

Vol 09 Issue12, Dec2020 ISSN 2456 – 5083 www.ijiemr.org

COPY RIGHT

2020 IJIEMR.Personal use of this material is permitted. Permission from IJIEMR must be

obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted

component of this work in other works. No Reprint should be done to this paper, all copy

right is authenticated to Paper Authors

IJIEMR Transactions, online available on 2nd

Jan 2021. Link

:http://www.ijiemr.org/downloads.php?vol=Volume-09&issue=ISSUE-12

DOI: 10.48047/IJIEMR/V09/I12/154

Title: SELF-LEARNING AND EFFICIENT HEALTH-STATUS ANALYSIS FOR A CORE ROUTER

SYSTEM

Volume 09, Issue 12, Pages: 898-904

Paper Authors

BAKI MAHESHWARI, SADAM MOUNIKA, D. APOORVA, K. SONY

 USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER

To Secure Your Paper As Per UGC Guidelines We Are Providing A Electronic

Bar Code

Vol 09 Issue 12 Dec 2020 ISSN 2456 - 5083 Page 898

SELF-LEARNING AND EFFICIENT HEALTH-STATUS ANALYSIS FOR A

CORE ROUTER SYSTEM

BAKI MAHESHWARI
1
, SADAM MOUNIKA

2
, D. APOORVA

3
, K. SONY

4

1,2,3,
 B TECH Students, Department of CSE, Princeton Institute of Engineering & Technology For Women,

Hyderabad, Telangana, India.

4
 Assistant Professor, Department of CSE, Princeton Institute of Engineering & Technology For Women,

Hyderabad, Telangana, India.

Abstract: The health status of core router systems needs to be analyzed efficiently in order to ensure

high reliability and timely error recovery. Although a large amount operational data is collected from

core routers, due to high computational complexity and expensive labor cost, only a small part of this

data is labeled by experts. The lack of labels is an impediment towards the adoption of supervised

learning. We present an iterative selflearning procedure for assessing the health status of a core router.

This procedure first computes a representative feature matrix to capture different characteristics of time-

series data. Not only statistical-modeling-based features are computed from three general categories, but

also a recurrent neural network-based autoencoder is utilized to capture a wider range of hidden patterns.

Moreover, both minimum-redundancy-maximum-relevance (mRMR) method and fully-connected

feedforward autoencoder are applied to further reduce dimensionality of extracted feature matrix.

Hierarchical clustering is then utilized to infer labels for the unlabeled dataset. Finally, a classifier is

built and iteratively updated using both labeled and unlabeled dataset. Field data collected from a set of

commercial core routers are used to experimentally validate the proposed health-status analyzer. The

experimental results show that the proposed feature-based selflearning health analyzer achieves higher

precision and recall than the traditional supervised health analyzer as well the currently deployed rule-

based health analyzer. Moreover, it achieves better performance than the three anomaly detection

baseline methods under the transformed binary classification scenario.

Index Terms: Feature extraction and selection, auto-encoder, self-learning health-status analysis, time-

series analysis, machinelearning techniques, and core router systems.

I. INTRODUCTION

The core network, also referred to as the

network backbone, is responsible for the transfer

of a large amount of traffic in a reliable and

timely manner. The network devices (such as

routers) used in the core network are complex

hardware/software systems that are vulnerable

to hard-todetect/hard-to-recover errors [1].

Consider a multi-card chassis system, which is a

widely used architecture in core routers. A range

of failures can occur in such a complex system:

• Hardware failures: A multi-card chassis

system can have tens of separate cards, and each

card can have hundreds of components. Since

each component consists of hundreds of

advanced chips, each chip in turn has hundreds

of I/Os and millions of logic gates, and the

operating frequency of chips and I/Os are now

in the GHz range [2] [3], the number of

incorrect hardware behaviors can be very high.

Vol 09 Issue 12 Dec 2020 ISSN 2456 - 5083 Page 899

Moreover, in such a complex system, whenever

a hardware failure occurs, it is difficult for

debug technicians to accurately identify the root

cause of this failure and take effective corrective

actions [4] [5] [6]. • Software failures: Since the
throughput of modern multicard chassis system

is approaching Tbps levels, failures caused by

subtle interactions between parallel applications

have become more frequent [5] [7]. Traditional

reactive fault tolerance aims at repair after

failures occur [7]. However, this approach needs

to spend a significant amount of time to identify

and repair faults, which can stall system

operation. System specifications require nonstop

utilization (i.e., 99.999% uptime) of core routers

deployed in the network backbone [1]. Proactive

fault tolerance is more promising because it

takes preventive action before a failure occurs

[7]. The state of the system is monitored in a

real-time manner. When system degradation is

determined via health assessment, proactive

repair actions such as job migration can be

executed to avoid errors, thereby ensuring the

non-stop system utilization [8] [9] [10]. The

effectiveness of proactive fault-tolerance

solutions depends on whether the health status

of core routers can be accurately identified in a

timely manner [11] [12]. However, little

research has focused thus far on analyzing the

long-term health status in a high-performance

communication system. Therefore, in this paper,

we present the design of an efficient self-

learning health analyzer that can be applied to a

commercial core router system. We evaluate this

method using field data collected from a set of

commercial core routers.

II. RELATED REVIEW

A common way to identify a system’s health

status is to feed its features to an anomaly

detector to see whether any data points are

statistical outliers. Anomaly detection has been

widely used in domains such as intrusion

detection and fraud detection [14] [15]. Three

types of techniques have been studied in the

literature to detect anomalies in time-series data

[14]. Unsupervised distance-based anomaly

detection utilizes a distance measure between a

pair of time-series instances to represent the

similarity between these two timeseries.

Window-based anomaly detection divides time-

series instances into overlapping windows.

Anomaly scores are first calculated per window,

and then aggregated for comparison with a

predefined threshold. In supervised prediction-

based anomaly detection, a machine-learning-

based predictive model is first learned from

historical logs. Next, predicted values are

obtained by feeding test data to this predictive

model. The predicted values are then compared

with the actual measured data points. The

accumulated difference between these predicted

and the actual observations is defined as the

anomaly score for each test time-series instance.

Recently, a hybrid anomaly detector has been

proposed in [16] to overcome the drawback that

a single class of anomaly detection methods is

effective for only specific types of time-series.

However, a time-series-based anomaly detector

is not adequate to obtain the health status of

monitored core routers. First, an anomaly

detector can only provide information about the

anomalous points; patterns before or after

anomalies are not revealed, which may also be

necessary for predicting failures. Second, an

anomaly detector can provide little useful

information if no anomalies are identified.

However, learning different normal patterns is

also important because it can reveal how healthy

a core router system is and how different task

Vol 09 Issue 12 Dec 2020 ISSN 2456 - 5083 Page 900

scenarios can affect the system. Therefore, a

health-status analyzer is needed for core router

systems. For example, when an anomaly

detector triggers an alarm for overheating of

boards, it neither reveals root causes nor gives

any advance warning about the consequences of

this event. In contrast, a health-status analyzer

not only tracks how a system gradually entered

this overheating state, but also predicts how the

system will be affected by this anomalous

behavior. The design of a health-status analyzer

is more difficult than the implementation of an

anomaly detector because: (1) Anomaly

detection is unsupervised while health analyzer

requires fully-labeled data. However, the

volume of operational data collected from

commercial core routers can reach TB levels,

making it infeasible for experts to label the data

manually; (2) Classifying complex time-series

data is harder than detecting anomalous time-

series data because subtle differences between a

pair of time series must also be identified by the

classifier. Although a symbol-based health

analyzer for core routers was recently proposed

[17], it still requires fully-labeled data during its

training phase. Data instances are considered as

being labeled only after the expert team has

determined their normal/abnormal conditions,

which is difficult to obtain in the early stages of

monitoring. Moreover, although symbolization

can reduce the time cost as well as the storage

requirement, some critical local information

may be lost during symbolization. Therefore, in

this work, we use feature extraction and

selection techniques as well as a deep-learning-

based autoencoder to characterize complex time

series. A self-learning approach is then

implemented to analyze the health status of core

routers using partially labeled data.

III. Methodology

Feature-Based Self-Learning Health

Analysis: The key idea in the proposed method

(Fig. 2) is that instead of directly analyzing the

health status from a large volume of raw time

series data, we first extract and select a set of

features that capture the characteristics of high-

dimensional time series. The notation of a

feature in this paper is different from the

definition of a feature in previous work, where

features refer to the temporal measurements of

different monitored items (variables) in core

routers. The “features” in this work are defined

as metrics calculated from the raw time series of

the variables, and they represent various local

and global characteristics of the time series. The

steps involved in our procedure are as follows:

Figure 1: Illustration of feature extraction

and selection

Feature extraction and selection: Since each

feature is a low-dimensional measurable

characteristic of the time series, extracting and

selecting a set of representative features

provides a more complete understanding of the

time series. This component takes a set of clean

and aligned time series as input, and outputs a

representative feature matrix to the self-learning

component. (2) Expert identification: This

component is maintained and updated by an

expert team. The experts first label a limited

Vol 09 Issue 12 Dec 2020 ISSN 2456 - 5083 Page 901

number of time series instances using historical

warning logs and their rule tables. This set of

labels then serves as the initial label vector to

the self-learning component. During the self-

learning procedure, newly updated labels are

also fed to this component for checking. (3)

Self-learning component: This component

consists of two parts—clustering and

classification. The objective of clustering is to

increase the number of labeled instances. Since

similar instances are grouped together after

clustering, the label value of labeled instances

can be propagated to unlabeled instances within

the same cluster. The classification part is used

to identify the health status of the system by

iteratively learning a model from partially

labeled data.

Figure 2: An illustration of the proposed feature-

based and self-learning health status analyzer.

Feature Extraction and Selection: Assume

that m router slots are monitored, where each

router slot has n monitored items across the

temporal domain. Therefore, a total of m × n

time-series instances are collected in the original

dataset: n D = d (1) 1 , d(1) 2 , ..., d(1) n , d(2) 1

, ..., d(2) n ,, d(m) 1 , ..., d(m) n o , where d

(i) j represents the time series sequence

extracted from the jth monitored item in the

router slot i: d (i) j = {t1, t2, ..., tv}, where v is

the number of time points in d (i) j . A set of

feature metrics F = {F1, F2, ..., Fu} is then

computed using d (i) j to capture various

characteristics of this time-series sequence.

Specifically, three types of feature metrics [19]

are considered:

Auto-encoder-based Feature Learning:

Feature extraction and selection step described

above suffers from two limitations. First, we

have observed from our experiment that even

after the mRMR-based feature selection, the

number of features is still much larger than the

number of available instances, making it

difficult for some types of classifiers to be

effective. Moreover, some of the previously

extracted features are sparse, making it possible

to further compress the feature matrix without

significant information loss. Second, such a

feature extraction step is ad hoc and depends on

the experience of experts. Although various

characteristics of time series have been

extracted, it is hard to ascertain whether the

extracted features are sufficient to cover most

characteristics of the time-series data. It is

possible that some critical characteristics are

missed. Therefore, in this paper, the LSTM-

based auto-encoder is utilized to capture a wider

range of hidden patterns. These new approaches

are more general and they better match realistic

scenarios.

The traditional artificial neural network (ANN)

is a supervised machine learning method that is

widely used for pattern classification and related

problems. The autoencoder is an unsupervised

variant of ANN for learning an efficient

representation (encoding) of a set of data. As

shown in Figure 5, the simplest form of an

autoencoder is a threelayer feedforward artificial

neural network. It consists of an input layer, an

output layer and a hidden layer. Neurons are

Vol 09 Issue 12 Dec 2020 ISSN 2456 - 5083 Page 902

arranged in layers, and weighted connections

link the neurons in different layers. An

autoencoder network can be generally divided

into two parts: the encoder that compresses the

data from input layer into a short code and the

decoder that uncompresses that code and

produces a reconstruction in the output layer.

Therefore, the objective of an autoencoder is to

learn a reduced but meaningful representation

that can reconstruct the original data as much as

possible. The behavior of an autoencoder

depends on both the weights (synaptic strength

of neuron connections) and the transfer function

(input-output function of neurons).

Figure 3: An example of a three-layer

autoencoder

Traditional fully-connected feed-forward neural

network are not suitable for encoding/decoding

time-series data in an autoencoder because of

the non-stationary dynamics/patterns within the

temporal ordering of the input. Instead, the

recurrent neural network (RNN) is promising

because it maintains an internal state of the

network via a directed cycle of connection

between neurons, which allows it to exhibit

dynamic temporal behavior [25]. In addition, the

hidden state in RNNs is shared over time and

thus can contain information from an arbitrarily

long window. The Long Short Term Memory

(LSTM) serves as the RNN architecture used in

autoencoder because it explicitly introduces a

memory unit, called the cell, into the network so

that long-term historical information can be

recalled as needed [26]. As shown in Figure 6,

the original feed-forward neural network

encoder and decoder are now replaced by

multiple LSTM cells. In this framework, the

input time-series data are first fed to LSTM

encoder cells step-by-step. An encoded

representation is then learned from hidden states

or outputs of these LSTM cells. This

compressed representation is then fed as inputs

to the LSTM decoder cells, generating the

output time series that closely matches the

original input data

Figure 4: Illustration of the Long Short Term

Memory (LSTM) method

Self-learning for Health Analysis: After the

feature matrix has been obtained from the

original high-dimensional time-series data, it is

fed to the self-learning component to train a

model for health-status analysis. Since the input

data are partially labeled, the learned model and

the labeled set are updated iteratively, as shown

in Figure 8. Step 1: Initially, the input data

consist of the labeled set L = L0 and the

unlabeled set U = U0. The percentage of

unlabeled data is then calculated: rU = |U|

|L|+|U| . If rU is larger than a predefined

threshold α, the amount of labeled data is
insufficient and a clustering procedure (Step 2)

Vol 09 Issue 12 Dec 2020 ISSN 2456 - 5083 Page 903

is needed to enrich the labeled set. Otherwise,

the input data are directly fed to the classifier

learning component (Step 3) Step 2: Clustering

is performed to propagate labels between similar

instances. Specifically, hierarchical

agglomerative clustering (HAC) with link

constraints [27] is applied to the input data

(L∪U), generating a set of clusters C = {c1, c2,

..., ch}. Each cluster ci can contain both labeled

and unlabeled instances. The label value of a

labeled instance in ci is then propagated to its

neighboring unlabeled instances in ci ; Uci is

used to denote such a set of unlabeled instances

that are now labeled by cluster ci . A set of

unlabeled instances is formed: UC = Uc1 ∪Uc2 ∪...∪Uch . The original labeled and unlabeled

sets are thus updated accordingly: L = L∪UC ,

U = U −UC .

Figure 5: The computation flow of the self-

learning component

EXPERIMENTS AND RESULTS

We carried out experiments using the “NE40E”

core router product. The details of this core

router are shown in Figure 10. It consists of a

number of different functional units, such as the

main processing unit (MPU), line processing

units (LPUs), switch fabric units (SFUs), etc.

Also, different types of interface and protocols

are supported. A total of 40 core routers were

monitored in real time in the field by a

distributed agent-based system. A total of 450

multivariate time-series instances were collected

over 60 days of operation. Each timeseries

instance has 10 monitored items (variables) and

2880 time points. The feature extraction

component is then applied to the collected data

to extract a wide range of characteristics. The

information regarding features extracted from

univariate time series is shown in Table I. A

total of 623 features are extracted for each

univariate time-series instance. Since each

instance in 450 time series has 10 variables, a

450 × 6230 raw feature matrix is formed after

feature extraction.

Figure 5: Description of the commercial core

router used in our experiments.

Without any loss of generality, six labels were

defined in our work to represent the overall

health status of experimental core routers: (1)

Class 0: the system is running in a healthy

manner without any obvious abnormal

operations (8 out of 450 instances); (2) Class 1:

the system is running normally with some minor

suspect characteristics (7 instances); (3) Class 2:

the system is in relatively good condition with

some anomalies (10 instances); (4) Class 3: the

system is in a suspect unhealthy warning state (8

Vol 09 Issue 12 Dec 2020 ISSN 2456 - 5083 Page 904

instances); (5) Class 4: the system’s

performance and efficiency are severely affected

by critical faulty components (11 instances); (6)

Class 5: the system is encountering severe

health problems that prevent it from continuing

most normal operations (13 instances). The

remaining 393 instances are all unlabeled data.

An example of these six health labels used in

our experiments is shown in Figure 5. We can

see that the number of matched abnormal

patterns increases while the number of matched

normal patterns decreases from “Health Level

0” to “Health Level 5”. Note that with the

improvement of experts’ experience, a larger

number of categorical labels or even continuous

metric values can be used in the future to define

the overall system health status in a more

comprehensive way.

IV. CONCLUSION

We have presented a feature-based self-learning

health analyzer for a complex core router

system. First, both the statistical-modeling-

based feature extraction and auto-encoder based

feature learning have been utilized to capture

different characteristics of time-series data.

Next, in the self-learning framework, the model

for health analysis is iteratively updated using

both labeled and unlabeled data. The

effectiveness of the health analyzer has been

validated using a comprehensive set of field data

collected from a set of commercial core routers.

REFERENCES

[1] M. Medard and S. S. Lumetta, “Network

reliability and fault tolerance,” ´ Encyclopedia

of Telecommunications, 2003.

[2] F. Ye et al., “Board-level functional fault

diagnosis using artificial neural networks,

support-vector machines, and weighted-majority

voting,” IEEE Trans. CAD, vol. 32, pp. 723–
736, 2013.

[3] Z. Zhong, G. Li, Q. Yang, J. Qian, and K.

Chakrabarty, “Broadcast-based minimization of

the overall access time for the ieee 1687

network,” in VLSI Test Symposium (VTS),

2018 IEEE 36th, pp. 1–6, 2018.

[4] S. Tanwir et al., “Information-theoretic and

statistical methods of failure log selection for

improved diagnosis,” in ITC, 2015.

[5] B. Schroeder et al., “A large-scale study of

failures in high-performance computing

systems,” in Proc. DSN, pp. 249–258, 2006.

[6] S. Jin, F. Ye, Z. Zhang, K. Chakrabarty, and

X. Gu, “Efficient board-level functional fault

diagnosis with missing syndromes,” IEEE

Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 35, pp.

985–998, 2016.

[7] P. A. Lee and T. Anderson, Fault Tolerance:

Principles and Practice, vol. 3. Springer Science

& Business Media, 2012.

[8] C. Wang et al., “Proactive process-level live

migration in hpc environments,” in Proc.

Supercomputing, pp. 43:1–43:12, 2008.

[9] S. Jin, Z. Zhang, K. Chakrabarty, and X. Gu,

“Toward predictive fault tolerance in a core-

router system: Anomaly detection using

correlationbased time-series analysis,” IEEE

Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 37, pp.

2111–2124, 2018.

[10] S. Jin and K. Chakrabarty, “Data-driven

resiliency solutions for boards and systems,” in

2018 31st International Conference on VLSI

Design and 2018 17th International Conference

on Embedded Systems (VLSID), pp. 244–249,

2018

