

Vol 06 Issue09, Oct 2017 ISSN 2456 – 5083 www.ijiemr.org

COPY RIGHT

2017 IJIEMR.Personal use of this material is permitted. Permission from IJIEMR must

be obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted

component of this work in other works. No Reprint should be done to this paper, all copy

right is authenticated to Paper Authors

IJIEMR Transactions, online available on 25
th

 Oct 2017. Link

:http://www.ijiemr.org/downloads.php?vol=Volume-6&issue=ISSUE-9

Title: HIGH-LEVEL SYNTHESIS FUNCTIONAL VERIFICATION WITH SOURCE CODE ERROR

DETECTION

Volume 06, Issue 09, Pages: 276 – 281.

Paper Authors

CHITTIPROLU.ANUSHA, KONDA KIRAN KUMAR
Nalgonda institute of technology and science, nalgonda

.

 USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER

To Secure Your Paper As Per UGC Guidelines We Are Providing A Electronic

Bar Code

Vol 06 Issue09, Oct 2017 ISSN 2456 – 5083 Page 276

HIGH-LEVEL SYNTHESIS FUNCTIO

NAL VERIFICATION WITH SOURCE CODE ERROR DETECTION

1
CHITTIPROLU.ANUSHA, 2KONDA KIRAN KUMAR

1
M.Tech Scahloar, Dept of E.C.E(VLSI & ES), Nalgonda institute of technology and science, nalgonda.

2
Assistant Professor, Dept of E.C.E, Nalgonda institute of technology and science, nalgonda.

 ABSTRACT—A dynamic functional verification method that compares untimed simulations

versus timed simulations for synthesizable [high-level synthesis (HLS)] behavioral descriptions

(ANSI-C) is presented in this paper. This paper proposes a method that automatically inserts a

set of probes into the untimed behavioral description. These probes record the status of internal

signals of the behavioral description during an initial untimed simulation. These simulation

results are subsequently used as golden outputs for the verification of the internal signals during

a timed simulation once the behavioral description has been synthesized using HLS. Our

proposed method reports any simulation mismatches and accurately pinpoints any discrepancies

between the functional Software (SW) simulation and the timed simulation at the original

behavioral description (source code). Our method does not only determine where to place the

probes, but is also able to insert different type of probes based on the specified HLS synthesis

options in order not to interfere with the HLS process, minimizing the total number of probes

and the size of the data to be stored in the trace file in order to minimize the running time.

Results show that our proposed method is very effective and extremely simple to use as it is fully

automated.

I. INTRODUCTION

Raising the level of abstract some distinct

advantages over traditional register-transfer

action in VLSI design has level (RTL)

design methods. First, most of the designs

start with a high-level model in order to

validate the application to be implemented.

High-level synthesis (HLS) provides a direct

path between these models and RTL. It has

been shown [1] that one line of C-code

translates into 7–10× more gates than RTL.

This further implies that behavioral

descriptions are easier to maintain and

debug, and that fewer bugs will be

introduced by designers. Second, in many

cases, the design specifications are unstable

and any changes in them can lead to major

architectural changes (e.g., the use of on-die

memory or external memory). At the RTL,

this requires major redesigns, while at the

behavioral level, these changes can be

tackled easier. Third, raising the level of

abstraction allows software and hardware

designers to speak the same language.

Applications to be implemented in custom

Vol 06 Issue09, Oct 2017 ISSN 2456 – 5083 Page 277

hardware are getting extremely complex and

are based on complex mathematical models

that in many cases are difficult to understand

by the hardware designer. Using the same

behavioral description language allows both

hardware and software designers to

communicate at the same level of

abstraction using the same language. Some

examples of complex applications include

dedicated hardware security engines based

on complex encryption and decryption

algorithms [2]. In this paper, we address the

issue of how to efficiently verify the

functionality between an original untimed

SW behavioral description and the

synthesized design after behavioral

synthesis. One of the main advantages of

HLS is that it allows, in combination with

model generators at different stages of the

HLS flow, the reuse of the untimed test

vectors used during the functional SW

verification. Moreover, these model

generators also allow using the SW

simulation outputs as golden reference

outputs for the timed Hardware (HW)

verification. The main problem is that these

test vectors only cover the inputs and

outputs of the behavioral description. In case

of mismatches, the user needs to start the

debugging process. This is normally done by

dumping the internal signals onto a Value

Change Dump (VCD) file and manually

verifying the waveform for any

discrepancies. This poses serious problems

to the designers. First, in case of largzr

designs, the waveform file size can be

significant if all the internal signals are

dumped onto the VCD file (often

impractical). Second, the user needs to fully

understand the timing of the circuit and how

the synthesizer has scheduled the behavioral

description. Often the error is introduced in

the system at a given cycle, but will not

become visible at the outputs after many

cycles. Finally, the designer needs to trace

the error back to the original source code,

which is sometimes not easy in HLS,

because the synthesizers might have

renamed the signals, duplicated these or

optimized them away.

II. PROPOSED WORK

Our proposed method applies to the first

category for HLS (presilicon), but uses

concepts used in the second category

(postsilicon). The notion of probes has been

taken from typical VLSI postsilicon

verification flows. For example, commercial

Field Programmable Gate Array tool

vendors provide on-chip support to allow the

observability of internal signals (e.g.,

Chipscope in Xilinx [12] and SignalTap in

Altera [13]). These tools insert probes to

signals in the design to be tested and capture

them using a sampling clock, while storing

them in a buffer. The buffer content is

transmitted to a PC and displayed

graphically, once the buffer is full or certain

number of samples taken. The designer can

then manually verify the correctness of the

design. ARM does also provide a similar

technology to debug ARM-based systems-

on-a-chip with the Advanced High-

performance Bus (AHB) trace macrocell,

which gives visibility on Advanced

Microcontroller Bus Architecture AHB

busses, offering visibility of accesses to

memory areas [14]. To be able to root-cause

design bugs, postsilicon validation requires

Vol 06 Issue09, Oct 2017 ISSN 2456 – 5083 Page 278

to have full controllability and observability

of the circuit under debug’s (CUD) internal

behavior. This can currently not be achieved

due to the extremely larger number of

signals that would need to be traced. A more

effective debug technique is to selectively

monitor some of the internal signals.

Designers typically select to tap a number of

signals in the CUD, but only a subset of the

tapped signals are traced concurrently

during debug phase due to trace bandwidth

limitation. This is achieved by inserting a

mux tree that links the tapped signals to

trace buffers or trace ports. These systems

also include trigger units, which are used to

determine when to start and stop signal

tracing in order to further reduce trace

bandwidth requirement [18]. The

effectiveness of these trace-based debug

systems, hence, rely considerably on the

signals being traced. In current postsilicon

validation flows designers usually manually

select those signals that are important for

analysis to trace, based on their own design

experience. This ad hoc method, however,

cannot guarantee the quality of debug

process [17]. More importantly, bugs often

occur in unexpected scenarios and it is very

difficult, if not impossible, to predict which

signals will be related to them during the

design phase. Ko and Nicolici [19] first

introduced an automated method identifying

a small set of trace signals from which a

large number of states can be restored using

a compute-efficient algorithm. This enlarged

set of data can then be used to aid the search

of functional bugs in the fabricated circuit.

Liu and Xu [21] expanded this paper

conducting circuit-level propagation of

risibilities from traced signals to untraced

ones achieving a more accurate visibility

estimation. Although our work applies to a

completely different VLSI design stage, its

main objective is similar to the postsilicon

validation techniques. This paper targets the

verification at the synthesis level. A

classification of synthesis verification is

given in [25]. This paper classifies the

synthesis verification into presynthesis

verification of algorithm(s) to be

synthesized typically using software

verification methods, formal methods using

theorem provers and postsynthesis

verification, where the synthesized results

are verified against the input behavioral

descriptions. This last category is the most

widely used today, to which this paper also

belongs. This last category can be further

classified into simulation based and formal

based. Formal methods have been applied to

verify the HLS process usng translation

validation. For example, Ashar et al. [27]

focused on the valid binding stage of HLS,

while recently [26] focused on the

scheduling and concurrent systems modeling

communicating sequential processes. Formal

methods have gained popularity because

RTL simulations for larger designs,

simulations are too slow and cannot detect

corner cases. Other formal verification

approaches include [30], where a fully

automatic equivalence verification of a

design before and after the scheduling step

of HLS is presented. This paper was

extended in [31] by mapping the designs

into virtual controllers and virtual datapaths.

A more recent work [32] uses a finite-state

machine (FSM) with datapath models to

Vol 06 Issue09, Oct 2017 ISSN 2456 – 5083 Page 279

represent both behaviors (untimed and

timed). Our work is fundamentally different

from this previous works as it is simulation

based. An early work on simulation-based

HLS verification is presented in [28]. The

advantages of simulation based methods are

that simulations are always needed for

overall functional verification. Moreover,

we apply our method to compare pure

software (untimed) simulations and use

cycleaccurate model simulations as the

timed model instead of the synthesizable

RTL generated by HLS. Cycle-accurate

models have been reported to be 10–100×

faster than RTL simulations [3], making our

method fast enough to work for larger

designs. We can define the problem to be

solved as follows. Problem Definition: Find

the signals to be traced and probe insertion

points in a behavioral description for HLS in

order to locate the operation in the source

code where the error is first introduced,

minimizing the simulation running time and

trace file sizes, without distorting the

intended HLS result. To the best of our

knowledge, this is the first work

investigating functional verification methods

comparing untime versus timed simulations

at the behavioral level. Section II-A

describes a typical HLS verification flow,

indicating where our proposed method fits in

the overall VLSI verification flow, followed

by a detailed description of our

proposedmethod.

A. High-Level Synthesis Verification Flow

HLS takes as inputs a behavioral

description, e.g., C, C++, or SystemC, and

generates synthesizable RTL(Verilog or

VHDL) by creating a control unit in the

form of an FSM and a data path unit. The

datapath unit mainly consists of a number of

functional units (FUs) combined with

registers and multiplexers. Most commercial

HLS tools provide tools to verify and debug

the design at the highest possible level of

abstraction in order to facilitate the

verification process. For this purpose, they

normally include model generators that

create different types of simulation models

depending on the design stage. Fig. 1 shows

the different verification stages, including

the different model generators.

When using HLS, he first step designers

need to take is to manually refine the

original SW description in order to make it

synthesizable. Some of the typical constructs

that are not supported in HLS are dynamic

memory allocation and recursion. At this

stage, the designer also refines the data types

in order to obtain the smallest possible and

most efficient HW design. For this purpose,

most HLS vendors extend the C syntax

providing their own data types (e.g.,

CatapultC uses ac_types [5] and

Vol 06 Issue09, Oct 2017 ISSN 2456 – 5083 Page 280

CyberWorkBench var_types [6]). In the case

of SystemC, the sc_types are used. For the

verification at this state, some of the vendors

include behavioral model generators. These

model generators create a behavioral

program that models the original behavioral

description including its custom data types.

After HLS, a cycle-accurate simulation can

be performed for timing verification. These

cycle-accurate models again generate a

behavioral description in any high-level

language, i.e., ANSI-C or C++/SystemC,

and mimic the behavior of the RTL cycle

accurately. The input to these cycle-accurate

model generators are normally the result of

the HLS scheduling phase (a byproduct of

HLS). These models have been proven to be

consistently faster than RTL by a factor of

100–1000× for the behavioral model and

10–100× faster for the cycle-accurate model

[3]. A testbench generator that allows the

reuse of the untimed SW inputs and outputs

is typically part of these model generators.

III. CONCLUSION

In this paper, we have presented a complete

automated verification flow for

synthesizable behavioral descriptions in

order to detect where in the source code

mismatches between the original untimed

simulation and the timed synthesized design

occur. Our proposed verification flow

leverages the latest verification features of

commercial HLS tools, which allow the

reuse of transaction level test vectors for

timed simulations. By automatically

inserting a set of internal probes our method

can efficiently detect mismatches between

the untimed behavioral simulation and the

synthesized circuit and locates where the

error is introduced directly at the source

code based on the distances between probes.

This paper introduces the term SCED to

determine the quality of our verification

environment. The proposed method inserts

different types of probes based on the

synthesis directives for arrays and loops and

makes use of synthetic operators in probes

for arrays to avoid the probes interfering

with the HLS results. Three different probe

insertions methods are presented each with

unique tradeoffs (SCED versus simulation

runtime versus VCD file size). A set of

experiments were conducted and an error

was found in one of the designs that would

have taken much longer time to find using a

manual approach, further validating our

verification methodology. The probe library

is currently being extended to include

probes, e.g., partial loop unrolling.

REFERENCES

[1] H.R.Rategh et al., "A CMOS frequency

synthesizer with an ijectedlocked frequency

divider for 5-GHz wirless LAN receiver,"

IEEE J Soli-State Circuits, vol. 35, no. 5, pp.

780-787, May 2000.

Vol 06 Issue09, Oct 2017 ISSN 2456 – 5083 Page 281

[2] P. Y. Deg et al., "A 5 GHz frequency

synthesizer with an injection locked

frequency divider and differential switched

capacitors," IEEE Trans. Circuits Syst. I,

Reg. Papers, vol. 56, no. 2, pp. 320-326,

Feb. 2009.

[3] L. Lai Kan Leung et al., "A I-V 9.7-

mW CMOS frequecy synthesizer for IEE

802.lIa transceivers," IEEE Trans. Microw.

Theor Tech., vol. 56, no. I, pp. 39-48, Jan.

2008.

[4] M. Alioto and G. Palumbo, Model and

Design of Bipolar and MOS Current-Mode

Logic Digital Circuits. New York: Springer,

2005.

[5] Y. Ji-ren et al., "Atue single-phae-clock

dynamicCMOScircuit technique," IEEE J

Solid-Statem Circuits, vol. 24, no. 2, pp. 62-

70, Feb. 1989.

[6] S Pellerno et aI., "A J3.5-mW 5 GHz

frequenc synthesizer with dyamic-logic

frequency divider, " IEE J. Solid-State

Circuits, vol. 39, no. 2, pp. 378-383, Feb.

2004

[7] V. K. Manthena et aI., "A low power

fully programmable J MHz resoluti on 2.4

GHz CMOS PLL frequenc synthesizer, " in

Proc. IEE Biomed. Circuits Syst. Conf, Nov.

2007.pp 187-19.

GUIDE DETAILS

Konda Kiran Kumar Assistant Prof.

M.Tech (Vlsi Sd),Kiran3712@Gmail.Com

Dept.Of Ece (Vlsi System Design)

STUDENT DETAILS:

Chittiprolu.anusha,Dept of ECE : vlsi

& ES Chittianusha363gmail.com

Nalgonda institute of technology and

science (nalgonda)

