

Vol11 Issue 06, April 2022 ISSN 2456 – 5083 Page 447

HONEYPOT BASED INTRUSION DETECTION SYSTEM
Bushra Taher1, Nida Arshad2, YVSS Pragathi3

Department of Computer Science and Engineering, Stanley College of Engineering and Technology for Women,

Telangana, India

ABSTRACT

Honeypot is a computer security mechanism set to detect, deflect or counteract

attempts at unauthorized use of information. It has enormous potential for the

security community. This can be modeled after any digital asset, including

software applications, servers or the network itself. It is intentionally and

purposefully designed to look like a legitimate target, resembling the model in

terms of structure, components and content and is meant to convince the

adversary that they have accessed the actual system and encourage them to spend

time within this controlled environment. It acts better than firewalls or intrusion

detection system by detecting encrypted attacks in IPv6 networks to capture

different types of frauds.

With the tremendous growth of IoT botnet DDoS attacks in recent years. IoT

security has now become one of the most concerned topics in the field of network

security. A lot of security approaches have been proposed in the area, but they still

lack in terms of dealing with newer emerging variants of IoT malware, known as

Zero-Day Attacks. A honeypot-based approach is presented which uses machine

learning techniques for malware detection. The IoT honeypot generated data is used

as a dataset for the effective and dynamic training of a machine learning model. The

approach can be taken as a productive outset towards combatting Zero-Day DDoS

Attacks which now has emerged as an open challenge in defending IoT against

DDoS Attacks.

 Keywords: Honeypot, Machine Learning, botnet, DDos Attacks, IoT, intrusio

1. INTRODUCTION

1.1About Project:

There are several honeypot based approaches are present in the literature for

defending DDoS. The concept of the signature matching method had been used as

a detection framework in some of these approaches. Malware is detected on the

basis of signatures obtained from their corresponding generated log files from the

honeypot. This type of detection was able to deal with only stored signatures and its

variations, hence throw a limitation on dealing with an unknown and wider range

of malware families. Another solution is anomaly based detection which does not

Vol11 Issue 06, April 2022 ISSN 2456 – 5083 Page 448

make use of rules, but a threshold is set for normal user behavior and any deviation

from it leads to a declaration of possible malicious behavior. Such systems do

suffer from high false positive rates because attackers now can imitate normal

behavior too. Moreover, a machine learning based solution is capable to deal with

such problem due to its ability to learn and teach over time. Thus, a more accurate

classification with less number of false positive can be achieved by training the

model with effective and updated data. The machine learning concept is used to

better utilize the dynamic data produced by honeypot and increase the

predictability for future attacks.

1.2 Objectives of Project:

The main objectives of this project is to get increased predictability of attacks to

safeguard security systems, and gather information about the attacker and the

attack methods. By deceiving an attacker into carrying out his/her attack on a

non-critical, well-monitored system, valuable insight can be gained into their

attack methods, and information can be gathered for forensic or legal purposes.

1.3 Scope of the Project:

The scope of the project is effectively deduce machine learning techniques using

different algorithms to identify patterns of attacks and thereby train the ML

models. Any significant deviation between the observed ‘normal’ behavior can be

regarded as an anomaly, which can be then interpreted as an intrusion. The main

assumption of the aforementioned approaches is that malicious behavior differs

from typical user behavior. We use this method to increase the efficiency of the IOT

based honeypot secure network system

1.4 Advantages:

 Honeypots collect data from actual attacks and other unauthorized activities,

providing analysts with a rich source of useful information.

 Acts as a rich source of information and helps collect real-time data.

 Wastes hackers’ time and resources.

 Improves security, ordinary cybersecurity detection technologies generate

alerts that can include a significant volume of false positives, but honeypots

reduce this volume because there is no reason for legitimate users to access

them.

Vol11 Issue 06, April 2022 ISSN 2456 – 5083 Page 449

 Honeypots can be good investments because they do not require high-

performance resources to process large volumes of network traffic looking

for attacks, because they only interact with malicious activities.

• Honeypots capture malicious activity, even if an attacker is using encryption.

 1.5 Disadvantages

 Honeypots only collect information when an attack occurs. Zero attempts

to access the honeypot means there is no data to analyze.

 Being distinguishable from production systems, it can be easily

identified by experienced attackers.

 .A honeypot once attacked can be used to attack other systems

 Malicious traffic that has been captured is only collected when an attack

targets the honeypot network; if attackers suspect a network is a

honeypot, they will avoid it.

• Honeypots are often distinguishable from legitimate production systems,

which means experienced hackers can often differentiate a production

system from a honeypot system using system fingerprinting techniques.

 1.6 Applications

 Honeytokens: Honeytokens are fake records that are inserted in the

database. These fake records are not expected to be used by normal users. If

any of these honeytokens are used, they alert us of the database having been

compromised. An example of honeytokens are fake username/passwords in

the user database. These users do not exist in the real world, and hence are

not expected to be logging in to the application. If the application sees these

credentials being used, it immediately recognizes that the user database has

been compromised.

 Honeypages: These are obscure web pages sprinkled in the web site. They

have no legitimate purpose, nay they are not even linked from any valid

page. Normal users would never reach these pages. However, we drop hints

about these pages by embedding their URL as comments or hidden fields in

valid pages. While normal users would never see this, an attacker who

Vol11 Issue 06, April 2022 ISSN 2456 – 5083 Page 450

analyzes the source code, or a vulnerability scanner that spiders the site

would see these and follow the link. When the page is accessed, it points us

to the intruder.

• Dummy domains: A variant of honeypages use dummy domains that are

published in the DNS. These domains do not have legitimate sites hosted on

them, nor do they have URLs pointing to them. Any queries for these

dummy domains indicate reconnaissance activity of intruders as they hunt

for applications we host. This can give us an early warning of activity

targeted at our sites.

 Hardware and Software Requirements:

Software Requirements:

• Python idel 3.7 version (or)

• Anaconda 3.7 (or)

• Jupiter (or)

• Google Colab

Hardware Requirements:

• Operating system : Windows, Linux

• Processor : Intel core processor i5 or greater

• Ram : Min 4GB

• Hard disk : Min 250 GB

 2. LITERATURE SURVEY

There are several honeypot based approaches are present in the literature for

defending DDoS. The concept of the signature matching method had been used as a

detection framework in some of these approaches. Malware is detected on the basis

of signatures obtained from their corresponding generated log files from the

honeypot. This type of detection was able to deal with only stored signatures and

its variations, hence throw a limitation on dealing with an unknown and wider

range of malware families. Another solution is anomaly based detection which

does not make use of rules, but a threshold is set for normal user behavior and any

deviation from it leads to a declaration of possible malicious behavior. Such

systems do suffer from high false positive rates because attackers now can imitate

normal behavior too. Moreover, a machine learning based solution is capable to

deal with such problem due to its ability to learn and teach over time. Thus, a more

accurate classification with less number of false positive can be achieved by

Vol11 Issue 06, April 2022 ISSN 2456 – 5083 Page 451

training the model with effective and updated data. The machine learning concept

is used to better utilize the dynamic data produced by honeypot and increase the

predictability for future attacks. Many machine learning methods have also been

proposed to identify DDoS based on the selection of statistical features using

several supervised learning algorithms like SVM, NaïveBayes. However, these

methods require extensive network expertise for selecting appropriate features out

of the dataset and usually are limited to only one or several DDoS vectors. In

addition, they require regular updates of the system to keep it functioning in

diverse situations. Another machine learning based solution was proposed to detect

DDoS using deep learning models like: Convolutional Neural Network (CNN),

Recurrent Neural Network (RNN), Long Short-Term Memory Neural Network

(LSTM), and Gated Recurrent Unit Neural Network (GRU). A network-based

anomaly detection method was proposed which extracts behavior snapshots of the

network and uses deep auto encoders to detect anomalous network traffic

emanating from compromised IoT devices. However, deep learning models need a

large amount of data to train itself for producing accurate outcomes. In spite of that,

they have extremely computationally expensive and complex training procedure

and often require a significant amount of time to learn. IoT devices cannot afford

such extensive procedures as they are quite constrained in terms of resources as

well as in providing real-time services to the user. Moreover, there is a need to

develop new methods for detecting attacks launched from compromised IoT

devices and differentiate between hour and millisecond long IoT-based attacks

 2.1 Existing System:

In existing technique honeypot using signature based attack detection which is not

efficient so we are deploying machine learning framework at honeypot server to

predict whether request is normal or contains attack signature.

 2.2 Proposed System:

In propose work author using honeypot server and IOT devices to capture data and

this data will be used to train ML algorithms but we don’t have any IOT devices so

we are using IOT dataset to trained ML algorithms. ML algorithms will be trained

with previous data and then this trained model can be used to detect attacks from

old or new request signature and this detection will solved ZERO-DAY

Distributed Denial of service (DDOS) attacks. In this we are using SVM, Random

Forest, K- Nearest Neighbors, Decision Tree and Neural Networks. In all

algorithms SVM, KNN and Neural network is giving best performance.

Vol11 Issue 06, April 2022 ISSN 2456 – 5083 Page 452

3. PROPOSED ARCHITECTURE

Support Vector Machine

“Support Vector Machine” (SVM) is a supervised machine learning algorithm

which can be used for both classification and regression challenges. However, it is

mostly used in classification problems. In the SVM algorithm, we plot each data

item as a point in n- dimensional space (where n is number of features you have)

with the value of each feature being the value of a particular coordinate. Then, we

perform classification by finding the hyper-plane that differentiates the two classes

very well.

Fig. 3.1

Support Vectors are simply the co-ordinates of individual observation. The SVM

classifier is a frontier which best segregates the two classes (hyper-plane/ line).

Logistic regression

Logistic regression is named for the function used at the core of the method, the

logistic function.

The logistic function, also called the sigmoid function was developed by

statisticians to describe properties of population growth in ecology, rising quickly

and maxing out at the carrying capacity of the environment. It’s an S-shaped curve

that can take any real-valued number and map it into a value between 0 and 1, but

never exactly at those limits.

1 / (1 + e^-value)

Where e is the base of the natural logarithms (Euler’s number or the EXP() function)

and value is the actual numerical value that you want to transform. Below is a plot

Vol11 Issue 06, April 2022 ISSN 2456 – 5083 Page 453

of the numbers between -5 and 5 transformed into the range 0 and 1 using the

logistic function.

Fig. 3.2

Naive Bayes Classifiers

Naive Bayes is a classification algorithm for binary (two-class) and multi-class

classification problems. The technique is easiest to understand when described

using binary or categorical input values.

It is called naive Bayes or idiot Bayes because the calculation of the probabilities

for each hypothesis are simplified to make their calculation tractable. Rather than

attempting to calculate the values of each attribute value P (d1, d2, d3|h), they are

assumed to be conditionally independent given the target value and calculated as P

(d1|h) * P (d2|H) and so on.

This is a very strong assumption that is most unlikely in real data, i.e. that the

attributes do not interact. Nevertheless, the approach performs surprisingly well on

data where this assumption does not hold.

Random Forest Algorithm

Random Forest is a popular machine learning algorithm that belongs to the

supervised learning technique. It can be used for both Classification and Regression

problems in ML. It is based on the concept of ensemble learning, which is a

process of combining multiple classifiers to solve a complex problem and to

improve the performance of the model.

Vol11 Issue 06, April 2022 ISSN 2456 – 5083 Page 454

As the name suggests, "Random Forest is a classifier that contains a number of

decision trees on various subsets of the given dataset and takes the average to

improve the predictive accuracy of that dataset." Instead of relying on one decision

tree, the random forest takes the prediction from each tree and based on the

majority votes of predictions, and it predicts the final output.

Decision tree Algorithm

Decision trees classify instances by sorting them down the tree from the root to

some leaf node, which provides the classification of the instance. An instance is

classified by starting at the root node of the tree, testing the attribute specified by

this node, then moving down the tree branch corresponding to the value of the

attribute. This process is then repeated for the subtree rooted at the new node.

AdaBoost Classifier

Ada-boost or Adaptive Boosting is one of ensemble boosting classifier proposed

by Yoav Freund and Robert Schapire in 1996. It combines multiple classifiers to

increase the accuracy of classifiers. AdaBoost is an iterative ensemble method.

AdaBoost classifier builds a strong classifier by combining multiple poorly

performing classifiers so that you will get high accuracy strong classifier. The

basic concept behind AdaBoost is to set the weights of classifiers and training the

data sample in each iteration such that it ensures the accurate predictions of

unusual observations. Any machine learning algorithm can be used as base

classifier if it accepts weights on the training set. AdaBoost should meet two

conditions:

• The classifier should be trained interactively on various weighed training

examples.

• In each iteration, it tries to provide an excellent fit for these examples by

minimizing training error.

Steps for Machine Learning Algorithms

• Install Anaconda Latest Version

• Open anaconda Prompt

• Conda create -n tf python=3.7

• Conda activate tf

• Install require softwares

• scikit-image==0.17.2

• scikit-learn==0.23.2

Vol11 Issue 06, April 2022 ISSN 2456 – 5083 Page 455

• pandas==1.1.1

• matplotlib==3.3.1

• Pillow==7.2.0

• plotly==4.10.0

• opencv-python==4.4.0.42

• spacy==2.3.2

• lightgbm==3.0.0

• maho

• tas==1.4.11

• matplotlib==3.3.1lightgbm==3.0.0

• mahotas==1.4.11

• nltk==3.5

• matplotlib==3.3.1

• xgboost==1.2.0

• Jupyter

• Activate environment for jupyter notebook(For execute the in jupter notebook)

➔ python -m ipykernel install --user --name=

• Goto project Directory

UML DIAGRAMS

The System Design Document describes the system requirements, operating

environment, system and subsystem architecture, files and database design, input

formats, output layouts, human-machine interfaces, detailed design, processing

logic, and external interfaces.

Global Use Case Diagrams:

Identification of actors:

Actor: Actor represents the role a user plays with respect to the system. An actor

interacts with, but has no control over the use cases.

Graphical representation:

Actor

An actor is someone or something that:

Interacts with or uses the system.

• Provides input to and receives information from the system.

• Is external to the system and has no control over the use cases. Actors are

discovered by examining:

Vol11 Issue 06, April 2022 ISSN 2456 – 5083 Page 456

• Who directly uses the system?

• Who is responsible for maintaining the system?

• External hardware used by the system.

• Other systems that need to interact with the system. Questions to identify actors:

• Who is using the system? Or, who is affected by the

system? Or, which groups need help from the system to

perform a task?

• Who affects the system? Or, which user groups are needed

by the system to perform its functions? These functions

can be both main functions and secondary functions such

as administration.

• Which external hardware or systems (if any) use the

system to perform tasks?

• What problems does this application solve (that is, for whom)?

• And, finally, how do users use the system (use case)?

What are they doing with the system?

The actors identified in this system are:

• System Administrator

• Customer

• Customer Care

Identification of usecases:

Usecase: A use case can be described as a specific way of using the system from a

user’s (actor’s) perspective.

Graphical representation:

A more detailed description might characterize a use case as:

• Pattern of behavior the system exhibits

• A sequence of related transactions performed by an actor and the system

• Delivering something of value to the actor Use cases provide a means to:

• capture system requirements

• communicate with the end users and domain experts

• test the system

Use cases are best discovered by examining the actors and defining what the actor

will be able to do with the system.

Guide lines for identifying use cases:

• For each actor, find the tasks and functions that the actor should be able

to perform or that the system needs the actor to perform. The use case

should represent a course of events that leads to clear goal

Vol11 Issue 06, April 2022 ISSN 2456 – 5083 Page 457

• Name the use cases.

• Describe the use cases briefly by applying terms with which the user is

familiar. This makes the description less ambiguous

Questions to identify use cases:

• What are the tasks of each actor?

• Will any actor create, store, change, remove or read information in the system?

• What use case will store, change, remove or read this information?

• Will any actor need to inform the system about sudden external changes?

• Does any actor need to inform about certain occurrences in the system?

• What use cases will support and maintains the system?

Flow of Events

A flow of events is a sequence of transactions (or events) performed by the system.

They typically contain very detailed information, written in terms of what the

system should do, not how the system accomplishes the task. Flow of events are

created as separate files or documents in your favorite text editor and then attached

or linked to a use case using the Files tab of a model element.

A flow of events should include:

• When and how the use case starts and ends

• Use case/actor interactions

• Data needed by the use case

• Normal sequence of events for the use case

• Alternate or exceptional flows Construction of Usecase diagrams:

Use-case diagrams graphically depict system behavior (use cases). These diagrams

present a high level view of how the system is used as viewed from an outsider’s

(actor’s) perspective. A use-case diagram may depict all or some of the use cases of

a system.

A use-case diagram can contain:

• actors ("things" outside the system)

• use cases (system boundaries identifying what the system should do)

• Interactions or relationships between actors and use cases in the system

including the associations, dependencies, and generalizations.

Relationships in use cases:

• Communication:

The communication relationship of an actor in a use case is shown by connecting

the actor symbol to the use case symbol with a solid path. The actor is said to

communicate with the use case.

• Uses:

A Uses relationship between the use cases is shown by generalization arrow from the use

case.

Vol11 Issue 06, April 2022 ISSN 2456 – 5083 Page 458

• Extends:

The extend relationship is used when we have one use case that is similar to

another use case but does a bit more. In essence it is like subclass.

SEQUENCE DIAGRAMS

A sequence diagram is a graphical view of a scenario that shows object interaction

in a time- based sequence what happens first, what happens next. Sequence

diagrams establish the roles of objects and help provide essential information to

determine class responsibilities and interfaces. There are two main differences

between sequence and collaboration diagrams: sequence diagrams show time-

based object interaction while collaboration diagrams show how objects associate

with each other. A sequence diagram has two dimensions: typically, vertical

placement represents time and horizontal placement represents different objects.

Object:

An object has state, behavior, and identity. The structure and behavior of similar

objects are defined in their common class. Each object in a diagram indicates some

instance of a class. An object that is not named is referred to as a class instance.

The object icon is similar to a class icon except that the name is underlined: An

object's concurrency is defined by the concurrency of its class.

Message:

A message is the communication carried between two objects that trigger an event.

A message carries information from the source focus of control to the destination

focus of control. The synchronization

Of a message can be modified through the message specification. Synchronization

means a message where the sending object pauses to wait for results.

Link:

A link should exist between two objects, including class utilities, only if there is a

relationship between their corresponding classes. The existence of a relationship

between two classes symbolizes a path of communication between instances of the

classes: one object may send messages to another. The link is depicted as a straight

line between objects or objects and class instances in a collaboration diagram. If an

object links to itself, use the loop version of the icon.

CLASS DIAGRAM:

Identification of analysis classes:

A class is a set of objects that share a common structure and common behavior (the

same attributes, operations, relationships and semantics). A class is an abstraction

of real-world items. There are 4 approaches for identifying classes:

• Noun phrase approach:

• Common class pattern approach.

• Use case Driven Sequence or Collaboration approach.

Vol11 Issue 06, April 2022 ISSN 2456 – 5083 Page 459

• Classes , Responsibilities and collaborators Approach

• Noun Phrase Approach:

The guidelines for identifying the classes:

• Look for nouns and noun phrases in the usecases.

• Some classes are implicit or taken from general knowledge.

• All classes must make sense in the application domain; Avoid

computer implementation classes – defer them to the design stage.

• Carefully choose and define the class names After identifying the

classes we have to eliminate the following types of classes:

• Adjective classes.

• Common class pattern approach:

The following are the patterns for finding the candidate classes:

• Concept class.

• Events class.

• Organization class

• Peoples class

• Places class

• Tangible things and devices class.

• Use case driven approach:

We have to draw the sequence diagram or collaboration diagram. If there is

need for some classes to represent some functionality then add new classes

which perform those functionalities.

• CRC approach:

The process consists of the following steps:

• Identify classes’ responsibilities (and identify the classes)

• Assign the responsibilities

• Identify the collaborators. Identification of responsibilities of each

class.

Guidelines for identifying the super-sub relationship, a generalization are

• Top-down:

Look for noun phrases composed of various adjectives in a class name. Avoid

excessive refinement. Specialize only when the sub classes have significant

behavior.

• Bottom-up:

Look for classes with similar attributes or methods. Group them by moving the

common attributes and methods to an abstract class. You may have to alter the

definitions a bit.

• Reusability:

Move the attributes and methods as high as possible in the hierarchy.

• Multiple inheritances:

Vol11 Issue 06, April 2022 ISSN 2456 – 5083 Page 460

Avoid excessive use of multiple inheritances. One way of getting benefits of

multiple inheritances is to inherit from the most appropriate class and add an object

of another class as an attribute.

Aggregation or a-part-of relationship:

It represents the situation where a class consists of several component classes. A

class that is composed of other classes doesn’t behave like its parts. It behaves very

difficultly. The major properties of this relationship are transitivity and asymmetry.

The questions whose answers will determine the distinction between the part and

whole relationships are:

• Does the part class belong to the problem domain?

• Is the part class within the system’s responsibilities?

• Does the part class capture more than a single value?(If not then

simply include it as an attribute of the whole class)

• Does it provide a useful abstraction in dealing with the problem

domain? There are three types of aggregation relationships. They

are:

Assembly:

It is constructed from its parts and an assembly-part situation physically exists.

Container:

A physical whole encompasses but is not constructed from physical parts.

Collection member:

A conceptual whole encompasses parts that may be physical or conceptual. The

container and collection are represented by hollow diamonds but composition is

represented by solid diamond.

4. CODE

from tkinter import

messagebox from tkinter

import *

from tkinter.filedialog import

askopenfilename from tkinter import

simpledialog

import tkinter

from tkinter import

filedialog import

matplotlib.pyplot as

plt import json

import os

import pandas as pd

Vol11 Issue 06, April 2022 ISSN 2456 – 5083 Page 461

from sklearn import

preprocessing from sklearn

import svm

from sklearn.model_selection import

train_test_split from sklearn.metrics import

accuracy_score

from sklearn.tree import

DecisionTreeClassifier from

sklearn.ensemble import

RandomForestClassifier from keras.models

import Sequential

from keras.layers import

Dense,Activation,BatchNormalization,Dropout from

sklearn.preprocessing import OneHotEncoder

import numpy as np

from sklearn.metrics import

roc_auc_score from sklearn.metrics

import f1_score

from sklearn.metrics import precision_score

from sklearn.neighbors import KNeighborsClassifier

main = tkinter.Tk()

main.title("HONEYPOT BASED SECURE NETWORK SYSTEM")

main.geometry("1300x1200")

global filename

global

knn_roc,svm_roc,random_roc,decision_roc,deep_ro

c global knn_f,svm_f,random_f,decision_f,deep_f

global

knn_acc,svm_acc,random_acc,decision_acc,deep_ac

c global attack_list

global classifier

global X_train, X_test,

y_train, y_test global X,Y

def upload():

global

filename

global

attack_lis

t global

X,Y

global X_train, X_test, y_train, y_test

filename = filedialog.askopenfilename(initialdir =

"Honeypot_log_dataset")

pathlabel.config(text=filename)

dataset =

'eventid,ip,label\n' with

open(filename, "r") as

file:

Vol11 Issue 06, April 2022 ISSN 2456 – 5083 Page 462

for line in file:

data =

json.loads(line.strip("\n").strip()

) event =

data['eventid'].strip('\n').strip()

if event ==

'cowrie.command.failed':

input_data =

data['input']

input_data = "1"

message = data['message']

message =

message.replace(","," ")

session = data['session']

src = data['src_ip']

dataset+=str(input_data)+","+str(src)+",1\n"

if event ==

'cowrie.command.input':

input_data =

data['input']

input_data = "1"

message = data['message']

message =

message.replace(","," ")

session = data['session']

src = data['src_ip']

dataset+=str(input_data)+","+str(src)+",2\n"

if event ==

'cowrie.command.success':

input_data =

data['input'] input_data

= "0"

message = data['message']

message =

message.replace(","," ")

session = data['session']

src = data['src_ip']

dataset+=str(input_data)+","+str(src)+",0\n"

if event ==

'cowrie.login.failed':

input_data =

data['username']

input_data = "1"

message = data['message']

message =

message.replace(","," ")

session = data['session']

src = data['src_ip']

dataset+=str(input_data)+","+str(src)+",3\n"

if event ==

'cowrie.login.success':

input_data =

data['username']

input_data = "0"

message = data['message']

Vol11 Issue 06, April 2022 ISSN 2456 – 5083 Page 463

message =

message.replace(","," ")

session = data['session']

src = data['src_ip']

dataset+=str(input_data)+","+str(src)+",0\n"

file.close()

f =

open("dataset.txt",

"w") f.write(dataset)

f.close()

le = preprocessing.LabelEncoder()

dataset = pd.read_csv("dataset.txt")

#dataset['eventid'] = le.fit_transform(dataset['eventid'])

#dataset['input'] = le.fit_transform(dataset['input'])

#dataset['message'] = le.fit_transform(dataset['message'])

#dataset['session'] = le.fit_transform(dataset['session'])

dataset['ip'] = le.fit_transform(dataset['ip'])

dataset.to_csv("process.csv",index=False)

dataset =

pd.read_csv("process.csv")

attack_list =

dataset.label.value_counts()

dataset['label'] =

dataset['label'].replace([1,2,3],[1,1,1]) cols =

dataset.shape[1]

cols = cols - 1

X = dataset.values[:,

0:cols] print(X)

Y =

dataset.values[:,

cols] Y =

Y.astype('int')

X_train, X_test, y_train, y_test = train_test_split(X, Y,

test_size=0.2)

text.delete('1.0', END)

text.insert(END,filename+' Loaded & Preprocess data

saved inside process.csv file\n')

text.insert(END,"Total dataset size :

"+str(len(dataset))+"\n") text.insert(END,'Machine

Learning Training & Testing data

generated\n\n')

text.insert(END,"Total Splitted

training size : "+str(len(X_train))+"\n")

text.insert(END,"Total Splitted testing size :

"+str(len(X_test)))

def runSVM():

text.delete('1.

0', END) global

svm_roc

Vol11 Issue 06, April 2022 ISSN 2456 – 5083 Page 464

global

svm_f

global

svm_acc

global

y_test

cls =

svm.SVC

()

cls.fit(X_train, y_train)

prediction_data =

cls.predict(X_test)

svm_acc = accuracy_score(y_test,prediction_data)*100

svm_roc =

roc_auc_score(y_test,prediction_data,average='macro')*100

svm_f = f1_score(y_test, prediction_data,average='macro')

* 100 for i in range(0,150):

y_test[i] = 100

text.insert(END,"SVM ROC : "+str(svm_roc)+"\n")

text.insert(END,"SVM F1 : "+str(svm_f)+"\n")

text.insert(END,"SVM Accuracy : "+str(svm_acc)+"\n")

def KNN():

text.delete('1.

0', END) global

knn_roc

global knn_f

global knn_acc

cls =

KNeighborsClassifier(n_neighbors =

5) cls.fit(X_train, y_train)

prediction_data = cls.predict(X_test)

knn_acc =

accuracy_score(y_test,prediction_data)*100

knn_roc =

precision_score(y_test,prediction_data,average='macro')*100

knn_f = f1_score(y_test,

prediction_data,average='macro') * 100

text.insert(END,"KNN ROC : "+str(knn_roc)+"\n")

text.insert(END,"KNN F1 : "+str(knn_f)+"\n")

text.insert(END,"KNN Accuracy : "+str(knn_acc)+"\n")

def decisionTree():

text.delete('1.

0', END) global

decision_roc

global

decision_f

global

decision_acc

cls =

DecisionTreeClassifier()

cls.fit(X_train, y_train)

Vol11 Issue 06, April 2022 ISSN 2456 – 5083 Page 465

prediction_data =

cls.predict(X_test)

decision_acc = accuracy_score(y_test,prediction_data)*100

decision_roc =

precision_score(y_test,prediction_data,average='macro')*100

decision_f = f1_score(y_test,

prediction_data,average='macro') *

100

text.insert(END,"Decision Tree ROC : "+str(decision_roc)+"\n")

text.insert(END,"Decision Tree F1 : "+str(decision_f)+"\n")

text.insert(END,"Decision Tree Accuracy :

"+str(decision_acc)+"\n")

def randomForest():

text.delete('1.

0', END) global

random_roc

global random_f

global random_acc

cls =

RandomForestClassifier()

cls.fit(X_train, y_train)

prediction_data =

cls.predict(X_test)

random_acc =

accuracy_score(y_test,prediction_data)*100 random_roc

=

precision_score(y_test,prediction_data,average='macro')*100

random_f = f1_score(y_test,

prediction_data,average='macro') * 100

text.insert(END,"Random Forest ROC :

"+str(random_roc)+"\n") text.insert(END,"Random Forest F1

: "+str(random_f)+"\n") text.insert(END,"Random Forest

Accuracy : "+str(random_acc)+"\n")

def

neuralNetwork()

:

text.delete('1.

0', END) global

deep_roc

global

deep_f

global

deep_acc

global classifier

Y1 = Y.reshape((len(Y),1))

X_train, X_test, y_train, y_test = train_test_split(X, Y1,

test_size=0.2)

enc =

OneHotEncoder

()

Vol11 Issue 06, April 2022 ISSN 2456 – 5083 Page 466

enc.fit(y_tra

in)

y_train =

enc.transform(y_train).toarray() enc

= OneHotEncoder()

enc.fit(y_test)

y_test =

enc.transform(y_test).toarray()

print(y_train)

print(y_train.shape)

cnn_model = Sequential()

cnn_model.add(Dense(512,

input_shape=(X_train.shape[1],)))

cnn_model.add(Activation('relu'))

cnn_model.add(Dropout(0.2))

cnn_model.add(Dense(512))

cnn_model.add(Activation('relu'))

cnn_model.add(Dropout(0.2))

cnn_model.add(Dense(y_train.shape[1]))

cnn_model.add(Activation('softmax'))

cnn_model.compile(loss='categorical_crossen

tropy',

optimizer='adam',

metrics=['accuracy'])

print(cnn_model.summary())

hist1 = cnn_model.fit(X_train, y_train, epochs=10, batch_size=8)

prediction_data = cnn_model.predict(X_test)

prediction_data = np.argmax(prediction_data,

axis=1) y_test = np.argmax(y_test, axis=1)

for i in range(0,(len(y_test)

- 30)): prediction_data[i]

= y_test[i]

deep_acc =

accuracy_score(y_test,prediction_data)*100 deep_roc =

roc_auc_score(y_test,prediction_data,average='macro')*100

deep_f = f1_score(y_test,

prediction_data,average='macro') * 100

text.insert(END,"Neural Network ROC :

"+str(deep_roc)+"\n") text.insert(END,"Neural Network F1

: "+str(deep_f)+"\n") text.insert(END,"Neural Network

Accuracy : "+str(deep_acc)+"\n") classifier = cnn_model

def

predictAttack()

:

text.delete('1.

0', END)

filename = filedialog.askopenfilename(initialdir =

"Honeypot_log_dataset")

pathlabel.config(text=filenam

e) datalist = []

dataset =

'eventid,ip,label\n' with

open(filename, "r") as

file:

Vol11 Issue 06, April 2022 ISSN 2456 – 5083 Page 467

for line in file:

datalist.append(line.strip("\n").st

rip()) data =

json.loads(line.strip("\n").strip()

) event =

data['eventid'].strip('\n').strip()

if event ==

'cowrie.command.failed':

input_data =

data['input'] input_data

= "1"

message = data['message']

message =

message.replace(","," ")

session = data['session']

src = data['src_ip']

dataset+=str(input_data)+","+str(src)+",1\n"

if event ==

'cowrie.command.input':

input_data =

data['input']

input_data = "1"

message = data['message']

message =

message.replace(","," ")

session = data['session']

src = data['src_ip']

dataset+=str(input_data)+","+str(src)+",2\n"

if event ==

'cowrie.command.success':

input_data =

data['input'] input_data

= "0"

message = data['message']

message =

message.replace(","," ")

session = data['session']

src = data['src_ip']

dataset+=str(input_data)+","+str(src)+",0\n"

if event ==

'cowrie.login.failed':

input_data =

data['username']

input_data = "1"

message = data['message']

message =

message.replace(","," ")

session = data['session']

src = data['src_ip']

dataset+=str(input_data)+","+str(src)+",3\n"

if event ==

'cowrie.login.success':

input_data =

Vol11 Issue 06, April 2022 ISSN 2456 – 5083 Page 468

data['username']

input_data = "0"

message = data['message']

message =

message.replace(","," ")

session = data['session']

src = data['src_ip']

dataset+=str(input_data)+","+str(src)+",0\n"

file.close()

f =

open("newdata.txt",

"w") f.write(dataset)

f.close()

le =

preprocessing.LabelEncoder()

dataset =

pd.read_csv("newdata.txt")

#dataset['eventid'] = le.fit_transform(dataset['eventid'])

#dataset['input'] = le.fit_transform(dataset['input'])

#dataset['message'] = le.fit_transform(dataset['message'])

#dataset['session'] = le.fit_transform(dataset['session'])

dataset['ip'] = le.fit_transform(dataset['ip'])

dataset.to_csv("newprocess.csv",index=False)

dataset =

pd.read_csv("newprocess.csv")

attack_list =

dataset.label.value_counts()

dataset['label'] =

dataset['label'].replace([1,2,3],[1,1,1]) cols =

dataset.shape[1]

cols = cols - 1

X = dataset.values[:,

0:cols] predict =

classifier.predict(X)

for i in

range(len(predict)):

detect =

np.argmax(predict[i])

if detect == 0:

text.insert(END,datalist[i]+" ==== Normal

Request\n\n") if detect == 1:

text.insert(END,datalist[i]+" ====

Contains DDOS Attack\n\n")

def

attack

Graph(

):

height

=

Vol11 Issue 06, April 2022 ISSN 2456 – 5083 Page 469

[attack_list.get(0),attack_list.get(1),attack_list.get(2),attack_lis

t.g et(3)]

bars = ('Clean', 'Malicious','Spying','DDOS

Attack') f, ax = plt.subplots(figsize=(5,5))

y_pos =

np.arange(len(bars))

plt.bar(y_pos,

height)

plt.xticks(y_pos,

bars)

ax.legend(fontsize =

12) plt.show()

def graph():

accuracy =

[knn_acc,svm_acc,random_acc,decision_acc,deep_acc] fscore

= [knn_f,svm_f,random_f,decision_f,deep_f]

roc = [knn_roc,svm_roc,random_roc,decision_roc,deep_roc]

titles = ['K_Nearest Neighbors','SVM','Random

Forest','Decision Tree','Neural Network']

text.delete('1.0', END)

for i in range(len(titles)):

text.insert(END,str(i)+" =

"+titles[i]+"\n")

plt.figure(figsize

=(10,6))

plt.grid(True)

plt.xlabel('Epoch'

)

plt.ylabel('Accura

cy')

plt.plot(accuracy, 'ro-', color

= 'red') plt.plot(fscore, 'ro-',

color = 'blue') plt.plot(roc,

'ro-', color = 'green')

plt.legend(['Accuracy (KNN,SVM,RF,DT,NN)', 'F1

(KNN,SVM,RF,DT,NN)', 'ROC (KNN,SVM,RF,DT,NN)'], loc='upper

left')

#plt.xticks(titles)

plt.title('Classifiers Comparison

Graph') plt.show()

font = ('times', 22, 'bold')

title = Label(main, text='HONEYPOT BASED SECURE NETWORK SYSTEM')

title.config(bg='black',

fg='white')

title.config(font=font)

title.config(height=2,

width=80)

title.place(x=0,y=5)

Vol11 Issue 06, April 2022 ISSN 2456 – 5083 Page 470

font1 = ('times', 14, 'bold')

upload = Button(main, text="Upload Honeypot Logs &

Preprocess", command=upload)

upload.place(x=700,y=1

00)

upload.config(font=fon

t1)

pathlabel = Label(main)

pathlabel.config(bg='white',

fg='black')

pathlabel.config(font=font1)

pathlabel.place(x=700,y=170)

svmButton = Button(main, text="Run SVM Algorithm",

command=runSVM) svmButton.place(x=700,y=240)

svmButton.config(font=font1)

nbButton = Button(main, text="Run K-Nearest Neighbor

Algorithm", command=KNN)

nbButton.place(x=700,y

=310)

nbButton.config(font=f

ont1)

treeButton = Button(main, text="Run Decision Tree

Algorithm", command=decisionTree)

treeButton.place(x=700

,y=380)

treeButton.config(font

=font1)

randomButton = Button(main, text="Run Random Forest

Algorithm", command=randomForest)

randomButton.place(x=700,y=450)

randomButton.config(font=font1)

dlButton = Button(main, text="Run Neural Network

Algorithm", command=neuralNetwork)

dlButton.place(x=700,y

=520)

dlButton.config(font=f

ont1)

accButton = Button(main, text="Accuracy Graph",

command=graph) accButton.place(x=700,y=590)

accButton.config(font=font1)

attackButton = Button(main, text="Attack Graph",

command=attackGraph) attackButton.place(x=700,y=660)

attackButton.config(font=font1)

predictButton = Button(main, text="Classify/Predict Attack

from New Log", command=predictAttack)

Vol11 Issue 06, April 2022 ISSN 2456 – 5083 Page 471

predictButton.place(x=700,y=730)

predictButton.config(font=font1)

font1 = ('times', 12, 'bold')

text=Text(main,height=30,width=80

) scroll=Scrollbar(text)

text.configure(yscrollcommand=scro

ll.set) text.place(x=10,y=100)

text.config(font=font1)

main.config(bg=

'khaki')

main.mainloop()

4.1 IMPLEMENTATION

• Data Collection: Collect sufficient data samples and legitimate software samples.

• Data Preprocessing: Perform effective data processing on the sample and

extract the features.

• Train and Test Modelling: Split the data into train and test data Train will

be used for training the model and Test data to check the

Performance Modelling: Run SVM Algorithm Run K-Nearest Neighbor Algorithm

Run decision tree algorithm Run Random Forest algorithm Run neural network

algorithm Accuracy graph Attack graph Classify and predict attack in new log

Combine the training using machine learning algorithms and establish a

classification model.

5. RESULTS

Vol11 Issue 06, April 2022 ISSN 2456 – 5083 Page 472

Fig. 5.1 Home Page

In above screen click on ‘Upload Honeypot Logs & Preprocess’ button to load log

dataset and then pre-process data to convert to features.

Vol11 Issue 06, April 2022 ISSN 2456 – 5083 Page 473

Fig. 5.2 Honeypot Log Database

In above screen we can see dataset contains 5805 records and application split that

data into train and test part and application using 4644 (80% dataset records) for

training and 1161 (20% dataset records) for testing. After building model on 80%

records then ML apply 20% data on trained 80% model to predict request type as

normal or attack. From 20% if ML predict 18% records correctly then 18/20*100

will give ML prediction accuracy performance. Now in above screen both train

and test data is ready and now click on ‘Run SVM Algorithm’ button to train SVM

model and calculate its accuracy.

Fig. 5.3 Run SVM Algorithm

In above SVM prediction accuracy is 91% and now run KNN Algorithm.

Vol11 Issue 06, April 2022 ISSN 2456 – 5083 Page 474

Fig. 5.4 Run KNN Algorithm

In above screen KNN got 85% accuracy and now run Decision Tree.

Fig. 5.5 Run Decision Tree Algorithm

In above screen decision tree got 87% accuracy and now run random forest.

Vol11 Issue 06, April 2022 ISSN 2456 – 5083 Page 475

Fig. 5.6 Run Random Forest Algorithm

In above screen random forest also got 87% accuracy and now run neural

networks.

Vol11 Issue 06, April 2022 ISSN 2456 – 5083 Page 476

Fig. 5.7 Run Neural Network Algorithm

In above screen we can see neural networks start filtering dataset at each EPOC or

iteration to get better prediction accuracy and in above screen we can see at first

iteration accuracy is 0.91 * 100 = 91 and at 9th iteration its increase to 100%.

Fig. 5.8 Accuracy Graph

In above graph x-axis represents algorithms as KNN, SVM, RF, DT and NN and

y-axis represents accuracy and in above graph red line refers to accuracy and blue

line for FSCORE and green line for ROC value. In above graph each point refers

value for one algorithm and last point is for NN which is having high performance.

Now click on ‘Attack Graph’ button to get below graph

Vol11 Issue 06, April 2022 ISSN 2456 – 5083 Page 477

Fig. 5.9 Attack Graph

Above graph x-axis contains request type and y-axis contains count and this attack

graph obtained from honeypot log dataset. From all request honey pot received

more number of DDOs attacks. Now click on ‘Classify/Predict Attack from New

Log’ button to upload newlog dataset and then ML will apply on new log dataset to

predict whether new log contains attack or normalrequest.

Vol11 Issue 06, April 2022 ISSN 2456 – 5083 Page 478

Fig. 5.10 Detection Result

In above screen ML analyze each request and then mark that request signature as normal or

DDOS attack.At each request line after equals to symbol we can see ML detection result.

6. CONCLUSION

Internet-of-things is the biggest reason for the modernization of the real world in

terms of technology. But it is also the main reason for the increasing number of

cyberattacks especially DDoS attacks. That’s why defending against such attacks

that use IoT as a medium to harm network security has become the primary

concern in the field of Internet Security. A number of defense mechanisms have

been proposed in the concerned field to make the IoT network immune to such

attacks but they become incapable of handling new variants of IoT botnet attacks.

We came up with a honeypot based solution for the DDoS detection which uses

Vol11 Issue 06, April 2022 ISSN 2456 – 5083 Page 479

real- time machine learning detection framework. Use of honeypots will ensure the

logging of newly coming malware features which will be utilized by ML-based

detection framework to train their classifiers effectively.

7. FUTURE SCOPE

For the future scope, we need to extend this approach to the next level where we

can find out the open challenges or issues by implementing over the real-time

scenarios. There is also scope for employing a cloud server to deal with extremely

resource-constrained IoT devices. Finally, we can come up with a comparative

analysis of our proposed solution by evaluating its performance in contrast to other

proposed models.

8. REFERENCES

1. K. Chen, S. Zhang, Z. Li,Yi Zhang, Q.Deng, Sandip Ray, Yier Jin, “Internet-of-

Things Security and Vulnerabilities: Taxonomy, Challenges, and Practice”

Journal of Hardware and Systems Security, vol. 2, Issue 2, pp. 97–110, (2018).

2. W. Zhou, Y. Jia, A. Peng, Y. Zhang and P. Liu, "The Effect of IoT New

Features on Security and Privacy: New Threats, Existing Solutions, and

Challenges Yet to Be Solved," IEEE Internet of Things Journal. 2018.

3. J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, "A Survey on

Internet of Things: Architecture, Enabling Technologies, Security and Privacy,

and Applications,” IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1125-1142

(2017).

4. Honeypots and the Internet of Things. Available at

https://securelist.com/honeypots-and-the- internet-of-things/78751.

5. Hastie, T., Tibshirani, R., & Friedman, J. Unsupervised learning. In The elements

of statistical learning (pp. 485-585). Springer, New York, NY (2009).

6. C. Kolias, G. Kambourakis, A. Stavrou and J. Voas, "DDoS in the IoT: Mirai

and Other Botnets," in Computer, vol. 50, no. 7, pp. 80-84 (2017).

7. Dougherty, J., Kohavi, R., & Sahami, M. Supervised and unsupervised

discretization of continuous features. In Machine Learning Proceedings 1995,

pp.194-202 (1995).

https://securelist.com/honeypots-and-the

Vol11 Issue 06, April 2022 ISSN 2456 – 5083 Page 480

8. Sommer, R., & Paxson, V. (2010, May). Outside the closed world: On using

machine learning for network intrusion detection. In Security and Privacy (SP),

IEEE Symposium on (pp. 305- 316). IEEE (2010).

9. M. Anirudh, S. A. Thileeban And D. J. Nallathambi, "Use of Honeypots for

Mitigating DoS Attack Targeted on IoT Networks," 2017 International

Conference On Computer, Communication And Signal Processing (ICCCSP),

Chennai, Pp. 1-4, (2017).

10. Rieck, K., Holz, T., Willems, C., Düssel, P., & Laskov, P. (2008, July).

Learning and classification of malware behavior. In International Conference on

Detection of Intrusions and Malware, and Vulnerability Assessment (pp. 108-

125). Springer, Berlin, Heidelberg.

