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 ABSTRACT—A dynamic functional verification method that compares untimed simulations 

versus timed simulations for synthesizable [high-level synthesis (HLS)] behavioral descriptions 

(ANSI-C) is presented in this paper. This paper proposes a method that automatically inserts a 

set of probes into the untimed behavioral description. These probes record the status of internal 

signals of the behavioral description during an initial untimed simulation. These simulation 

results are subsequently used as golden outputs for the verification of the internal signals during 

a timed simulation once the behavioral description has been synthesized using HLS. Our 

proposed method reports any simulation mismatches and accurately pinpoints any discrepancies 

between the functional Software (SW) simulation and the timed simulation at the original 

behavioral description (source code). Our method does not only determine where to place the 

probes, but is also able to insert different type of probes based on the specified HLS synthesis 

options in order not to interfere with the HLS process, minimizing the total number of probes 

and the size of the data to be stored in the trace file in order to minimize the running time. 

Results show that our proposed method is very effective and extremely simple to use as it is fully 

automated. 

I. INTRODUCTION  

Raising the level of abstract some distinct 

advantages over traditional register-transfer 

action in VLSI design has level (RTL) 

design methods. First, most of the designs 

start with a high-level model in order to 

validate the application to be implemented. 

High-level synthesis (HLS) provides a direct 

path between these models and RTL. It has 

been shown [1] that one line of C-code 

translates into 7–10× more gates than RTL. 

This further implies that behavioral 

descriptions are easier to maintain and  

 

debug, and that fewer bugs will be 

introduced by designers. Second, in many 

cases, the design specifications are unstable 

and any changes in them can lead to major 

architectural changes (e.g., the use of on-die 

memory or external memory). At the RTL, 

this requires major redesigns, while at the 

behavioral level, these changes can be 

tackled easier. Third, raising the level of 

abstraction allows software and hardware 

designers to speak the same language. 

Applications to be implemented in custom  
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hardware are getting extremely complex and 

are based on complex mathematical models 

that in many cases are difficult to understand 

by the hardware designer. Using the same 

behavioral description language allows both 

hardware and software designers to 

communicate at the same level of 

abstraction using the same language. Some 

examples of complex applications include 

dedicated hardware security engines based 

on complex encryption and decryption 

algorithms [2]. In this paper, we address the 

issue of how to efficiently verify the 

functionality between an original untimed 

SW behavioral description and the 

synthesized design after behavioral 

synthesis. One of the main advantages of 

HLS is that it allows, in combination with 

model generators at different stages of the 

HLS flow, the reuse of the untimed test 

vectors used during the functional SW 

verification. Moreover, these model 

generators also allow using the SW 

simulation outputs as golden reference 

outputs for the timed Hardware (HW) 

verification. The main problem is that these 

test vectors only cover the inputs and 

outputs of the behavioral description. In case 

of mismatches, the user needs to start the 

debugging process. This is normally done by 

dumping the internal signals onto a Value 

Change Dump (VCD) file and manually 

verifying the waveform for any 

discrepancies. This poses serious problems 

to the designers. First, in case of largzr 

designs, the waveform file size can be 

significant if all the internal signals are 

dumped onto the VCD file (often 

impractical). Second, the user needs to fully  

 

understand the timing of the circuit and how 

the synthesizer has scheduled the behavioral 

description. Often the error is introduced in 

the system at a given cycle, but will not 

become visible at the outputs after many 

cycles. Finally, the designer needs to trace 

the error back to the original source code, 

which is sometimes not easy in HLS, 

because the synthesizers might have 

renamed the signals, duplicated these or 

optimized them away. 

II. PROPOSED WORK  

Our proposed method applies to the first 

category for HLS (presilicon), but uses 

concepts used in the second category 

(postsilicon). The notion of probes has been 

taken from typical VLSI postsilicon 

verification flows. For example, commercial 

Field Programmable Gate Array tool 

vendors provide on-chip support to allow the 

observability of internal signals (e.g., 

Chipscope in Xilinx [12] and SignalTap in 

Altera [13]). These tools insert probes to 

signals in the design to be tested and capture 

them using a sampling clock, while storing 

them in a buffer. The buffer content is 

transmitted to a PC and displayed 

graphically, once the buffer is full or certain 

number of samples taken. The designer can 

then manually verify the correctness of the 

design. ARM does also provide a similar 

technology to debug ARM-based systems-

on-a-chip with the Advanced High-

performance Bus (AHB) trace macrocell, 

which gives visibility on Advanced 

Microcontroller Bus Architecture AHB 

busses, offering visibility of accesses to 

memory areas [14]. To be able to root-cause 

design bugs, postsilicon validation requires  
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to have full controllability and observability 

of the circuit under debug’s (CUD) internal 

behavior. This can currently not be achieved 

due to the extremely larger number of 

signals that would need to be traced. A more 

effective debug technique is to selectively 

monitor some of the internal signals. 

Designers typically select to tap a number of 

signals in the CUD, but only a subset of the 

tapped signals are traced concurrently 

during debug phase due to trace bandwidth 

limitation. This is achieved by inserting a 

mux tree that links the tapped signals to 

trace buffers or trace ports. These systems 

also include trigger units, which are used to 

determine when to start and stop signal 

tracing in order to further reduce trace 

bandwidth requirement [18]. The 

effectiveness of these trace-based debug 

systems, hence, rely considerably on the 

signals being traced. In current postsilicon 

validation flows designers usually manually 

select those signals that are important for 

analysis to trace, based on their own design 

experience. This ad hoc method, however, 

cannot guarantee the quality of debug 

process [17]. More importantly, bugs often 

occur in unexpected scenarios and it is very 

difficult, if not impossible, to predict which 

signals will be related to them during the 

design phase. Ko and Nicolici [19] first 

introduced an automated method identifying 

a small set of trace signals from which a 

large number of states can be restored using 

a compute-efficient algorithm. This enlarged 

set of data can then be used to aid the search 

of functional bugs in the fabricated circuit. 

Liu and Xu [21] expanded this paper 

conducting circuit-level propagation of  

 

risibilities from traced signals to untraced 

ones achieving a more accurate visibility 

estimation. Although our work applies to a 

completely different VLSI design stage, its 

main objective is similar to the postsilicon 

validation techniques. This paper targets the 

verification at the synthesis level. A 

classification of synthesis verification is 

given in [25]. This paper classifies the 

synthesis verification into presynthesis 

verification of algorithm(s) to be 

synthesized typically using software 

verification methods, formal methods using 

theorem provers and postsynthesis 

verification, where the synthesized results 

are verified against the input behavioral 

descriptions. This last category is the most 

widely used today, to which this paper also 

belongs. This last category can be further 

classified into simulation based and formal 

based. Formal methods have been applied to 

verify the HLS process usng translation 

validation. For example, Ashar et al. [27] 

focused on the valid binding stage of HLS, 

while recently [26] focused on the 

scheduling and concurrent systems modeling 

communicating sequential processes. Formal 

methods have gained popularity because 

RTL simulations for larger designs, 

simulations are too slow and cannot detect 

corner cases. Other formal verification 

approaches include [30], where a fully 

automatic equivalence verification of a 

design before and after the scheduling step 

of HLS is presented. This paper was 

extended in [31] by mapping the designs 

into virtual controllers and virtual datapaths. 

A more recent work [32] uses a finite-state 

machine (FSM) with datapath models to  
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represent both behaviors (untimed and 

timed). Our work is fundamentally different 

from this previous works as it is simulation 

based. An early work on simulation-based 

HLS verification is presented in [28]. The 

advantages of simulation based methods are 

that simulations are always needed for 

overall functional verification. Moreover, 

we apply our method to compare pure 

software (untimed) simulations and use 

cycleaccurate model simulations as the 

timed model instead of the synthesizable 

RTL generated by HLS. Cycle-accurate 

models have been reported to be 10–100× 

faster than RTL simulations [3], making our 

method fast enough to work for larger 

designs. We can define the problem to be 

solved as follows. Problem Definition: Find 

the signals to be traced and probe insertion 

points in a behavioral description for HLS in 

order to locate the operation in the source 

code where the error is first introduced, 

minimizing the simulation running time and 

trace file sizes, without distorting the 

intended HLS result. To the best of our 

knowledge, this is the first work 

investigating functional verification methods 

comparing untime versus timed simulations 

at the behavioral level. Section II-A 

describes a typical HLS verification flow, 

indicating where our proposed method fits in 

the overall VLSI verification flow, followed 

by a detailed description of our 

proposedmethod.  

A. High-Level Synthesis Verification Flow 

HLS takes as inputs a behavioral 

description, e.g., C, C++, or SystemC, and 

generates synthesizable RTL(Verilog or  

 

VHDL) by creating a control unit in the 

form of an FSM and a data path unit. The 

datapath unit mainly consists of a number of 

functional units (FUs) combined with 

registers and multiplexers. Most commercial 

HLS tools provide tools to verify and debug 

the design at the highest possible level of 

abstraction in order to facilitate the 

verification process. For this purpose, they 

normally include model generators that 

create different types of simulation models 

depending on the design stage. Fig. 1 shows 

the different verification stages, including 

the different model generators. 

 

When using HLS, he first step designers 

need to take is to manually refine the 

original SW description in order to make it 

synthesizable. Some of the typical constructs 

that are not supported in HLS are dynamic 

memory allocation and recursion. At this 

stage, the designer also refines the data types 

in order to obtain the smallest possible and 

most efficient HW design. For this purpose, 

most HLS vendors extend the C syntax 

providing their own data types (e.g., 

CatapultC uses ac_types [5] and  
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CyberWorkBench var_types [6]). In the case 

of SystemC, the sc_types are used. For the 

verification at this state, some of the vendors 

include behavioral model generators. These 

model generators create a behavioral 

program that models the original behavioral 

description including its custom data types. 

After HLS, a cycle-accurate simulation can 

be performed for timing verification. These 

cycle-accurate models again generate a 

behavioral description in any high-level 

language, i.e., ANSI-C or C++/SystemC, 

and mimic the behavior of the RTL cycle 

accurately. The input to these cycle-accurate 

model generators are normally the result of 

the HLS scheduling phase (a byproduct of 

HLS). These models have been proven to be 

consistently faster than RTL by a factor of 

100–1000× for the behavioral model and 

10–100× faster for the cycle-accurate model 

[3]. A testbench generator that allows the 

reuse of the untimed SW inputs and outputs 

is typically part of these model generators. 

 

III. CONCLUSION  

In this paper, we have presented a complete 

automated verification flow for 

synthesizable behavioral descriptions in  

 

order to detect where in the source code 

mismatches between the original untimed 

simulation and the timed synthesized design 

occur. Our proposed verification flow 

leverages the latest verification features of 

commercial HLS tools, which allow the 

reuse of transaction level test vectors for 

timed simulations. By automatically 

inserting a set of internal probes our method 

can efficiently detect mismatches between 

the untimed behavioral simulation and the 

synthesized circuit and locates where the 

error is introduced directly at the source 

code based on the distances between probes. 

This paper introduces the term SCED to 

determine the quality of our verification 

environment. The proposed method inserts 

different types of probes based on the 

synthesis directives for arrays and loops and 

makes use of synthetic operators in probes 

for arrays to avoid the probes interfering 

with the HLS results. Three different probe 

insertions methods are presented each with 

unique tradeoffs (SCED versus simulation 

runtime versus VCD file size). A set of 

experiments were conducted and an error 

was found in one of the designs that would 

have taken much longer time to find using a 

manual approach, further validating our 

verification methodology. The probe library 

is currently being extended to include 

probes, e.g., partial loop unrolling.  
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