

roughly divided into semi-carry-save (SCS)

strategy and full carry-save (FCS) strategy.

In the SCS strategy [5]–[8], the input and

output operands (i.e., A, B, N, and S) of the

Montgomery MM are represented in binary,

but intermediate results of shifting modular

additions are kept in the carry-save format to

avoid the carry propagation. However, the

format conversion from the carry-save

format of the final modular product into its

binary representation is needed at the end of

each MM. This conversion can be

accomplished by an extra carry propagation

adder (CPA) [5] or reusing the carry-save

adder (CSA) architecture [8] iteratively.

Contrary to the SCS strategy, the FCS

strategy [9], [10] maintains the input and

output operands A, B, and S in the carry-save

format, denoted as (AS, AC), (BS, BC), and

(SS, SC), respectively, to avoid the format

conversion, leading to fewer clock cycles for

completing a MM. Nevertheless, this

strategy implies that the number of operands

will increase and that more CSAs and

registers for dealing with these operands are

required. Therefore, the FCS-based

Montgomery modular multipliers possibly

have higher hardware complexity and longer

critical path than the SCS-based multipliers.

2.PREVIOUSLY PROPOSED

ARCHITUCTURE

2.1. Montgomery Modular Multiplier

In propose a new SCS-based Montgomery

MM algorithm to reduce the critical path

delay of Montgomery multiplier. In

addition, the drawback of more clock cycles

for completing one multiplication is also

improved while maintaining the advantages

of short critical path delay and low hardware

complexity [2].

2.2. Critical Path Delay Reduction

The critical path delay of SCS-based

multiplier can be reduced by combining the

advantages of FCS-MM-2 and SCS-MM-2.

That is pre compute D = B + N and reuse the

one-level CSA architecture to perform B+N

and the format conversion. Figure.1 shows

the modified SCS-based Montgomery

multiplication (MSCS-MM) algorithm and

possible hardware architecture, respectively

[3].

Vol 06 Issue10, Nov 2017 ISSN 2456 – 5083 Page 9

The Zero_D circuit is used to detect whether

SC is equal to zero, which can be

accomplished using one NOR operation.

The Q_L circuit decides the qi value. The

carry propagation addition operations of B +

N and the format conversion are performed

by the one-level CSA architecture of the

MSCS-MM multiplier through repeatedly

executing the carry-save addition (SS, SC) =

SS + SC + 0 until SC = 0.In addition, we

also pre compute Ai and qi in iteration i−1

(this will be explained more clearly in

Section III-C) so that they can be used to

immediately select the desired input operand

from 0, N, B, and D through the multiplexer

M3 in iteration I [5] .Therefore, the critical

path delay of the MSCS-MM multiplier can

be reduced into TMUX4 + TFA. However,

in addition to performing the three-input

carry-save additions k + 2 times, many extra

clock cycles are required to perform B + N

and the format conversion via the one-level

CSA architecture because they must be

performed once in every MM. Furthermore,

the extra clock cycles for performing B+N

and the format conversion through

repeatedly executing the carry-save addition

(SS, SC) = SS+SC+0 are dependent on the

longest carry propagation chain in SS + SC.

If SS = 111…1112 and SC = 000…0012, the
one-level CSA architecture needs k clock

cycles to complete SS + SC. That is, 3k

clock cycles in the worst case are required

for completing one MM. Thus, it is critical

to reduce the required clock cycles of the

MSCS-MM multiplier [1].

2.3. Clock Cycle Number Reduction

To decrease the clock cycle number, a

CCSA architecture which can perform one

three-input carry-save addition or two serial

two-input carry-save additions is proposed

to substitute for the one-level CSA

architecture [4]. Two cells of the one-level

CSA architecture in Figure.2each cell is one

conventional FA which can perform the

three-input carry-save addition. Two cells of

the proposed configurable FA (CFA) circuit.

If α = 1, CFA is one FA and can perform
one three-input carry-save addition (denoted

as 1F_CSA).

Otherwise, it is two half-adders (HAs) and

can perform two serial two-input carry-save

additions (denoted as 2H_CSA). In this case,

G1 of CF Aj and G2 of CFAj+1 will act as

HA1 j and G3, G4, and G5 of CF Aj will

behave as HA2j. Moreover, we modify the

4-to-1 multiplexer M3 into a simplified

multiplier SM3 because one of its inputs is

zero, where the INVERT operation. Note

that M3 has been replaced by SM3 in the

proposed one-level CCSA architecture.

Vol 06 Issue10, Nov 2017 ISSN 2456 – 5083 Page 10

3.PROPOSED ADVANCED

ENCRYPTION STANDARD

AES is based on a design principle known as

a substitution-permutation network,

combination of both substitution and

permutation, and is fast in both software and

hardware. Its predecessor DES, AES does

not use a Festal network. AES is a variant of

Rijndael which has a fixed block size of 128

bits, and a key size of 128, 192, or 256 bits.

By contrast, the Rijndael specification per se

is specified with block and key sizes that

may be any multiple of 32 bits, both with a

minimum of 128 and a maximum of 256 bits

[9]. AES operates on a 4×4 column-major

order matrix of bytes, termed the state,

although some versions of Rijndael have a

larger block size and have additional

columns in the state. Most AES calculations

are done in a special finite field. The key

size used for an AES cipher specifies the

number of repetitions of transformation

rounds that convert the input, called the

plaintext, into the final output, called the

cipher text. The numbers of cycles of

repetition are as follows:

 10 cycles of repetition for 128-bit

keys.

 12 cycles of repetition for 192-bit

keys.

 14 cycles of repetition for 256-bit

keys.

Each round consists of several processing

steps, each containing four similar but

different stages, including one that depends

on the encryption key itself [9]. A set of

reverse rounds are applied to transform

cipher text back into the original plaintext

using the same encryption key.

3.1. High-Level Description Of The

Algorithm

 Key Expansions

 Round keys are derived from the

cipher key using Rijndael's key

schedule. AES requires a separate

128-bit round key block for each

round plus one more.

 Initial Round

 Add Round Key—each byte of the

state is combined with a block of the

round key using bitwise xor.

 Rounds

 Sub Bytes—a non-linear substitution

step where each byte is replaced with

another according to a lookup table.

 Shift Rows—a transposition step

where the last three rows of the state

are shifted cyclically a certain

number of steps.

 Mix Columns—a mixing operation

which operates on the columns of the

state, combining the four bytes in

each column.

 Add Round Key

 Final Round (no Mix Columns)

 Sub Bytes

 Shift Rows

 Add Round Key.

3.2 The Subbytes Step

In the Sub Bytes step, each byte in the

state matrix is replaced with a Sub Byte

 using an 8-bit substitution box, the

Vol 06 Issue10, Nov 2017 ISSN 2456 – 5083 Page 11

Rijndael S-box. This operation provides the

non-linearity in the cipher. The S-box used

is derived from the multiplicative inverse

over GF (28), known to have good non-

linearity properties. To avoid attacks based

on simple algebraic properties, the S-box is

constructed by combining the inverse

function with an invertible affine

transformation[4]. The S-box is also chosen

to avoid any fixed points (and so is a

derangement), i.e., , and also

any opposite fixed points, i.e.,

 . While performing the

decryption, Inverse Sub Bytes step is used,

this requires first taking the affine

transformation and then finding the

multiplicative inverse.

3.3 THE SHIFT ROWS STEP

The Shift Rows step operates on the rows of

the state; it cyclically shifts the bytes in each

row by a certain offset. For AES, the first

row is left unchanged. Each byte of the

second row is shifted one to the left.

Similarly, the third and fourth rows are

shifted by offsets of two and three

respectively [7]. For blocks of sizes 128 bits

and 192 bits, the shifting pattern is the same.

Row n is shifted left circular by n-1 bytes. In

this way, each column of the output state of

the Shift Rows step is composed of bytes

from each column of the input state.

(Rijndael variants with a larger block size

have slightly different offsets).

For a 256-bit block, the first row is

unchanged and the shifting for the second,

third and fourth row is 1 byte, 3 bytes and 4

bytes respectively. This change only applies

for the Rijndael cipher when used with a

256-bit block, as AES does not use 256-bit

blocks. The importance of this step is to

avoid the columns being linearly

independent, in which case, AES

degenerates into four independent block

cipher[10].

3.4. The Mix columns Step

In the Mix Columns step, the four bytes of

each column of the state are combined using

an invertible linear transformation. The Mix

Columns function takes four bytes as input

and outputs four bytes, where each input

byte affects all four output bytes. Together

with Shift Rows, Mix Columns provides

diffusion in the cipher.

Vol 06 Issue10, Nov 2017 ISSN 2456 – 5083 Page 12

Matrix multiplication is composed of

multiplication and addition of the entries,

and here the multiplication operation can be

defined as this: multiplication by 1 means no

change, multiplication by 2 means shifting

to the left, and multiplication by 3 means

shifting to the left and then performing XOR

with the initial UN shifted value. After

shifting, a conditional XOR with 0x1B

should be performed if the shifted value is

larger than 0xFF. (These are special cases of

the usual multiplication in GF (28).)

Addition is simply XOR. In more general

sense, each column is treated as a

polynomial over GF (28) and is then

multiplied modulo x4+1 with a fixed

polynomial c(x) = 0x03 · x3 + x2 + x +

0x02 [11]. The coefficients are displayed in

their hexadecimal equivalent of the binary

representation of bit polynomials from GF

(2) [x]. The Mix Columns step can also be

viewed as a multiplication by the shown

particular MDS matrix in the finite field GF

(28). This process is described further in the

article Rijndael mix columns.

3.5. The Add round key Step

In the Add Round Key step, the sub key is

combined with the state. For each round, a

sub key is derived from the main key using

Rijndael's key schedule; each sub key is the

same size as the state. The sub key is added

by combining each byte of the state with the

corresponding byte of the sub key using

bitwise XOR.

On systems with 32-bit or larger words, it is

possible to speed up execution of this cipher

by combining the Sub Bytes and Shift Rows

steps with the Mix Columns step by

transforming them into a sequence of table

lookups. This requires four 256-entry 32-bit

tables, and utilizes a total of four kilobytes

(4096 bytes) of memory one kilobyte for

each table. A round can then be done with

16 table lookups and 12 32-bit exclusive-or

operations, followed by four 32-bit

exclusive-or operations in the Add Round

Key. If the resulting four-kilobyte table size

is too large for a given target platform, the

table lookup operation can be performed

with a single 256-entry 32-bit (i.e. 1

kilobyte) table by the use of circular rotates.

Using a byte-oriented approach, it is

possible to combine the Sub Bytes, Shift

Vol 06 Issue10, Nov 2017 ISSN 2456 – 5083 Page 13

Rows, and Mix Columns steps into a single

round operation [12].

5. RESULT

6. CONCLUSION

To enhance the performance of Montgomery

MM while maintaining the low hardware

complexity, this paper has modified the

SCS-based Montgomery multiplication

algorithm a low-cost and high-performance

Montgomery modular multiplier. The

multiplier used one-level CCSA architecture

and skipped the unnecessary carry-save

addition operations to largely reduce the

critical path delay and required clock cycles

for completing one MM operation. FCS-

based multipliers maintain the input and

output operands of the Montgomery MM in

the carry-save format to escape from the

format conversion, leading to fewer clock

cycles but larger area than SCS-based

multiplier.In Future, for cryptographers, a

cryptographic "break" is anything faster than

a brute force performing one trial decryption

for each key (see Cryptanalysis). This

includes results that are infeasible with

current technology. The largest successful

publicly known brute force attack against

any block-cipher encryption was against a

64-bit RC5 key.

ACKNOWLEDGEMENT

We are expressing our thanks to all Faculty

members and Skilled Assistants of

Electronics and Communication

Engineering department and my Friends

who helped me in every possible way. Last

but not least I thank my Parents for their

moral support.

REFERENCES

1. Amber.P, Pinckney.N, and Harris, D. M.

“Parallel high-radix Montgomery

multipliers,”(2008) in Proc. 42nd Asilomar

Conf. Signals, Syst., Comput., pp. 772–776.

2. Bunimov.V, Schimmler.M, and Tolg.B,

“A complexity-effective version of

Montgomery’s algorihm,” (2002) in Proc.

Workshop Complex.Effective Designs.

3. Gang.F, “Design of modular multiplier

based on improved Montgomery algorithm

and systolic array,” (2006) in Proc. 1st Int.

Multi-Symp. Comput. Co mput. Sci., vol. 2.

Jun. 2006, pp. 356–359.

4. Han, J. Wang S., Huang W., Yu Z., and

Zeng X, “Parallelization of radix-2

Montgomery multiplication on multicore

platform,”(2013) IEEE Trans. Very Large

Scale Integr. (VLSI) Syst., vol. 21, no. 12,

pp. 2325–2330,.

5. Kuang S.-R., Wang J.-P., Chan K.-C., and

Hsu. H.-W., “Energy-efficient high-

throughput Montgomery modular

multipliers for RSA cryptosystems,” (2013)

IEEE Trans. Very Large Scale Integr.

(VLSI) Syst., vol. 21, no. 11,pp. 1999–
2009,.

Vol 06 Issue10, Nov 2017 ISSN 2456 – 5083 Page 14

6. McIvor.C, McLoone.M, and McCanny, J.

V. “Modified Montgomery modular

multiplication and RSA exponentiation

techniques,”(2004) IEE Proc.-Comput.

Digit. Techn., vol. 151, no. 6, pp. 402–408,.

7. Miyamoto A., Homma N., Aoki, T. and

Satoh.A, “Systematic design of RSA

processors based on high-radix Montgomery

multipliers,”(2011) IEEE Trans. Very Large

Scale Integr. (VLSI) Syst., vol. 19, no. 7, pp.

1136–1146.

8. Neto, J. C. Tenca A. F., and Ruggiero W.

V., “A parallel k-partition method to

perform Montgomery multiplication,”(2011)

in Proc. IEEE Int. Conf. Appl.-Specific

Syst., Archit., Processors, , pp. 251–254.

9. Sassaw.G,. Jimenez.C.J, and Valencia.M,

“High radix implementation of Montgomery

multipliers with CSA,” (2010) in Proc. Int.

Conf. Micro electron., Dec. 2010, pp. 315–
318.

10. Saemen.J and Rijmen.V, The block

cipher Rijndael, Smart Card research and

Applications, (2010)LNCS 1820, Springer-

Verlag, pp. 288-296

11. Wang S.-H., Lin W.-C “Fast scalable

radix-4 Montgomery modular multiplier,”

(2012) in Proc. IEEE Int. Symp. Circuits

Syst., , pp. 3049–3052.

12. Yee.A, Guideline for Implementing

Cryptography in the Federal Government,

National Institute of Standards and

Technology, (1999),NIST Special

Publication 800-21.

