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Abstract Password recovery tools are needed to recover 

lost and forgotten passwords so as to regain access to 

valuable information. As the process of password recovery 

can be extremely compute-intensive, hardware accelerators 

are often needed to expedite the recovery process. This paper 

thus presents a high performance, energy-efficient 

accelerator built upon modern hybrid CPU-FPGA SoC 

devices. The proposed password recovery accelerator relies 

on the development of a set of intellectual property (IP) cores 

for implementing variety of encryption algorithms with 

vastly different characteristics and complexities. To keep the 

resource requirements of each IP core running on a 

resource-strapped FPGA to the minimum, while achieving 

the highest throughput possible, the most performance 

critical computational hash functions are mapped to the 

FPGA with two specific optimization techniques, namely the 

fixed message padding for hashing and loop transformation 

for deep pipelining. The proposed password recovery 

accelerator implements a non-blocking deep pipeline design 

that does not incur any data and structural hazards, which is 

made possible by applying a task scheduling scheme through 

the use of block RAMs. Synchronization between tasks that 

are mapped to run separately on CPU and FPGA is achieved 

through task reordering and a communication protocol for 

maximum parallelism and low overhead. The proposed 

design is evaluated on Xilinx XC7Z030-3 device, and it is 

compared much favourably with other known 

implementations. The proposed hardware accelerator design 

is found 12.5 and 3.1 times more resource-efficient than the 

pure FPGA-based password recovery accelerators for 

TrueCrypt and WPA-2, respectively. The proposed 

implementation also shows a remarkable >200 percent 

improvement in terms of energy efficiency over a 

state-of-the-art implementation on NVIDIA GTX 750 Ti 

GPU. 

1. Introduction 

With hundreds of thousands of passwords lost or forgotten 

every year, valuable protected information becomes 

unavailable to the legitimate owner or authorized law 

enforcement personnel. In this case, regaining the control of 

precious, encrypted data relies on the use of password 

recovery tools by means of password cracking. Brute-force 

password cracking, attempts to recover a password by 

simply trying all possible passwords until the correct one is 

eventually hit. The amount of computation time needed to 

find a correct password depends on the password length and 

complexity of the character set, as well as computational 

complexity of the encryption algorithm. Although 

dictionary-based Markov model theory and hints or 

probability provided by users can help reduce the search 

space, password recovery by nature is a time-consuming 

process. 

Since large amount of computation is required during the 

brute-force password recovery process, many hardware 

accelerators have been reported and the most widely used 

hardware platforms are field programmable gate array 

(FPGA) and graphic processing unit (GPU). One big 

problem of most FPGA-based accelerators is that they only 

focus on optimizing their throughput for single hash 

algorithm (e.g., SHA-256) or implementing for one 

particular encryption algorithm, making them inflexible in 

handling many other algorithms that have been developed 

for cryptography. GPU-based solutions, on the other hand, 

are flexible enough to handle different types of cryptography 

algorithms, but they tend to have high energy footprint, as a 

result of sequential execution of cryptographic algorithms 

and GPU’s fixed-width data path architectures with limited 

bandwidths. 

2 Password-Based Cryptography And  Password  

Recovery 

In this section, we will first give a brief introduction to 

password- based cryptography, including both the 

encryption and decryption processes. If a password is not 
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available to allow direct access to password-encrypted 

data/file, password recovery has to take place, and the 

processes and methods for password cracking are reviewed 

in Section 2.2. Different platforms, hardware, software, or 

mixture of both, can be used for the purpose of password 

recovery, and pros and cons of these platforms are assessed 

in this section as well 

2.1 Password based Cryptography 

2.2 Password Recovery/Cracking 

2.3 Hardware for Password Recovery 

 

 Algorithm Modification For FPGA-Friendly 

Implementation  

For a higher throughput and better resource utilization, two 

algorithm modifications are proposed in this section, 

including fixed message padding for hashing and loop 

transformation for deep pipelining. For the sake of 

presentation, cryptographic application of RAR5 will be 

taken as an example. These two modifications can be well 

applied to all other cryptographic applications 

 

 Encryption-specific Fixed Message Padding 

for Hashing 

The encryption algorithm for RAR5 is illustrated in Fig. 4, 

where SHA-256 is employed as its cryptographic core. 

Inside the encryption algorithm, SHA-256 is performed 

twice to obtain two 256-bit long numbers (referred to as 

state-I and state-O in Fig. 4) and these two numbers serve as 

the initial state inputs of the remaining SHA-256 operations. 

The 128-bit salt is padded with a fixed 384-bit message to 

form a 512-bit message block for the first hash message 

authentication code (HMAC) iteration which needs to 

perform SHA-256 twice (referred to as in-HMAC and 

out-HMAC in Fig. 4). For the following 32,799 times of 

HMAC iterations, the 512-bit message blocks for the input 

are generated by padding the 256-bit digest output from the 

last SHA-256 operation with a fixed 256-bit message 

(0x80000000,0,0,0,0,0,0,0x300). 

Inside the SHA-256 hash function, each 512-bit input 

message block is expanded and fed to the 64 rounds of data 

scrambling in words of 32-bit each (denoted by Wt, 0 ≤ t ≤ 
63). Since the input message block only has 16 32-bit words 

(denoted Mt, 0 ≤ t ≤ 15), the remaining 48 32-bit words are 

obtained from message expansion, according to the 

following equations: 

Equation 1 

σₒ(x) =ROT R(x, 7)⊕ROT R(x, 18)⊕SH R(x, 3) 

 

 

Figure 1 The encryption built into RAR5 format with 

multiple iterations of SHA-256 

Equation 2 

σ₁ (x) = ROT R(x, 17) ⊕ ROT R(x, 19) ⊕ SH R(x, 10) 

Equation 3 

Wt = {Mt             0≤t≤15 

        {σ₁ (W฀  ˗ ₂ ) + σₒ(W 

 

where ROT R (x, n) is a circular shift right function that 

shifts binary x by n positions, and SHR (x, n) is a logic shift 

right function that shifts x by n positions. All additions in the 

SHA- 256 algorithm are modulo 232. 

A pipelined SHA-256 design requires 48 message expansion 

modules, each of which consists of two shift-transform 

modules (referred as σ0 and σ1 in Fig. 5) and three 32-bit 

adders. To reduce the resource consumption introduced by 

the message expansion, a fixed message padding method is 

proposed. As shown in Fig. 5, since most of the SHA-256 

computation tasks in the RAR5 encryption algorithm share a 

fixed 256-bit message padding that has many zeros, 

significant number of operations can actually be eliminated 

to reduce the hardware cost. For example, as the calculation 

of W16 is related to W9 and W14 whose values are zeros, 

equation (3) can be simplified as 

Equation 4 
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where one shift-transform module (σ1) and two adders are 
eliminated (as shown in the upper part of Fig. 5). For another 

example, as the calculation of W25 is related to W9 and W10 

whose values are also zeros, equation (3) can be simplified as 

Equation 5 

 

EVALUATION 

In order to evaluate the performance and cost of the 

proposed accelerator for password recovery, we have built 

the hardware prototype based on the Xilinx Zynq 7000 

series FPGA (XC7Z030-3), which comes with 

programmable fabric and two ARM Cortex-A9 processors 

clocked at 500 MHz (the highest clocking frequency can be 

scaled to 1 GHz). The system performance is evaluated on 

an FPGA cluster with 16 FPGA chips connected by a 

Gigabit Ethernet interface. IP cores located in accelerator 

library are synthesized and implemented using the Xilinx 

VIVADO (v2016.3) tool set. To verify the resilience of the 

proposed accelerator, password recovery for several 

commonly used encryption applications, including RAR5, 

WPA-2, office 2007, office 2010, office 2013, and 

TrueCrypt, are all implemented and compared with other 

related works reported in the literature. 

 System Performance 

The system performance of our proposed accelerator for 

different applications is reported in Table 2. The speed of 

the password recovery system is defined as the number of 

passwords that can be encrypted and examined per second, 

and performance of a password recovery system can be 

directly measured with the observed time for cracking. For 

example, the accelerator takes 29 minutes to recover the 

password of a Wi-Fi network that is made of eight numbers 

using a single XC7Z030-3 device. Another figure of merit 

is the energy efficiency, defined as the number of 

passwords that can be recovered per second per Watt. The 

power of single node evaluation board illustrated in Table 2 

is obtained by measuring the output current of the power 

supply of 5 V. 

 

Figure 2 Synchronization in the proposed accelerator 

system 

 

Appli

cations 

Cluster  

Speed 

( passw

ords/s ) 

Single XC7Z030-3 FPGA 

Speed 

(pass

words/s 

Measu

rement 

Power( 

Energy 

Effi. 

( passw

W )  ords/J ) 

RAR5 91,286 5,711 12.95 441 

WAP-

2 

924,007 57,78

0 

14.89 3,880 

Office 

2007 

312,917 19,63

5 

12.35 1,590 

Office 

2010 

156,619 9,837 12.55 784 

Office 

2013 

15,619 976 10.65 92 

True 

Crypt 

325,123 20,44

3 

7.54 2,711 

 

Table 1 System performance of the proposed accelerator 

among different applications (a cluster with 16XC7Z030-3 

FPGA) 

 

 

 

 Hardware Implementation Analysis 

The detailed hardware implementations for different 

cryptographic applications are summarized in Table 3. The 

construction of each accelerator core is dependent on the 

target encryption applications, and each core contains one 

hash function pipeline. In the design of accelerator IP cores 

for TrueCrypt, apart from customizing a RipeMD-160 

pipeline to accelerate the repeated run of RipeMD-160 for 

15,996 times in the looping phase for each password, an 

AES-256 core is instantiated on the FPGA to further 

accelerate the AES-256 encryption and decryption 

operations. The throughput of an accelerator core is defined 

as the number of hashing operations that can be completed 

per second. For example, the throughput of a RAR5 

accelerator core is 189 million SHA-256 operations per 

second, while the throughput of a WPA-2 accelerator core 

is 247.2 million SHA-1 operations per second. To 

characterize the computing power of the reconfigurable 

accelerated device, the maximum number of accelerator 

cores that can be placed on one XC7Z030-3 FPGA is also 

reported in column 5 of Table 3. 

Applicati

ons 

Construct

ion of each 

accelerator 

core 

Fre

q 

(M

Hz) 

Through

put per 

core 

(MOPS/s) 

Ma

x 

NUM

. 

RAR5 SHA-256 

pipeline 

190 189.0 2 

WAP-2 SHA-1 

pipeline 

250 247.2 4 

Office 

2007 

SHA-1 

pipeline 

250 247.3 4 
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Office 

2010 

SHA-1 

pipeline 

250 247.3 4 

Office 

2013 

SHA-512 

pipeline 

100 98.7 1 

True 

Crypt 

Ripe 

MD-160 

pipeline 

190 188.4  

2 

AES-256 

Module 

190 1.79 

 

Table 1 Hardware implementation on one XC7Z030-3 

FPGA 

 

 

 Pipeline with fixed message padding 

Pipelined implementations with the fixed message 

padding technique can significantly reduce the resource 

consumption and improve the performance of hash function 

units. Defined as bits of data that can be processed per slice 

per second, throughput per area is often used to evaluate the 

performance of hardware hash function unit. In our 

proposed design, it takes only 8,153 slices to construct a 

deep SHA-256 pipeline with the 256-bit fixed message 

padding, clocked at 190 MHz in the case of RAR5, reaching 

a performance of 5.9 Mbps per slice (this SHA-256 pipeline 

can process 256-bit of data for every clock cycle). 

Compared with a prior SHA-256 hardware implementation 

on Xilinx Virtex-6 [7] with performance at 2.25 Mbps per 

slice, the proposed design sees 2.6 times of improvement. 

 

 

 Loop transformation for deep pipeline using BRAM 

based scheduler 

This technique is introduced to eliminate the potential 

bubbles in hash function pipeline due to data and structural 

hazards. It is known that the theoretical throughput of a 

pipeline design is equal to its operating frequency, and the 

throughput per core is at least 98.7 percent of the theoretical 

value (obtained from columns 3 and 4 in Table 3), 

indicating that the hash function pipelines are kept nearly 

filled all the time. 

 

Fig. 14. The RAR5 designs after place and route: (a) two 

64-stage SHA-256 pipelines clocked at 114 MHz, and (b) 

two 106-stage SHA-256 pipelines clocked at 190 MHz. 

Trade-Off Between Depth Of Hash Function Pipeline And 

Resource Utilization 

This technique helps reduce the unused resources in the 

FPGA and improve the operating frequency of hash 

function pipeline, thus the throughput. Two RAR5 designs 

after place and route are shown in Fig. 14. When the 

SHA-256 pipeline is implemented with 64 stages, two 

accelerator cores each clocked at 114 MHz can be 

accommodated by the target FPGA; one can see significant 

amounts of resource is wasted. By applying the depth of 

hash function pipeline exploring technique, the alternative 

design with a deeper pipeline can operate on the highest 

achievable frequency of 190 MHz. In this particular 

example, the performance improvement 

is 1.67 folds. 

 Synchronization between FPGA and CPU 

As discussed before, the computation tasks of all the 

cryptographic applications are divided into three phases, 

where the tasks in the initialization phase and the 

comparison phase are assigned to the CPU, while the tasks 

in the looping phase are assigned to the FPGA. For the 

convenience of analysis, we gather the timing information 

of each phase by using the timers available in the ARM 

core. Table 4 lists the required times for task execution and 

data transmission per password during different phases on a 

single FPGA chip, where columns Init, Loop, and Comp 

report the computation time for different applications 

running on corresponding devices (the CPU and the FPGA), 

while the data transfers between the CPU and the FPGA are 

given as T1 and T2. 

Generally speaking, the execution time of a 

heterogeneous system is longer than the execution time of 

any individual unit of the system. As a result, the parallel 

efficiency in our case is determined as Tfpga=Tsystem, 

where Tfpga and Tsystem represent the time spent on the 

FPGA and the system, respectively. The parallel efficiency 

of the proposed synchronization mechanism is reported in 

the last column of Table 4. One can see that across all the 

applications, the parallel efficiency of the hybrid 

CPU-FPGA device is at least 96.0 percent of the theoretical 

limit, which is the case for application of WPA-2. 

Applic

ations 

Time for execution and transmission 

(µs/password) 

Pa

rallel 

Effi. I

nit. 

T

I 

Lo

op 

T

2 

C

omp

. 

Sy

s. 

RAR5 1

9.1 

1

.01 

17

3.5 

0

.08 

0.

4 

17

5.1 

99.

3% 

WAP-

2 

2

.9 

0

.32 

16.

6 

0

.26 

13

.8 

17.

3 

96.

0% 

Office 

2007 

3

.0 

0

.16 

50.

6 

0

.16 

21

.7 

51 99.

2% 

Office 

2010 

3

.2 

0

.16 

10

1.1 

0

.16 

21 10

1.7 

99.

4% 

Office 

2013 

4

6.5 

1

.28 

1,0

12.2 

1

.28 

16

9.6 

1,0

27.5 

99.

1% 

True 

Crypt 

4

6.8 

1

.26 

47.

2 

0

.00 

0.

0 

48.

9 

96.

5% 

Table 2 Parallel efficiency of the proposed 

synchronization mechanism 

Application TrueCrypt WAP-2 
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s 

Implementa

tion 

FPGA type 

FPGA 

Number 

[8] 

Spart

an-6 

I.X 

150 

128 

This 

work 

XC7Z

030-3 

16 

[9] 

Spar

tan-6 

LX1

50 

36 

This 

work 

XC7Z

030-3 

16 

Resource efficiency comparison on single FPGA 

Speed 

(passwors/s

) 

Resources 

(slices) 

Resources 

efficiency 

(passwords/

s/slice) 

 

Speedup 

1,9

17 

23,

038 

0.0

83 

 

Ix 

20,443 

19,650 

1,040 

 

12.5x 

21,8

71 

23,0

38 

0.94

9 

 

1x 

57,780 

19,650 

2.940 

 

3.10x 

Speed comparison on FPGA cluster 

Speed 

(passwors/s

) 

Speedup 

245

.397 

1x 

325,123 

1.32x 

741,

200 

1x 

924,00

7 

1.25x 

Application

s 

TrueCrypt WAP-2 

Implementa

tion 

FPGA type 

 

FPGA 

Number 

[8] 

Spart

an-6 

I.X 

150 

128 

This 

work 

XC7Z

030-3 

 

16 

[9] 

Spar

tan-6 

LX1

50 

36 

This 

work 

XC7Z

030-3 

 

16 

Resource efficiency comparison on single FPGA 

Speed 

(passwors/s

) 

Resources 

(slices) 

Resources 

efficiency 

(passwords/

s/slice) 

 

Speedup 

1,9

17 

23,

038 

0.0

83 

 

Ix 

20,443 

19,650 

1,040 

 

12.5x 

21,8

71 

23,0

38 

0.94

9 

 

1x 

57,780 

19,650 

2.940 

 

3.10x 

Speed comparison on FPGA cluster 

Speed 

(passwors/s

) 

Speedup 

245

.397 

1x 

325,123 

1.32x 

741,

200 

1x 

924,00

7 

1.25x 

 

Table 3 Comparison of hardware accelerators based on 

FPGA cluster 

 Comparison with Other Schemes 

 Comparison with FPGA-only implementations 

To facilitate a fair comparison, we consider two figures 

of merit, namely the resource efficiency and the password 

recovery speed. The resource efficiency is defined as the 

system speed normalized with respect to available hardware 

resources (i.e., the number of slices in FPGA). To the best 

of our knowledge, FPGA-based accelerators for password 

recovery on the cryptographic applications of RAR-5, office 

2007, office 2010, and office 2013 have not been disclosed. 

As a result, we can only compare our implementations of 

TrueCrypt and WPA-2 with the existing studies, as listed in 

Table 5. Note that all the existing designs can only deal one 

specific type of cryptographic application. 

An implementation based on a single FPGA cluster with 

128 Xilinx Spartan-6 LX150 FPGA chips was reported for 

TrueCrypt acceleration, and each FPGA consists of eight 

RipeMD-160 pipelines and two AES-256 XTS cores 

clocked at 66 MHz, reaching a speed of 245,397 passwords 

per second. However, the implementation of RipeMD-160 

is not resource-efficient, as its pipeline contains only five 

rounds and it takes 16 cycles to finish one time of 

RipeMD-160 hashing, resulting in a resource efficiency of 

only 0.083 passwords/s/slice, far less than the resource 

efficiency of our implementation. Even though we have 

only 16 FPGA chips in our proposed implementation and 

only two RipeMD-160 pipelines are instantiated on one 

FPGA, the throughput of 325,123 passwords per second is 

1.32 times faster than the design reported. 

 Another implementation for password recovery of 

WPA-2 was also based on a single FPGA cluster. With 36 

Spartan- 6 LX150 FPGA chips, each of which consists of 

two SHA-1pipelines operating at 187 MHz, that design 

reaches performance of 741,200 passwords per second. 

However, since a standard SHA-1 pipeline is adopted in 

that scheme, only two SHA-1 pipelines can be placed on a 

single FPGA. In our design, we customize the SHA-1 

pipeline with the fixed message padding technique, which 

makes it possible to place four SHA-1 pipelines working at 

250 MHz on a single FPGA chip. The resource efficiency 

of our proposed design is thus 3.1 times better than the 

design reported. 

Appli

cations 

R

AR5 

WP

A-2 

Off

ice 

2007 

O

ffice 

2010 

O

ffice 

201

3 

True

Crypt 

System throughput (passwords/s)  

This 

work 

Hashc

at 

Speed

up 

5,

711 

5,

384 

1.

1 

57,

780 

61,

883 

0.9 

19,

635 

21,

195 

0.9 

9,

837 

10

,559 

0.

9 

9

79 

1,

374 

0.

7 

20,4

43 

40,3

65 

0.5 

Power (Watt) 
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This 

work 

Hashc

at 

12

.95 

33

.54 

14.

89 

38.

05 

12.

35 

38.

08 

12

.55 

37

.92 

1

0.65 

3

4.95 

7.54 

34.6

0 

Energy Efficient (passpordws/J) 

This 

work  

Hashc

at 

Speed

up 

44

1.00 

16

0.52 

2.

75 

3,8

80.46 

1,6

26.36 

2.3

9 

1,5

89.88 

556

.59 

2.8

6 

78

3.82 

27

8.45 

2.

81 

9

1.92 

3

9.31 

2.

34 

2,71

1.27 

1,16

6.62 

2.32 

Table 4 Comparison against the design using Nvidia 

GTX750 Ti GPU 

 

Comparison with GPU scheme 

Table 6 compares the throughput and energy efficiency 

between the Hashcat v3.6 software implementations on G 

PU and the proposed accelerator on hybrid CPU-FPGA 

cluster. The energy consumption of GPU is reported by the 

NVIDIA System Management Interface. 

Computing performance of our hardware accelerator with 

one embedded FPGA is on a par with the implementation 

using an NVIDIA GTX 750 Ti GPU. The energy efficiency 

of our proposed accelerator is 2.32~2.86 times better than 

that of implementation using an NVIDIA GTX 750 Ti 

GPU. 

 

 

3. Conclusion 

In this paper, we have proposed a high-speed and energy 

efficient accelerator for password recovery. For the 

construction of hardware accelerator with high throughput 

and low resource consumption, optimizations were 

performed at both algorithm and hardware implementation 

levels, including deep pipelining with the fixed message 

padding for hashing and loop transformation based on 

BRAM-based scheduler, and exploration between depth of 

hash function pipeline and FPGA resource constraints, as 

well as synchronization between the FPGA and the CPU for 

maximum parallelism. 

Compared with the FPGA-only password recovery 

accelerators, the proposed design improves the resource 

efficiency by 12.5 and 3.1 times for encryption applications 

of TrueCrypt and WPA- 2, respectively. Compared with the 

GPU-based password recovery implementation Hashcat 

with nearly identical performance, our FPGA-based 

accelerator increases the energy efficiency by 2.32~2.86 

times. 
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