
Vol 12 Issue01, Jan 2023 ISSN 2456 – 5083

COPY RIGHT

2021IJIEMR.Personal use of this material is permitted. Permission from IJIEMR must be

obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this

work in other works. No Reprint should be done to this paper, all copy right is authenticated

to Paper Authors

IJIEMR Transactions, online available on 24th Jan 2023.

Link : https://ijiemr.org/downloads/Volume-12/Issue-01

 Title: Hardware Accelerator Formulated Password recovery in Hybrid CPU-FPGA

Devices
 volume 12, Issue 01, Pages: 873-878

 Paper Authors: Amshiya Mohammedkasim & Dr. S. Senthilkumar

USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER

Page 873

Volume 12,Issue 01 Jan 2023 ISSN : 2456- 5083

Hardware Accelerator Formulated Password

recovery in Hybrid CPU-FPGA Devices
1
Amshiya Mohammedkasim &

2
Dr. S. Senthilkumar

1
PhD Scholar, Dept.:- ECE, SVS College of Engineering and Technology, Coimbatore, Tamilnadu, India

2
Professor, Dept.:- ECE, SVS College of Engineering and Technology, Coimbatore, Tamilnadu, India

Abstract Password recovery tools are needed to recover

lost and forgotten passwords so as to regain access to

valuable information. As the process of password recovery

can be extremely compute-intensive, hardware accelerators

are often needed to expedite the recovery process. This paper

thus presents a high performance, energy-efficient

accelerator built upon modern hybrid CPU-FPGA SoC

devices. The proposed password recovery accelerator relies

on the development of a set of intellectual property (IP) cores

for implementing variety of encryption algorithms with

vastly different characteristics and complexities. To keep the

resource requirements of each IP core running on a

resource-strapped FPGA to the minimum, while achieving

the highest throughput possible, the most performance

critical computational hash functions are mapped to the

FPGA with two specific optimization techniques, namely the

fixed message padding for hashing and loop transformation

for deep pipelining. The proposed password recovery

accelerator implements a non-blocking deep pipeline design

that does not incur any data and structural hazards, which is

made possible by applying a task scheduling scheme through

the use of block RAMs. Synchronization between tasks that

are mapped to run separately on CPU and FPGA is achieved

through task reordering and a communication protocol for

maximum parallelism and low overhead. The proposed

design is evaluated on Xilinx XC7Z030-3 device, and it is

compared much favourably with other known

implementations. The proposed hardware accelerator design

is found 12.5 and 3.1 times more resource-efficient than the

pure FPGA-based password recovery accelerators for

TrueCrypt and WPA-2, respectively. The proposed

implementation also shows a remarkable >200 percent

improvement in terms of energy efficiency over a

state-of-the-art implementation on NVIDIA GTX 750 Ti

GPU.

1. Introduction

With hundreds of thousands of passwords lost or forgotten

every year, valuable protected information becomes

unavailable to the legitimate owner or authorized law

enforcement personnel. In this case, regaining the control of

precious, encrypted data relies on the use of password

recovery tools by means of password cracking. Brute-force

password cracking, attempts to recover a password by

simply trying all possible passwords until the correct one is

eventually hit. The amount of computation time needed to

find a correct password depends on the password length and

complexity of the character set, as well as computational

complexity of the encryption algorithm. Although

dictionary-based Markov model theory and hints or

probability provided by users can help reduce the search

space, password recovery by nature is a time-consuming

process.

Since large amount of computation is required during the

brute-force password recovery process, many hardware

accelerators have been reported and the most widely used

hardware platforms are field programmable gate array

(FPGA) and graphic processing unit (GPU). One big

problem of most FPGA-based accelerators is that they only

focus on optimizing their throughput for single hash

algorithm (e.g., SHA-256) or implementing for one

particular encryption algorithm, making them inflexible in

handling many other algorithms that have been developed

for cryptography. GPU-based solutions, on the other hand,

are flexible enough to handle different types of cryptography

algorithms, but they tend to have high energy footprint, as a

result of sequential execution of cryptographic algorithms

and GPU’s fixed-width data path architectures with limited

bandwidths.

2 Password-Based Cryptography And Password

Recovery

In this section, we will first give a brief introduction to

password- based cryptography, including both the

encryption and decryption processes. If a password is not

Page 874

Volume 12,Issue 01 Jan 2023 ISSN : 2456- 5083

available to allow direct access to password-encrypted

data/file, password recovery has to take place, and the

processes and methods for password cracking are reviewed

in Section 2.2. Different platforms, hardware, software, or

mixture of both, can be used for the purpose of password

recovery, and pros and cons of these platforms are assessed

in this section as well

2.1 Password based Cryptography

2.2 Password Recovery/Cracking

2.3 Hardware for Password Recovery

 Algorithm Modification For FPGA-Friendly

Implementation

For a higher throughput and better resource utilization, two

algorithm modifications are proposed in this section,

including fixed message padding for hashing and loop

transformation for deep pipelining. For the sake of

presentation, cryptographic application of RAR5 will be

taken as an example. These two modifications can be well

applied to all other cryptographic applications

 Encryption-specific Fixed Message Padding

for Hashing

The encryption algorithm for RAR5 is illustrated in Fig. 4,

where SHA-256 is employed as its cryptographic core.

Inside the encryption algorithm, SHA-256 is performed

twice to obtain two 256-bit long numbers (referred to as

state-I and state-O in Fig. 4) and these two numbers serve as

the initial state inputs of the remaining SHA-256 operations.

The 128-bit salt is padded with a fixed 384-bit message to

form a 512-bit message block for the first hash message

authentication code (HMAC) iteration which needs to

perform SHA-256 twice (referred to as in-HMAC and

out-HMAC in Fig. 4). For the following 32,799 times of

HMAC iterations, the 512-bit message blocks for the input

are generated by padding the 256-bit digest output from the

last SHA-256 operation with a fixed 256-bit message

(0x80000000,0,0,0,0,0,0,0x300).

Inside the SHA-256 hash function, each 512-bit input

message block is expanded and fed to the 64 rounds of data

scrambling in words of 32-bit each (denoted by Wt, 0 ≤ t ≤
63). Since the input message block only has 16 32-bit words

(denoted Mt, 0 ≤ t ≤ 15), the remaining 48 32-bit words are

obtained from message expansion, according to the

following equations:

Equation 1

σₒ(x) =ROT R(x, 7)⊕ROT R(x, 18)⊕SH R(x, 3)

Figure 1 The encryption built into RAR5 format with

multiple iterations of SHA-256

Equation 2

σ₁ (x) = ROT R(x, 17) ⊕ ROT R(x, 19) ⊕ SH R(x, 10)

Equation 3

Wt = {Mt 0≤t≤15

 {σ₁ (W฀ ˗ ₂) + σₒ(W

where ROT R (x, n) is a circular shift right function that

shifts binary x by n positions, and SHR (x, n) is a logic shift

right function that shifts x by n positions. All additions in the

SHA- 256 algorithm are modulo 232.

A pipelined SHA-256 design requires 48 message expansion

modules, each of which consists of two shift-transform

modules (referred as σ0 and σ1 in Fig. 5) and three 32-bit

adders. To reduce the resource consumption introduced by

the message expansion, a fixed message padding method is

proposed. As shown in Fig. 5, since most of the SHA-256

computation tasks in the RAR5 encryption algorithm share a

fixed 256-bit message padding that has many zeros,

significant number of operations can actually be eliminated

to reduce the hardware cost. For example, as the calculation

of W16 is related to W9 and W14 whose values are zeros,

equation (3) can be simplified as

Equation 4

Page 875

Volume 12,Issue 01 Jan 2023 ISSN : 2456- 5083

where one shift-transform module (σ1) and two adders are
eliminated (as shown in the upper part of Fig. 5). For another

example, as the calculation of W25 is related to W9 and W10

whose values are also zeros, equation (3) can be simplified as

Equation 5

EVALUATION

In order to evaluate the performance and cost of the

proposed accelerator for password recovery, we have built

the hardware prototype based on the Xilinx Zynq 7000

series FPGA (XC7Z030-3), which comes with

programmable fabric and two ARM Cortex-A9 processors

clocked at 500 MHz (the highest clocking frequency can be

scaled to 1 GHz). The system performance is evaluated on

an FPGA cluster with 16 FPGA chips connected by a

Gigabit Ethernet interface. IP cores located in accelerator

library are synthesized and implemented using the Xilinx

VIVADO (v2016.3) tool set. To verify the resilience of the

proposed accelerator, password recovery for several

commonly used encryption applications, including RAR5,

WPA-2, office 2007, office 2010, office 2013, and

TrueCrypt, are all implemented and compared with other

related works reported in the literature.

 System Performance

The system performance of our proposed accelerator for

different applications is reported in Table 2. The speed of

the password recovery system is defined as the number of

passwords that can be encrypted and examined per second,

and performance of a password recovery system can be

directly measured with the observed time for cracking. For

example, the accelerator takes 29 minutes to recover the

password of a Wi-Fi network that is made of eight numbers

using a single XC7Z030-3 device. Another figure of merit

is the energy efficiency, defined as the number of

passwords that can be recovered per second per Watt. The

power of single node evaluation board illustrated in Table 2

is obtained by measuring the output current of the power

supply of 5 V.

Figure 2 Synchronization in the proposed accelerator

system

Appli

cations

Cluster

Speed

(passw

ords/s)

Single XC7Z030-3 FPGA

Speed

(pass

words/s

Measu

rement

Power(

Energy

Effi.

(passw

W) ords/J)

RAR5 91,286 5,711 12.95 441

WAP-

2

924,007 57,78

0

14.89 3,880

Office

2007

312,917 19,63

5

12.35 1,590

Office

2010

156,619 9,837 12.55 784

Office

2013

15,619 976 10.65 92

True

Crypt

325,123 20,44

3

7.54 2,711

Table 1 System performance of the proposed accelerator

among different applications (a cluster with 16XC7Z030-3

FPGA)

 Hardware Implementation Analysis

The detailed hardware implementations for different

cryptographic applications are summarized in Table 3. The

construction of each accelerator core is dependent on the

target encryption applications, and each core contains one

hash function pipeline. In the design of accelerator IP cores

for TrueCrypt, apart from customizing a RipeMD-160

pipeline to accelerate the repeated run of RipeMD-160 for

15,996 times in the looping phase for each password, an

AES-256 core is instantiated on the FPGA to further

accelerate the AES-256 encryption and decryption

operations. The throughput of an accelerator core is defined

as the number of hashing operations that can be completed

per second. For example, the throughput of a RAR5

accelerator core is 189 million SHA-256 operations per

second, while the throughput of a WPA-2 accelerator core

is 247.2 million SHA-1 operations per second. To

characterize the computing power of the reconfigurable

accelerated device, the maximum number of accelerator

cores that can be placed on one XC7Z030-3 FPGA is also

reported in column 5 of Table 3.

Applicati

ons

Construct

ion of each

accelerator

core

Fre

q

(M

Hz)

Through

put per

core

(MOPS/s)

Ma

x

NUM

.

RAR5 SHA-256

pipeline

190 189.0 2

WAP-2 SHA-1

pipeline

250 247.2 4

Office

2007

SHA-1

pipeline

250 247.3 4

Page 876

Volume 12,Issue 01 Jan 2023 ISSN : 2456- 5083

Office

2010

SHA-1

pipeline

250 247.3 4

Office

2013

SHA-512

pipeline

100 98.7 1

True

Crypt

Ripe

MD-160

pipeline

190 188.4

2

AES-256

Module

190 1.79

Table 1 Hardware implementation on one XC7Z030-3

FPGA

 Pipeline with fixed message padding

Pipelined implementations with the fixed message

padding technique can significantly reduce the resource

consumption and improve the performance of hash function

units. Defined as bits of data that can be processed per slice

per second, throughput per area is often used to evaluate the

performance of hardware hash function unit. In our

proposed design, it takes only 8,153 slices to construct a

deep SHA-256 pipeline with the 256-bit fixed message

padding, clocked at 190 MHz in the case of RAR5, reaching

a performance of 5.9 Mbps per slice (this SHA-256 pipeline

can process 256-bit of data for every clock cycle).

Compared with a prior SHA-256 hardware implementation

on Xilinx Virtex-6 [7] with performance at 2.25 Mbps per

slice, the proposed design sees 2.6 times of improvement.

 Loop transformation for deep pipeline using BRAM

based scheduler

This technique is introduced to eliminate the potential

bubbles in hash function pipeline due to data and structural

hazards. It is known that the theoretical throughput of a

pipeline design is equal to its operating frequency, and the

throughput per core is at least 98.7 percent of the theoretical

value (obtained from columns 3 and 4 in Table 3),

indicating that the hash function pipelines are kept nearly

filled all the time.

Fig. 14. The RAR5 designs after place and route: (a) two

64-stage SHA-256 pipelines clocked at 114 MHz, and (b)

two 106-stage SHA-256 pipelines clocked at 190 MHz.

Trade-Off Between Depth Of Hash Function Pipeline And

Resource Utilization

This technique helps reduce the unused resources in the

FPGA and improve the operating frequency of hash

function pipeline, thus the throughput. Two RAR5 designs

after place and route are shown in Fig. 14. When the

SHA-256 pipeline is implemented with 64 stages, two

accelerator cores each clocked at 114 MHz can be

accommodated by the target FPGA; one can see significant

amounts of resource is wasted. By applying the depth of

hash function pipeline exploring technique, the alternative

design with a deeper pipeline can operate on the highest

achievable frequency of 190 MHz. In this particular

example, the performance improvement

is 1.67 folds.

 Synchronization between FPGA and CPU

As discussed before, the computation tasks of all the

cryptographic applications are divided into three phases,

where the tasks in the initialization phase and the

comparison phase are assigned to the CPU, while the tasks

in the looping phase are assigned to the FPGA. For the

convenience of analysis, we gather the timing information

of each phase by using the timers available in the ARM

core. Table 4 lists the required times for task execution and

data transmission per password during different phases on a

single FPGA chip, where columns Init, Loop, and Comp

report the computation time for different applications

running on corresponding devices (the CPU and the FPGA),

while the data transfers between the CPU and the FPGA are

given as T1 and T2.

Generally speaking, the execution time of a

heterogeneous system is longer than the execution time of

any individual unit of the system. As a result, the parallel

efficiency in our case is determined as Tfpga=Tsystem,

where Tfpga and Tsystem represent the time spent on the

FPGA and the system, respectively. The parallel efficiency

of the proposed synchronization mechanism is reported in

the last column of Table 4. One can see that across all the

applications, the parallel efficiency of the hybrid

CPU-FPGA device is at least 96.0 percent of the theoretical

limit, which is the case for application of WPA-2.

Applic

ations

Time for execution and transmission

(µs/password)

Pa

rallel

Effi. I

nit.

T

I

Lo

op

T

2

C

omp

.

Sy

s.

RAR5 1

9.1

1

.01

17

3.5

0

.08

0.

4

17

5.1

99.

3%

WAP-

2

2

.9

0

.32

16.

6

0

.26

13

.8

17.

3

96.

0%

Office

2007

3

.0

0

.16

50.

6

0

.16

21

.7

51 99.

2%

Office

2010

3

.2

0

.16

10

1.1

0

.16

21 10

1.7

99.

4%

Office

2013

4

6.5

1

.28

1,0

12.2

1

.28

16

9.6

1,0

27.5

99.

1%

True

Crypt

4

6.8

1

.26

47.

2

0

.00

0.

0

48.

9

96.

5%

Table 2 Parallel efficiency of the proposed

synchronization mechanism

Application TrueCrypt WAP-2

Page 877

Volume 12,Issue 01 Jan 2023 ISSN : 2456- 5083

s

Implementa

tion

FPGA type

FPGA

Number

[8]

Spart

an-6

I.X

150

128

This

work

XC7Z

030-3

16

[9]

Spar

tan-6

LX1

50

36

This

work

XC7Z

030-3

16

Resource efficiency comparison on single FPGA

Speed

(passwors/s

)

Resources

(slices)

Resources

efficiency

(passwords/

s/slice)

Speedup

1,9

17

23,

038

0.0

83

Ix

20,443

19,650

1,040

12.5x

21,8

71

23,0

38

0.94

9

1x

57,780

19,650

2.940

3.10x

Speed comparison on FPGA cluster

Speed

(passwors/s

)

Speedup

245

.397

1x

325,123

1.32x

741,

200

1x

924,00

7

1.25x

Application

s

TrueCrypt WAP-2

Implementa

tion

FPGA type

FPGA

Number

[8]

Spart

an-6

I.X

150

128

This

work

XC7Z

030-3

16

[9]

Spar

tan-6

LX1

50

36

This

work

XC7Z

030-3

16

Resource efficiency comparison on single FPGA

Speed

(passwors/s

)

Resources

(slices)

Resources

efficiency

(passwords/

s/slice)

Speedup

1,9

17

23,

038

0.0

83

Ix

20,443

19,650

1,040

12.5x

21,8

71

23,0

38

0.94

9

1x

57,780

19,650

2.940

3.10x

Speed comparison on FPGA cluster

Speed

(passwors/s

)

Speedup

245

.397

1x

325,123

1.32x

741,

200

1x

924,00

7

1.25x

Table 3 Comparison of hardware accelerators based on

FPGA cluster

 Comparison with Other Schemes

 Comparison with FPGA-only implementations

To facilitate a fair comparison, we consider two figures

of merit, namely the resource efficiency and the password

recovery speed. The resource efficiency is defined as the

system speed normalized with respect to available hardware

resources (i.e., the number of slices in FPGA). To the best

of our knowledge, FPGA-based accelerators for password

recovery on the cryptographic applications of RAR-5, office

2007, office 2010, and office 2013 have not been disclosed.

As a result, we can only compare our implementations of

TrueCrypt and WPA-2 with the existing studies, as listed in

Table 5. Note that all the existing designs can only deal one

specific type of cryptographic application.

An implementation based on a single FPGA cluster with

128 Xilinx Spartan-6 LX150 FPGA chips was reported for

TrueCrypt acceleration, and each FPGA consists of eight

RipeMD-160 pipelines and two AES-256 XTS cores

clocked at 66 MHz, reaching a speed of 245,397 passwords

per second. However, the implementation of RipeMD-160

is not resource-efficient, as its pipeline contains only five

rounds and it takes 16 cycles to finish one time of

RipeMD-160 hashing, resulting in a resource efficiency of

only 0.083 passwords/s/slice, far less than the resource

efficiency of our implementation. Even though we have

only 16 FPGA chips in our proposed implementation and

only two RipeMD-160 pipelines are instantiated on one

FPGA, the throughput of 325,123 passwords per second is

1.32 times faster than the design reported.

 Another implementation for password recovery of

WPA-2 was also based on a single FPGA cluster. With 36

Spartan- 6 LX150 FPGA chips, each of which consists of

two SHA-1pipelines operating at 187 MHz, that design

reaches performance of 741,200 passwords per second.

However, since a standard SHA-1 pipeline is adopted in

that scheme, only two SHA-1 pipelines can be placed on a

single FPGA. In our design, we customize the SHA-1

pipeline with the fixed message padding technique, which

makes it possible to place four SHA-1 pipelines working at

250 MHz on a single FPGA chip. The resource efficiency

of our proposed design is thus 3.1 times better than the

design reported.

Appli

cations

R

AR5

WP

A-2

Off

ice

2007

O

ffice

2010

O

ffice

201

3

True

Crypt

System throughput (passwords/s)

This

work

Hashc

at

Speed

up

5,

711

5,

384

1.

1

57,

780

61,

883

0.9

19,

635

21,

195

0.9

9,

837

10

,559

0.

9

9

79

1,

374

0.

7

20,4

43

40,3

65

0.5

Power (Watt)

Page 878

Volume 12,Issue 01 Jan 2023 ISSN : 2456- 5083

This

work

Hashc

at

12

.95

33

.54

14.

89

38.

05

12.

35

38.

08

12

.55

37

.92

1

0.65

3

4.95

7.54

34.6

0

Energy Efficient (passpordws/J)

This

work

Hashc

at

Speed

up

44

1.00

16

0.52

2.

75

3,8

80.46

1,6

26.36

2.3

9

1,5

89.88

556

.59

2.8

6

78

3.82

27

8.45

2.

81

9

1.92

3

9.31

2.

34

2,71

1.27

1,16

6.62

2.32

Table 4 Comparison against the design using Nvidia

GTX750 Ti GPU

Comparison with GPU scheme

Table 6 compares the throughput and energy efficiency

between the Hashcat v3.6 software implementations on G

PU and the proposed accelerator on hybrid CPU-FPGA

cluster. The energy consumption of GPU is reported by the

NVIDIA System Management Interface.

Computing performance of our hardware accelerator with

one embedded FPGA is on a par with the implementation

using an NVIDIA GTX 750 Ti GPU. The energy efficiency

of our proposed accelerator is 2.32~2.86 times better than

that of implementation using an NVIDIA GTX 750 Ti

GPU.

3. Conclusion

In this paper, we have proposed a high-speed and energy

efficient accelerator for password recovery. For the

construction of hardware accelerator with high throughput

and low resource consumption, optimizations were

performed at both algorithm and hardware implementation

levels, including deep pipelining with the fixed message

padding for hashing and loop transformation based on

BRAM-based scheduler, and exploration between depth of

hash function pipeline and FPGA resource constraints, as

well as synchronization between the FPGA and the CPU for

maximum parallelism.

Compared with the FPGA-only password recovery

accelerators, the proposed design improves the resource

efficiency by 12.5 and 3.1 times for encryption applications

of TrueCrypt and WPA- 2, respectively. Compared with the

GPU-based password recovery implementation Hashcat

with nearly identical performance, our FPGA-based

accelerator increases the energy efficiency by 2.32~2.86

times.

Acknowledgements

The success of this phase of the project required great

amount of guidance and assistance from many people, and I

and extremely fortunate to have got this all along this

completion of this phase.

I convey my sincere thanks to all the staff members who

guide me throughout my course. My sincere thanks to GOD,

PARENTS and FRIENDS who were helped encouraged me

during the entire course of this project

We are very grateful to experts for their appropriate and

constructive suggestions to improve this template.

REFERENCES

[1] [1] R. Morris and K. Thompson, “Password security: A case
history,” Commun. ACM, vol. 22, no. 11, pp. 594–597, Nov.
1979.

[2] [2] P. Oechslin, “Making a faster cryptanalytic time-memory
trade-off,” in Proc. Int. Conf. Adv. Cryptol. (CRYPTO), 2003,
pp. 617–630.

[3] [3] A. Narayanan and V. Shmatikov, “Fast dictionary attacks
on passwords using time-space trade off,” in Proc. ACM Conf.
Comput. Commun. Secur. (CCS), Nov. 2005, pp. 364–372.

[4] [4] M. Weir, S. Aggarwal, B. d. Medeiros, and B. Glodek,
“Password cracking using probabilistic context-free
grammars,” in Proc. IEEE Symp. Secur. Privacy (SP), May
2009, pp. 391–405.

[5] [5] R. P. McEvoy, F. M. Crowe, C. C. Murphy, and W. P.
Marnane,“Optimisation of the SHA-2 family of hash
functions on FPGAs,” in Proc. IEEE Symp. Emerg. VLSI
Technol. Archit. (ISVLSI), Mar. 2006, pp. 1–6.

[6] [6] R. Chaves, G. Kuzmanov, L. Sousa, and S. Vassiliadis,
“Cost-efficient SHA hardware accelerators,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 16, no. 8, pp.
999–1008, Jul. 2008.

[7] [7] M. D. Rote, N. Vijendran, and D. Selvakumar, “High
performance SHA- 2 core using the round pipelined
technique,” in Proc. IEEE Int. Conf.Electron., Computing,
Commun. Technol. (CONECCT), Jul. 2015, pp. 1–6.

[8] [8] A. Abbas, R. Vo_, L. Wienbrandt, and M. Schimmler,
“An efficient implementation of PBKDF2 with RIPEMD-160
on multiple FPGAs,” in Proc. IEEE Int. Conf. Parallel Distrib.
Syst. (ICPADS), Dec. 2014, pp. 454–461.

[9] [9] M. Kammerstetter, M. Muellner, D. Burian, C. Kudera,
and W. Kastner, “Efficient high-speed WPA2 brute force
attacks using scalable low-cost FPGA clustering,” in Proc. Int.

Page 878

Volume 12,Issue 01 Jan 2023 ISSN : 2456- 5083

Conf. Cryptographic Hardware Embedded Syst. (CHES),
Aug. 2016, pp. 559–577.

[10] [10] X. Li, C. Cao, P. Li, S. Shen, Y. Chen, and L. Li,
“Energy-efficient hardware implementation of LUKS
PBKDF2 with AES on FPGA,” in Proc. IEEE
Trustcom/BigDataSE/ISPA, Aug. 2016, pp. 402–409.

[11] [11] C. Wang, L. Gong, Q. Yu, X. Li, Y. Xie, and X. Zhou,
“DLAU: A scalable deep learning accelerator unit on FPGA,”
IEEE Trans. Comput.- Aided Design Integr. Circuits Syst.,
vol. 36, no. 3, pp. 513–517, Mar. 2017.

[12] [12] W. Shi, X. Li, Z. Yu, and G. Overett, “An FPGA-based
hardware accelerator for traffic sign detection,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 25, no. 4, pp.
1362–1372, Apr. 2017.

[13] [13] K. Malvoni, S. Designer, and J. Knezovic, “Are your
passwords safe: Energy-efficient bcrypt cracking with
low-cost parallel hardware,” in Proc. 8th USENIX Workshop
on Offensive Technologies (WOOT), 2014. [Online].
Available: https://www.usenix.org/conference/woot14/
workshop-program/presentation/malvani

[14] [14] “Advanced encryption standard (AES),” Nov. 2011.
[Online]. Available:
https://csrc.nist.gov/csrc/media/publications/fips/197/final/d
ocuments/fips-197.pdf

[15] [15] D. Eastlake and T. Hansen, “US secure hash algorithms
SHA and SHA-based HMAC and HKDF,” May 2011.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc6234.txt

[16] [16] H. Dobbertin, A. Bosselaers, and B. Preneel,
“RIPEMD-160: A strengthened version of RIPEMD,” in Proc.
Int. Workshop on Fast Software Encryption (FSE), 1996, pp.
71–82.

[17] [17] B. Ur, S. M. Segreti, L. Bauer, N. Christin, L. F. Cranor,
S. Komanduri, D. Kurilova, M. L. Mazurek, W. Melicher, and
R. Shay, “Measuring realworld accuracies and biases in
modeling password guessability,” in Proc. USENIX Secur.
Symp., 2015, pp. 463–481.

[18] [18] J. Galbally, I. Coisel, and I. Sanchez, “A new multimodal
approach for password strength estimation - part I: Theory
and algorithms,” IEEE Trans. Inf. Forensics Security, vol. 12,
no. 12, pp. 2829–2844, Dec 2017.

[19] [19] B. Hitaj, P. Gasti, G. Ateniese, and F. P´erez-Cruz,
“PassGAN: A deep learning approach for password
guessing,” 2017. [Online]. Available:
http://arxiv.org/abs/1709.00440

[20] [20] “hashcat: Advanced password recovery,” 2017. [Online].
Available: https://hashcat.net/hashcat/

[21] [21] OpenWall, “John the Ripper password cracker,” 2017.
[Online]. Available: http://www.openwall.com/john/

[22] [22] L. Bossuet, M. Grand, L. Gaspar, V. Fischer, and G.
Gogniat, “Architectures of flexible symmetric key crypto
engines a survey: From hardware coprocessor to
multi-crypto-processor system on chip,” ACM Computing
Surveys, vol. 45, no. 4, p. 41, Aug. 2013.

[23] [23] “Zynq-7000 all programmable SoC,” 2016. [Online].
Available:
https://www.xilinx.com/support/documentation/product-brie
fs/ zynq-7000-product-brief.pdf

[24] [24] “Stratix 10 SoC: Highest performance and most power
efficient processing,” 2013. [Online]. Available:
https://www.altera.com/products/
soc/portfolio/stratix-10-soc/overview.html

[25] R. F. Voss, J. Clarke. Algorithmic Musical Composition,
Silver Burdett Press, Londyn, 1986.

[26] W. Zabierowski, A. Napieralski. Chords classification in
tonal music, Journal of Environment Studies, Vol.10, No.5,
50-53.

[27] A. Abiewskiro,. Z. Moplskiiera. The Problem Of Grammar
Choice For Verification, TCSET of the International
Conference , House of Lviv Polytechnic National University,
19-23, 2008.

[28] Farquhar C, Protein and DNA Music, Online available from
http://www.hrpub.org

