

Vol 06 Issue09, Oct 2017 ISSN 2456 – 5083 www.ijiemr.org

COPY RIGHT

2017 IJIEMR.Personal use of this material is permitted. Permission from IJIEMR must

be obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted

component of this work in other works. No Reprint should be done to this paper, all copy

right is authenticated to Paper Authors

IJIEMR Transactions, online available on 31
st

 Oct 2017. Link

:http://www.ijiemr.org/downloads.php?vol=Volume-6&issue=ISSUE-9

Title: A METHOD TO DESIGN SINGLE ERROR CORRECTION CODES WITH FAST DECODING

FOR A SUBSET OF CRITICAL BITS

Volume 06, Issue 09, Pages: 409 – 415.

Paper Authors

NAZIYA THABASSUM, K KIRAN KUMAR

Nalgonda Institute Of Technology And Science (NITS)

 USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER

To Secure Your Paper As Per UGC Guidelines We Are Providing A Electronic

Bar Code

Vol 06 Issue09, Oct 2017 ISSN 2456 – 5083 Page 409

A METHOD TO DESIGN SINGLE ERROR CORRECTION CODES

WITH FAST DECODING FOR A SUBSET OF CRITICAL BITS
1
NAZIYA THABASSUM,

2
K KIRAN KUMAR

1
M.Tech Schaloar(VLSI & ES),Dept of E.C.E, nalgonda institute of technology and science (NITS)

2
Assistant Professor, Dept of E.C.E, nalgonda institute of technology and science (NITS)

ABSTRACT: Single error correction (SEC) codes are widely used to protect data stored in

memories and registers. In some applications, such as networking, a few control bits are added to

the data to facilitate their processing. For example, flags to mark the start or the end of a packet

are widely used. Therefore, it is important to have SEC codes that protect both the data and the

associated control bits. It is attractive for these codes to provide fast decoding of the control bits,

as these are used to determine the processing of the data and are commonly on the critical timing

path. In this brief, a method to extend SEC codes to support a few additional control bits is

presented. The derived codes support fast decoding of the additional control bits and are

therefore suitable for networking applications.

I. INTRODUCTION

Networking applications require high-speed

processing of data and thus rely on complex

integrated circuits [1]. In routers and

switches, packets typically enter the device

through one port, are processed, and are then

sent to one or more output ports. During this

processing, data are stored and moved

through the device [2]. Reliability is a key

requirement for networking equipment such

as core routers [3]. Therefore, the stored

data must be protected to detect and correct

errors. This is commonly done using error-

correcting codes (ECCs) [4]. For memories

and registers, single error correction (SEC)

codes that can correct 1-bit errors are

commonly used [5], [6].

Fig. 1. Typical packet data storage in a

networking application.

One problem that occurs when protecting

the data in networking applications is that, to

facilitate its processing, a few control bits

are added to each data block. For example,

flags to mark the start of a packet (SOP), the

end of a packet (EOP), or an error (ERR) are

commonly used [7]. These flags are used to

determine the processing of the data, and the

associated control logic is commonly on the

critical timing path. To access the control

bits, if they are protected with an ECC, they

must first be decoded. This decoding adds

delay and may limit the overall Fig. 1.

Vol 06 Issue09, Oct 2017 ISSN 2456 – 5083 Page 410

Typical packet data storage in a networking

application. Frequency. One option is to

protect the data and the control bits as

different data blocks using separate ECCs.

For example, let us assume 128-bit data

blocks with 3 control bits. Then, a SEC code

can protect a data block using 8 parity check

bits, and another SEC code can protect the 3

control bits using 3 parity check bits. This

option provides independent decoding of

data and control bits which reduces the

delay but requires additional parity check

bits. Another option is to use a single ECC

to protect both the data and control bits.

Protecting 128 + 3 bits requires only 8 parity

check bits, thus saving 3 bits compared to

the use of separate ECCs. However, in this

case, the decoding of the control bits is more

complex and incurs more delay. In this brief,

a method to extend a SEC code to also

protect a few additional control bits is

proposed. In the resulting codes, the control

bits can be decoded using a subset of the

parity check bits. This reduces the decoding

delay and makes them suitable for

networking applications. To evaluate the

method, several codes have been constructed

and implemented. They are then compared

with existing solutions in terms of decoding

delay and area.

II CONCURRENT ERROR

DETECTION SCHEMES TYPES OF

ERROR DETECTI ON SCHEMES

Schemes for Error Detection find wide range

of applications, since only after the detection

of error, can any preventive measure be

initiated. The principle of error detecting

scheme is very simple, an encoded

codeword needs to preserve some

characteristic of that particular scheme, and

a violation is an indication of the occurrence

of an error. Some of the error detection

techniques are discussed below.

Parity Codes

These are the simplest form of error

detecting codes, with a hamming distance of

two (d=2), and a single check bit

(irrespective of the size of input data). They

are of two basic types: Odd and Even. For

an even -parity code the check bit is defined

so that the total number of 1s in the code

word is always even; for an odd code, this

total is odd. So, whenever a fault affects a

single bit, the total count gets altered and

hence the fault gets easily detected. A major

drawback of these codes is that their

multiple fault detection capabilities are very

limited. Checksum Codes: In these codes the

summation of all the information bytes is

appended to the information as bit

checksum. Any error in the transmission

will be indicated as a resulting error in the

checksum. This leads to detection of the

error. When b=1, these codes are reduced to

parity check codes. The codes are systematic

in nature and require simple hardware units.

2.1.3 m-out-of-n Codes: In this scheme the

codeword is of a standard weight m and

standard length n bits. Whenever an error

occurs during transmission, the weight of

the code word changes and the error gets

detected. If the error is a 0 to 1 transition an

increase in weight is detected, similarly 1 to

0 leads to a reduction in weight of the code,

leading to easy detection of error. This

scheme can be used for detection of

unidirectional errors, which are the most

common form of error in digital systems.

Vol 06 Issue09, Oct 2017 ISSN 2456 – 5083 Page 411

Berger Codes: Berger codes are systematic

unidirectional error detecting codes. They

can be considered as an extension of the

parity codes. Parity codes have one check

bit, which can be considered as the number

of information bits of value 1 considered in

modulo2. On the other hand Berger codes

have enough check bits to represent the

count of the information bits having value 0.

The number of check bits (r) required for k -

bit information is given by r = [log 2 (k −
1)] Of all the unidirectional error detecting

codes that exist suggests, m - out of - n

codes to be the most optimal. These codes

however, are not of much application

because of its non separable nature.

Amongst the separable codes in use, the

Berger codes have been proven to be most

optimal, requiring the smallest number of

check bits. The Berger Codes, however, are

not optimal when only t unidirectional errors

need to be detected instead of all

unidirectional errors. For this reason a

number of different modified Berger codes

exist: Hao Dong introduced a code that

accepts slightly reduced error detection

capabilities, but does so using fewer check

bits and smaller checker sizes. In this code

the number of check bits is independent of

the number of information bits. Bose and

Lin have introduced their own variation on

Berger codes and Bose has further

introduced a code that improves on the burst

error detection capabilities of his previous

code, where erroneous bit are expected to

appear in groups.

III. PROPOSED METHOD TO DESIGN

THE CODES

As discussed in the introduction, the goal is

to design SEC codes that can protect a data

block plus a few control bits Such that the

control bits can be decoded with low delay.

As mentioned before, the data blocks to be

protected have a size that is commonly a

power of two, e.g., 64 or 128 bits. To protect

a 64-bit data block with a SEC code, 7 parity

check bits are needed, while 8 are enough to

protect 128 bits. In the first case, there are

27 = 128 possible syndromes, and therefore,

the SEC code can be extended to cover a

few additional control bits. The same is true

for 128 bits and, in general, for a SEC code

that protects a data block that is a power of

two. This means that the control bits can

also be protected with no additional parity

check bits. This is more efficient than using

two separate SEC codes (one for the data

bits and the other for the control bits) as this

requires additional parity check bits. The

main problem in using an extended SEC

code is that the decoding of the control bits

is more complex. To illustrate this issue, let

us consider a 128-bit data block and 3

control bits. The initial SEC code for the

128-bit data block has the parity check

matrix shown in Fig. 2. This code has a

parity check matrix with minimum total

weight and balanced row weights to

minimize encoding and decoding delay [4].

Vol 06 Issue09, Oct 2017 ISSN 2456 – 5083 Page 412

Fig. 2 Decoding of a control bit for single

and independent SEC codes for data and

control. (a) SEC code for both data and

control bits. (b) Independent SEC codes for

data and control bits.

Three additional data columns can be easily

added to obtain a code that protects the

additional control bits. For example, the

matrix in Fig. 3 can be used, in which three

additional columns (marked as control bits)

have been added to the left. The problem is

that now, to decode the 3 control bits, we

need to compute the 8 parity check bits and

compare the results against the columns of

the control bits. This is significantly more

complex than the decoding of an

independent SEC code for the three control

bits. The decoding of a bit in each case is

shown in Fig. 2, and the difference in

complexity is apparent.

Fig. 3. Bit decoding of a control bit in the

proposed SEC code.

As discussed earlier, our goal is to simplify

the decoding of the control bits while using

a single SEC code for both data and Control

bits. To do so, the first step is to note that, in

some cases, SEC decoding can be simplified

to check only some of the syndrome bits.

One example is the decoding of constant-

weight SEC codes proposed in [11]. In this

case, only the syndrome bits that have a 1 in

the column of the parity check matrix need

to be checked. This simplifies the decoding

for all bits but, in most cases, requires

additional parity check bits. In our case, the

main focus is to simplify the decoding of the

control bits as those are commonly on the

critical path. To do so, the parity check bits

can be divided in two groups: a first group

that is shared by both data and control bits

and a second that is used only for the data

bits. Then, the decoding of the control bits

only requires the recomputation of the first

group of parity check bits. This scheme is

better illustrated with an example. Let us

consider a 128-bit data block and 3 control

bits protected with 8 parity check bits. Those

8 bits are divided in a group of 3 shared

between data and control bits and a second

group of 5 that is used only for the data bits.

To protect the control bits, the first three

parity check bits can be assigned different

values for each control bit, and the

remaining parity check bits are not used to

protect the control bits. The rest of the

values are used to protect the data bits, and

for each value, different values of the

remaining five parity check bits can be used.

In this example, the first group has 3 bits

that can take 8 values, and three of them are

used for the columns that correspond to the

Vol 06 Issue09, Oct 2017 ISSN 2456 – 5083 Page 413

control bits. This leaves 5 values that can be

used to protect the data bits. The second

group of parity check bits has 5 bits that can

be used to code 32 values for each of the 5

values on the first group. Therefore, a

maximum of 5 × 32 = 160 data bits can be

protected. In fact, the number is lower as the

zero value on the first group cannot be

combined with a zero or a single one on the

second group as the corresponding column

would have weight of zero or one. In any

case, 128 data bits can be easily protected.

An example of the parity check matrix of a

SEC code derived using this method is

shown in Fig. 2. The three first columns

correspond to the added control bits. The

two groups of parity check bits are also

separated, and the first three rows are shared

for data and control bits, while the last five

only protect the data bits. It can be observed

that the control bits can be decoded by

simply recomputing the first three parity

check bits. In addition, the zero value on

these three bits is also used for some data

bits. This means that those bits are not

needed to re compute the first three parity

check bits. The decoding of one of the

control bits is illustrated in Fig. 3. It can be

observed that the circuitry is significantly

simpler than that of a traditional SEC code

(see left part of Fig. 4). This will be

confirmed by the experimental results

presented in the next section. The method

can also be used to protect more than three

control bits. In a general case, let us consider

that we need to protect d data bits and c

control bits using p parity check bits. Then,

p is divided in two groups’ pcd and pd. The

first group is shared between control and

data bits, and the second is used only for the

data bits. The proposed codes do have an

impact on the decoding delay for the data

bits. For the decoders, the added delay on

data bits is significant for most word sizes.

However, as discussed in the introduction,

the major design goal is to reduce the

decoding delay of the control bits as these

typically determine the critical timing path.

Block diagram of proposed method

Schematic diagram

Vol 06 Issue09, Oct 2017 ISSN 2456 – 5083 Page 414

 Simulation results

V. CONCLUSION AND FUTURE

WORK

In this brief, a method to construct SEC

codes that can protect a block of data and

some additional control bits has Been

presented. The derived codes are designed to

enable fast decoding of the control bits. The

derived codes have the same number of

parity check bits as existing SEC codes and

therefore do not require additional cost in

terms of memory or registers. To evaluate

the benefits of the proposed scheme, several

codes have been implemented and compared

with minimum-weight SEC codes. The

proposed codes are useful in applications,

where a few control bits are added to each

data block and the control bits have to be

decoded with low delay. This is the case on

some networking circuits. The scheme can

also be useful in other applications where

the critical delay affects some specific bits

such as in some finite-state machines.

Another example is arithmetic circuits

where the critical path is commonly on the

least significant bits. Therefore, reducing the

delay on those bits can increase the overall

circuit speed. The use of the proposed

scheme for those applications beyond

networking is an interesting topic for future

work. It may be possible to apply the idea of

modifying the matrix of the code to enable

fast decoding of a few bits to more advanced

ECCs that can correct multiple bit errors.

Finally, the scheme can also be extended to

support more control bits by using one or

two additional parity check bits. This would

provide a solution to achieve fast decoding

without using two separate codes for data

and control bits.

REFERENCES

[1] P. Bosshart et al., “Forwarding

metamorphosis: Fast programmable match-

action processing in hardware for SDN,” in

Proc. SIGCOMM, 2013, pp. 99–110.

[2] J. W. Lockwood et al., “NetFPGA—An

open platform for gigabit-rate network

switching and routing,” in Proc. IEEE Int.

Conf. Microelectron. Syst. Educ., Jun. 2007,

pp. 160–161.

[3] A. L. Silburt, A. Evans, I. Perryman, S.-

J. Wen, and D. Alexandrescu, “Design for

soft error resiliency in Internet core routers,”

IEEE Trans. Nucl. Sci., vol. 56, no. 6, pp.

3551–3555, Dec. 2009.

[4] E. Fujiwara, Code Design for

Dependable Systems: Theory and Practical

Application. Hoboken, NJ, USA:Wiley,

2006.

[5] C. L. Chen and M. Y. Hsiao, “Error-

correcting codes for semiconductor memory

applications: A state-of-the-art review,” IBM

J. Res. Develop., vol. 28, no. 2, pp. 124–134,

Mar. 1984.

[6] V. Gherman, S. Evain, N. Seymour, and

Y. Bonhomme, “Generalized parity-check

matrices for SEC-DED codes with fixed

parity,” in Proc. IEEE On-Line Test. Symp.,

2011, pp. 198–20.

Vol 06 Issue09, Oct 2017 ISSN 2456 – 5083 Page 415

[7] Ten Gigabit Ethernet Medium Access

Controller, OpenCores. [Online]. Available:

http://opencores.org/project/ethmac

[8] P. Zabinski, B. Gilbert, and E. Daniel,

“Coming challenges with terabitper-second

data communication,” IEEE Circuits Syst.

Mag., vol. 13, no. 3, pp. 10–20, 3rd Quart.

2013.

[9] UltraScale Architecture Integrated Block

for 100 G Ethernet v.14. LigCOREIP

Product Guide. PG165, Xilinx, San Jose,

CA, USA. Jan. 22, 2015.

[10] OpenSilicon Interlaken ASIC IP Core.

[Online]. Available: www.opensilicon.

com/open-silicon-ips/interlaken-controller-

ip/

[11] P. Reviriego, S. Pontarelli, J. A.

Maestro, and M. Ottavi, “A method to

construct low delay single error correction

(SEC) codes for protecting data bits only,”

IEEE Trans. Comput.-Aided Design Integr.

Circuits Syst., vol. 32, no. 3, pp. 479–483,

Mar. 2013.

[12] J. E. Stine et al. “FreePDK: An open-

source variation-aware design kit,” in Proc.

IEEE Int. Conf. Microelectron. Syst. Educ.,

Jun. 2007, pp. 173–174.

Guide Details:

K KIRAN KUMAR Assistant Professor.

M.Tech in VLSI SYSTEM DESIGN

Mail Id: Kiran3712@gmail.com

Student Details

NAZIYA THABASSUM M Tech (VLSI

Design and Embeded System)Mail

id: hidayathali456@gmail.com nalgonda

institute of technology and science (NITS)

http://www.opensilicon/
mailto:Kiran3712@gmail.com
mailto:hidayathali456@gmail.com

