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Introduction.  

The property of continuity is exhibited by 

various aspects of nature. The water flow in the 

rivers is continuous. The flow of time in human 

life is continuous i.e. you are getting older 

continuously. And so on. Similarly, 

in mathematics, we have the notion of the 

continuity of a function. 

 In mathematics, a continuous function is 

a function that does not have any abrupt 

changes in value, known as discontinuities. 

More precisely, a function is continuous if 

arbitrarily small changes in its output can be 

assured by restricting to sufficiently small 

changes in its input. If not continuous, a 

function is said to be discontinuous. Up until the 

19th century, mathematicians largely relied 

on intuitive notions of continuity, during which 

attempts such as the epsilon–delta 

definition were made to formalize it. 

 Continuity of functions is one of the core 

concepts of topology, which is treated in full 

generality below. The introductory portion of 

this article focuses on the special case where the 

inputs and outputs of functions are real 

numbers. A stronger form of continuity 

is uniform continuity. As an example, the 

function H(t) denoting the height of a growing 

flower at time t would be considered 

continuous. In contrast, the 

function M(t) denoting the amount of money in 

a bank account at time t would be considered 

discontinuous, since it "jumps" at each point in 

time when money is deposited or withdrawn. 

 What it simply means is that a function 

is said to be continuous if you can sketch 

its curve on a graph without lifting your pen 

even once (provided that you can draw good). It 

is a very straightforward and close to accurate 

definition actually. But for the sake of higher 

mathematics, we must define it in a more 

precise way.  

Definition of Continuity 

A function f(x) is said to be continuous at a 

point x = a, in its domain if the following three 

conditions are satisfied: 

f(a) exists (i.e. the value of f(a) is finite) 

Limx→a f(x) exists (i.e. the right-hand limit = 

left-hand limit, and both are finite) 

Limx→a f(x) = f(a) 

The function f(x) is said to be continuous in the 

interval I = [x1,x2] if the 

three conditions mentioned above are satisfied 

for every point in the interval I. 

However, note that at the end-points of the 

interval I, we need not consider both the right-

hand and the left-hand limits for the calculation 

of Limx→a f(x). For a = x1, only the right-hand 

limit need be considered, and for a = x2, only 

the left-hand limit needs to be considered. 
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Trigonometric Functions in certain periodic 

intervals (sin x, cos x, tan x etc.) 

Polynomial Functions (x2 +x +1, x4 + 2….etc.) 

Exponential Functions (e2x, 5ex etc.) 

Logarithmic Functions in their domain (log10x, 

ln x2 etc.) 

Discontinuity 

If any one of the three conditions for a function 

to be continuous fails; then the function is said 

to be discontinuous at that point. On the basis of 

the failure of which specific condition leads to 

discontinuity, we can define different types of 

discontinuities. 

Jump Discontinuity 

In this type of discontinuity, the right-hand limit 

and the left-hand limit for the function at x = a 

exists; but the two are not equal to each other. It 

can be shown 

as:Limx→a+f(x)≠Limx→a−f(x)Limx→a+f(x)≠

Limx→a−f(x) 

 
Infinite Discontinuity 

The function diverges at x = a to give it a 

discontinuous nature here. That is to say, f(a) is 

not defined f(a) is not defined Since the value of 

the function at x = a tends to infinity or doesn’t 

approach a particular finite value, the limits of 

the function as x → a are also not defined. 

 
Point Discontinuity 

This is a category of discontinuity in which the 

function has a well defined two-sided limit at x 

= a, but either f(a) is not defined or f(a) is not 

equal to its limit. The discrepancy can be shown 

as:Limx→af(x)≠f(a)Limx→af(x)≠f(a)This type 

of discontinuity is also known as a Removable 

Discontinuity since it can be easily eliminated 

by redefining the function in such a way 

that,f(a)=Limx→af(x)f(a)=Limx→af(x) 

 
Question 1: Let a function be defined as f(x) = 

5 – 2x for x < 1 

3 for x = 1 

x + 2 for x > 1 

Is this function continuous for all x? 

Answer : Since for x < 1 and x > 1, the function 

f(x) is defined by straight lines (that can be 

drawn continuously on a graph), the function 

will be continuous for all x ≠ 1. Now for x = 1, 

let us check all the three conditions: 

–> f(1) = 3 (given) 
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–> Left-Hand Limit: 

=Limx→1−f(x)=Limx→1−f(x) 

=Limx→1−(5–2x)=Limx→1−(5–2x) 

=5–2×1=5–2×1 

=3=3 

–> Right-Hand Limit: 

=Limx→1+f(x)=Limx→1+f(x) 

=Limx→1+(x+2)=Limx→1+(x+2) 

=1+2=1+2 

=3=3 

Limx→1−f(x)=Limx→1+f(x)=3=f(1)Limx→1−

f(x)=Limx→1+f(x)=3=f(1) 

Thus all the three conditions are satisfied and 

the function f(x) is found out to be continuous at 

x = 1. Therefore, f(x) is continuous for all x. 

This concludes our discussion on the topic of 

continuity of functions. Continuous functions 

are very important as they are necessarily 

differentiable at every point on which they are 

continuous, and hence very simple 

to work upon. 

The three conditions of continuity are as 

follows: 

The function is expressed at x = a. 

The limit of the function as the approaching of x 

takes place, a exists. 

The limit of the function as the approaching of x 

takes place, a is equal to the function value f(a). 

A limit refers to a number that a function 

approaches as the approaching of an 

independent variable of the function takes place 

to a given value. For example, given the 

function f (x) = 3x, the limit of f (x) as the 

approaching of x takes place to 2 is 6. 

Symbolically, one can write this as f (x) = 6. 

Discontinuous functions are those that are not a 

continuous curve. In a removable discontinuity, 

one can redefine the point so as to make the 

function continuous by matching the particular 

point’s value with the rest of the function. 

 There are several different definitions of 

continuity of a function. Sometimes a function 

is said to be continuous if it is continuous at 

every point in its domain. In this case, the 

function f(x) = tan(x), with the domain of all 

real x ≠ (2n+1)π/2, n any integer, is continuous. 

Sometimes an exception is made for boundaries 

of the domain. For example, the graph of the 

function f(x) = √x, with the domain of all non-

negative reals, has a left-hand endpoint. In this 

case only the limit from the right is required to 

equal the value of the function. Under this 

definition f is continuous at the boundary x = 

0 and so for all non-negative arguments. The 

most common and restrictive definition is that a 

function is continuous if it is continuous at all 

real numbers. In this case, the previous two 

examples are not continuous, but 

every polynomial function is continuous, as are 

the sine, cosine, and exponential functions. Care 

should be exercised in using the 

word continuous, so that it is clear from the 

context which meaning of the word is intended. 
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single point of discontinuity, namely x = 0, 

and it has an infinite discontinuity there. 
 


