
 
 

Vol 09 Issue12, Dec2020                          ISSN 2456 – 5083                                        www.ijiemr.org 

  

COPY RIGHT  

 

2020 IJIEMR.Personal use of this material is permitted. Permission from IJIEMR must be 

obtained for all other uses, in any current or future media, including 

reprinting/republishing this material for advertising or promotional purposes, creating new 

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted 

component of this work in other works. No Reprint should be done to this paper, all copy 

right is authenticated to Paper Authors   

IJIEMR Transactions, online available on 2nd
 
Jan 2021. Link 

:http://www.ijiemr.org/downloads.php?vol=Volume-09&issue=ISSUE-12 

DOI: 10.48047/IJIEMR/V09/I12/154 

Title: SELF-LEARNING AND EFFICIENT HEALTH-STATUS ANALYSIS FOR A CORE ROUTER 

SYSTEM 

Volume 09, Issue 12, Pages: 898-904 

Paper Authors  

BAKI MAHESHWARI, SADAM MOUNIKA, D. APOORVA, K. SONY 

 

 

 

                                         

                                                                                    USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER  

To Secure Your Paper As Per UGC Guidelines We Are Providing A Electronic 

Bar Code 

 



 
 

Vol 09 Issue 12 Dec 2020                          ISSN 2456 - 5083  Page 898 
 

SELF-LEARNING AND EFFICIENT HEALTH-STATUS ANALYSIS FOR A 

CORE ROUTER SYSTEM 

BAKI MAHESHWARI
1
, SADAM MOUNIKA

2
, D. APOORVA

3
, K. SONY

4
  

1,2,3,
 B TECH Students, Department of CSE, Princeton Institute of Engineering & Technology For Women, 

Hyderabad, Telangana, India. 

4
 Assistant Professor, Department of CSE, Princeton Institute of Engineering & Technology For Women, 

Hyderabad, Telangana, India. 

Abstract: The health status of core router systems needs to be analyzed efficiently in order to ensure 

high reliability and timely error recovery. Although a large amount operational data is collected from 

core routers, due to high computational complexity and expensive labor cost, only a small part of this 

data is labeled by experts. The lack of labels is an impediment towards the adoption of supervised 

learning. We present an iterative selflearning procedure for assessing the health status of a core router. 

This procedure first computes a representative feature matrix to capture different characteristics of time-

series data. Not only statistical-modeling-based features are computed from three general categories, but 

also a recurrent neural network-based autoencoder is utilized to capture a wider range of hidden patterns. 

Moreover, both minimum-redundancy-maximum-relevance (mRMR) method and fully-connected 

feedforward autoencoder are applied to further reduce dimensionality of extracted feature matrix. 

Hierarchical clustering is then utilized to infer labels for the unlabeled dataset. Finally, a classifier is 

built and iteratively updated using both labeled and unlabeled dataset. Field data collected from a set of 

commercial core routers are used to experimentally validate the proposed health-status analyzer. The 

experimental results show that the proposed feature-based selflearning health analyzer achieves higher 

precision and recall than the traditional supervised health analyzer as well the currently deployed rule-

based health analyzer. Moreover, it achieves better performance than the three anomaly detection 

baseline methods under the transformed binary classification scenario.  

Index Terms: Feature extraction and selection, auto-encoder, self-learning health-status analysis, time-

series analysis, machinelearning techniques, and core router systems. 

I. INTRODUCTION 

The core network, also referred to as the 

network backbone, is responsible for the transfer 

of a large amount of traffic in a reliable and 

timely manner. The network devices (such as 

routers) used in the core network are complex 

hardware/software systems that are vulnerable 

to hard-todetect/hard-to-recover errors [1]. 

Consider a multi-card chassis system, which is a 

widely used architecture in core routers. A range 

of failures can occur in such a complex system: 

• Hardware failures: A multi-card chassis 

system can have tens of separate cards, and each 

card can have hundreds of components. Since 

each component consists of hundreds of 

advanced chips, each chip in turn has hundreds 

of I/Os and millions of logic gates, and the 

operating frequency of chips and I/Os are now 

in the GHz range [2] [3], the number of 

incorrect hardware behaviors can be very high. 
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Moreover, in such a complex system, whenever 

a hardware failure occurs, it is difficult for 

debug technicians to accurately identify the root 

cause of this failure and take effective corrective 

actions [4] [5] [6]. • Software failures: Since the 
throughput of modern multicard chassis system 

is approaching Tbps levels, failures caused by 

subtle interactions between parallel applications 

have become more frequent [5] [7]. Traditional 

reactive fault tolerance aims at repair after 

failures occur [7]. However, this approach needs 

to spend a significant amount of time to identify 

and repair faults, which can stall system 

operation. System specifications require nonstop 

utilization (i.e., 99.999% uptime) of core routers 

deployed in the network backbone [1]. Proactive 

fault tolerance is more promising because it 

takes preventive action before a failure occurs 

[7]. The state of the system is monitored in a 

real-time manner. When system degradation is 

determined via health assessment, proactive 

repair actions such as job migration can be 

executed to avoid errors, thereby ensuring the 

non-stop system utilization [8] [9] [10]. The 

effectiveness of proactive fault-tolerance 

solutions depends on whether the health status 

of core routers can be accurately identified in a 

timely manner [11] [12]. However, little 

research has focused thus far on analyzing the 

long-term health status in a high-performance 

communication system. Therefore, in this paper, 

we present the design of an efficient self-

learning health analyzer that can be applied to a 

commercial core router system. We evaluate this 

method using field data collected from a set of 

commercial core routers. 

II. RELATED REVIEW 

A common way to identify a system’s health 

status is to feed its features to an anomaly 

detector to see whether any data points are 

statistical outliers. Anomaly detection has been 

widely used in domains such as intrusion 

detection and fraud detection [14] [15]. Three 

types of techniques have been studied in the 

literature to detect anomalies in time-series data 

[14]. Unsupervised distance-based anomaly 

detection utilizes a distance measure between a 

pair of time-series instances to represent the 

similarity between these two timeseries. 

Window-based anomaly detection divides time-

series instances into overlapping windows. 

Anomaly scores are first calculated per window, 

and then aggregated for comparison with a 

predefined threshold. In supervised prediction-

based anomaly detection, a machine-learning-

based predictive model is first learned from 

historical logs. Next, predicted values are 

obtained by feeding test data to this predictive 

model. The predicted values are then compared 

with the actual measured data points. The 

accumulated difference between these predicted 

and the actual observations is defined as the 

anomaly score for each test time-series instance. 

Recently, a hybrid anomaly detector has been 

proposed in [16] to overcome the drawback that 

a single class of anomaly detection methods is 

effective for only specific types of time-series. 

However, a time-series-based anomaly detector 

is not adequate to obtain the health status of 

monitored core routers. First, an anomaly 

detector can only provide information about the 

anomalous points; patterns before or after 

anomalies are not revealed, which may also be 

necessary for predicting failures. Second, an 

anomaly detector can provide little useful 

information if no anomalies are identified. 

However, learning different normal patterns is 

also important because it can reveal how healthy 

a core router system is and how different task 
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scenarios can affect the system. Therefore, a 

health-status analyzer is needed for core router 

systems. For example, when an anomaly 

detector triggers an alarm for overheating of 

boards, it neither reveals root causes nor gives 

any advance warning about the consequences of 

this event. In contrast, a health-status analyzer 

not only tracks how a system gradually entered 

this overheating state, but also predicts how the 

system will be affected by this anomalous 

behavior. The design of a health-status analyzer 

is more difficult than the implementation of an 

anomaly detector because: (1) Anomaly 

detection is unsupervised while health analyzer 

requires fully-labeled data. However, the 

volume of operational data collected from 

commercial core routers can reach TB levels, 

making it infeasible for experts to label the data 

manually; (2) Classifying complex time-series 

data is harder than detecting anomalous time-

series data because subtle differences between a 

pair of time series must also be identified by the 

classifier. Although a symbol-based health 

analyzer for core routers was recently proposed 

[17], it still requires fully-labeled data during its 

training phase. Data instances are considered as 

being labeled only after the expert team has 

determined their normal/abnormal conditions, 

which is difficult to obtain in the early stages of 

monitoring. Moreover, although symbolization 

can reduce the time cost as well as the storage 

requirement, some critical local information 

may be lost during symbolization. Therefore, in 

this work, we use feature extraction and 

selection techniques as well as a deep-learning-

based autoencoder to characterize complex time 

series. A self-learning approach is then 

implemented to analyze the health status of core 

routers using partially labeled data. 

III. Methodology 

Feature-Based Self-Learning Health 

Analysis: The key idea in the proposed method 

(Fig. 2) is that instead of directly analyzing the 

health status from a large volume of raw time 

series data, we first extract and select a set of 

features that capture the characteristics of high-

dimensional time series. The notation of a 

feature in this paper is different from the 

definition of a feature in previous work, where 

features refer to the temporal measurements of 

different monitored items (variables) in core 

routers. The “features” in this work are defined 

as metrics calculated from the raw time series of 

the variables, and they represent various local 

and global characteristics of the time series. The 

steps involved in our procedure are as follows: 

 

Figure 1: Illustration of feature extraction 

and selection 

Feature extraction and selection: Since each 

feature is a low-dimensional measurable 

characteristic of the time series, extracting and 

selecting a set of representative features 

provides a more complete understanding of the 

time series. This component takes a set of clean 

and aligned time series as input, and outputs a 

representative feature matrix to the self-learning 

component. (2) Expert identification: This 

component is maintained and updated by an 

expert team. The experts first label a limited 
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number of time series instances using historical 

warning logs and their rule tables. This set of 

labels then serves as the initial label vector to 

the self-learning component. During the self-

learning procedure, newly updated labels are 

also fed to this component for checking. (3) 

Self-learning component: This component 

consists of two parts—clustering and 

classification. The objective of clustering is to 

increase the number of labeled instances. Since 

similar instances are grouped together after 

clustering, the label value of labeled instances 

can be propagated to unlabeled instances within 

the same cluster. The classification part is used 

to identify the health status of the system by 

iteratively learning a model from partially 

labeled data. 

 

Figure 2: An illustration of the proposed feature-

based and self-learning health status analyzer. 

Feature Extraction and Selection: Assume 

that m router slots are monitored, where each 

router slot has n monitored items across the 

temporal domain. Therefore, a total of m × n 

time-series instances are collected in the original 

dataset: n D = d (1) 1 , d(1) 2 , ..., d(1) n , d(2) 1 

, ..., d(2) n , ......, d(m) 1 , ..., d(m) n o , where d 

(i) j represents the time series sequence 

extracted from the jth monitored item in the 

router slot i: d (i) j = {t1, t2, ..., tv}, where v is 

the number of time points in d (i) j . A set of 

feature metrics F = {F1, F2, ..., Fu} is then 

computed using d (i) j to capture various 

characteristics of this time-series sequence. 

Specifically, three types of feature metrics [19] 

are considered: 

Auto-encoder-based Feature Learning: 

Feature extraction and selection step described 

above suffers from two limitations. First, we 

have observed from our experiment that even 

after the mRMR-based feature selection, the 

number of features is still much larger than the 

number of available instances, making it 

difficult for some types of classifiers to be 

effective. Moreover, some of the previously 

extracted features are sparse, making it possible 

to further compress the feature matrix without 

significant information loss. Second, such a 

feature extraction step is ad hoc and depends on 

the experience of experts. Although various 

characteristics of time series have been 

extracted, it is hard to ascertain whether the 

extracted features are sufficient to cover most 

characteristics of the time-series data. It is 

possible that some critical characteristics are 

missed. Therefore, in this paper, the LSTM-

based auto-encoder is utilized to capture a wider 

range of hidden patterns. These new approaches 

are more general and they better match realistic 

scenarios. 

The traditional artificial neural network (ANN) 

is a supervised machine learning method that is 

widely used for pattern classification and related 

problems. The autoencoder is an unsupervised 

variant of ANN for learning an efficient 

representation (encoding) of a set of data. As 

shown in Figure 5, the simplest form of an 

autoencoder is a threelayer feedforward artificial 

neural network. It consists of an input layer, an 

output layer and a hidden layer. Neurons are 
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arranged in layers, and weighted connections 

link the neurons in different layers. An 

autoencoder network can be generally divided 

into two parts: the encoder that compresses the 

data from input layer into a short code and the 

decoder that uncompresses that code and 

produces a reconstruction in the output layer. 

Therefore, the objective of an autoencoder is to 

learn a reduced but meaningful representation 

that can reconstruct the original data as much as 

possible. The behavior of an autoencoder 

depends on both the weights (synaptic strength 

of neuron connections) and the transfer function 

(input-output function of neurons). 

 

Figure 3: An example of a three-layer 

autoencoder 

Traditional fully-connected feed-forward neural 

network are not suitable for encoding/decoding 

time-series data in an autoencoder because of 

the non-stationary dynamics/patterns within the 

temporal ordering of the input. Instead, the 

recurrent neural network (RNN) is promising 

because it maintains an internal state of the 

network via a directed cycle of connection 

between neurons, which allows it to exhibit 

dynamic temporal behavior [25]. In addition, the 

hidden state in RNNs is shared over time and 

thus can contain information from an arbitrarily 

long window. The Long Short Term Memory 

(LSTM) serves as the RNN architecture used in 

autoencoder because it explicitly introduces a 

memory unit, called the cell, into the network so 

that long-term historical information can be 

recalled as needed [26]. As shown in Figure 6, 

the original feed-forward neural network 

encoder and decoder are now replaced by 

multiple LSTM cells. In this framework, the 

input time-series data are first fed to LSTM 

encoder cells step-by-step. An encoded 

representation is then learned from hidden states 

or outputs of these LSTM cells. This 

compressed representation is then fed as inputs 

to the LSTM decoder cells, generating the 

output time series that closely matches the 

original input data  

 

Figure 4: Illustration of the Long Short Term 

Memory (LSTM) method 

Self-learning for Health Analysis: After the 

feature matrix has been obtained from the 

original high-dimensional time-series data, it is 

fed to the self-learning component to train a 

model for health-status analysis. Since the input 

data are partially labeled, the learned model and 

the labeled set are updated iteratively, as shown 

in Figure 8. Step 1: Initially, the input data 

consist of the labeled set L = L0 and the 

unlabeled set U = U0. The percentage of 

unlabeled data is then calculated: rU = |U| 

|L|+|U| . If rU is larger than a predefined 

threshold α, the amount of labeled data is 
insufficient and a clustering procedure (Step 2) 
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is needed to enrich the labeled set. Otherwise, 

the input data are directly fed to the classifier 

learning component (Step 3) Step 2: Clustering 

is performed to propagate labels between similar 

instances. Specifically, hierarchical 

agglomerative clustering (HAC) with link 

constraints [27] is applied to the input data 

(L∪U), generating a set of clusters C = {c1, c2, 

..., ch}. Each cluster ci can contain both labeled 

and unlabeled instances. The label value of a 

labeled instance in ci is then propagated to its 

neighboring unlabeled instances in ci ; Uci is 

used to denote such a set of unlabeled instances 

that are now labeled by cluster ci . A set of 

unlabeled instances is formed: UC = Uc1 ∪Uc2 ∪...∪Uch . The original labeled and unlabeled 

sets are thus updated accordingly: L = L∪UC , 

U = U −UC . 

 

Figure 5: The computation flow of the self-

learning component 

EXPERIMENTS AND RESULTS 

We carried out experiments using the “NE40E” 

core router product. The details of this core 

router are shown in Figure 10. It consists of a 

number of different functional units, such as the 

main processing unit (MPU), line processing 

units (LPUs), switch fabric units (SFUs), etc. 

Also, different types of interface and protocols 

are supported. A total of 40 core routers were 

monitored in real time in the field by a 

distributed agent-based system. A total of 450 

multivariate time-series instances were collected 

over 60 days of operation. Each timeseries 

instance has 10 monitored items (variables) and 

2880 time points. The feature extraction 

component is then applied to the collected data 

to extract a wide range of characteristics. The 

information regarding features extracted from 

univariate time series is shown in Table I. A 

total of 623 features are extracted for each 

univariate time-series instance. Since each 

instance in 450 time series has 10 variables, a 

450 × 6230 raw feature matrix is formed after 

feature extraction. 

 

Figure 5: Description of the commercial core 

router used in our experiments. 

Without any loss of generality, six labels were 

defined in our work to represent the overall 

health status of experimental core routers: (1) 

Class 0: the system is running in a healthy 

manner without any obvious abnormal 

operations (8 out of 450 instances); (2) Class 1: 

the system is running normally with some minor 

suspect characteristics (7 instances); (3) Class 2: 

the system is in relatively good condition with 

some anomalies (10 instances); (4) Class 3: the 

system is in a suspect unhealthy warning state (8 
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instances); (5) Class 4: the system’s 

performance and efficiency are severely affected 

by critical faulty components (11 instances); (6) 

Class 5: the system is encountering severe 

health problems that prevent it from continuing 

most normal operations (13 instances). The 

remaining 393 instances are all unlabeled data. 

An example of these six health labels used in 

our experiments is shown in Figure 5. We can 

see that the number of matched abnormal 

patterns increases while the number of matched 

normal patterns decreases from “Health Level 

0” to “Health Level 5”. Note that with the 

improvement of experts’ experience, a larger 

number of categorical labels or even continuous 

metric values can be used in the future to define 

the overall system health status in a more 

comprehensive way. 

IV. CONCLUSION 

We have presented a feature-based self-learning 

health analyzer for a complex core router 

system. First, both the statistical-modeling-

based feature extraction and auto-encoder based 

feature learning have been utilized to capture 

different characteristics of time-series data. 

Next, in the self-learning framework, the model 

for health analysis is iteratively updated using 

both labeled and unlabeled data. The 

effectiveness of the health analyzer has been 

validated using a comprehensive set of field data 

collected from a set of commercial core routers. 
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