

Vol 06 Issue08, Sept2017 ISSN 2456 – 5083 www.ijiemr.org

COPY RIGHT

2017 IJIEMR.Personal use of this material is permitted. Permission from IJIEMR must be

obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted

component of this work in other works. No Reprint should be done to this paper, all copy

right is authenticated to Paper Authors

IJIEMR Transactions, online available on 25
th

 Sept2017. Link

:http://www.ijiemr.org/downloads.php?vol=Volume-6&issue=ISSUE-8

Title: VLSI DESIGN OF AN AREA EFFICIENT ARCHITECTURE OF DSP ACCELERATOR USING

DADDA ALGORITHM

Volume 06, Issue 08, Pages: 327– 333.

Paper Authors

DR.UDARA YEDUKONDALU,SASI PRIYA MUSUNURI ,DR. DOLA

SANJAY.S

Ramachandra College of Engineering, Eluru, A.P., India

 USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER

To Secure Your Paper As Per UGC Guidelines We Are Providing A Electronic

Bar Code

Vol 06 Issue08, Sept2017 ISSN 2456 – 5083 Page 327

VLSI DESIGN OF AN AREA EFFICIENT ARCHITECTURE OF DSP

ACCELERATOR USING DADDA ALGORITHM

1
DR. UDARA YEDUKONDALU,

2
SASI PRIYA MUSUNURI ,

3
DR. DOLA SANJAY.S

1
HOD & Professor, Dept. of ECE, Ramachandra College of Engineering, Eluru, A.P., India

2
M.Tech Student, Dept. of ECE, Ramachandra College of Engineering, Eluru, A.P., India

3
Principal, Ramachandra College of Engineering, Eluru, A.P., India

 1
yedukondalu.udara@gmail.com,

2
musunuri.priya@gmail.com,

3
dicedola@gmail.com

ABSTRACT— Hardware acceleration has been proved an extremely promising implementation

strategy for the digital signal processing (DSP) domain. Rather than adopting a monolithic

application-specific integrated circuit design approach, in this brief, we present a novel

accelerator architecture comprising flexible computational units that support the execution of a

large set of operation templates found in DSP kernels. We differentiate from previous works on

flexible accelerators by enabling computations to be aggressively performed with carry-save

(CS) formatted data. Advanced arithmetic design concepts, i.e., recoding techniques, are utilized

enabling CS optimizations to be performed in a larger scope than in previous approaches.

Extensive experimental evaluations show that the proposed accelerator architecture delivers

average gain in area-delay product and also in energy consumption compared with the state-of-

art flexible data paths.

Key Words: DSP, CS, Flexible Accelerator

I. INTRODUCTION

odern embedded systems target high-end

application domains requiring efficient

implementations of computationally

intensive digital signal processing (DSP)

functions. The incorporation of

heterogeneity through specialized hardware

accelerators improves performance and

reduces energy consumption. Although

application-specific integrated circuits

(ASICs) form the ideal acceleration solution

in terms of performance and power, their

inflexibility leads to increased silicon

complexity, as multiple instantiated ASICs

are needed to accelerate various kernels.

Many researchers have proposed the use of

domain-specific coarse-grained

reconfigurable accelerators in order to

increase ASICs’ flexibility without

significantly compromising their

performance.High-performance flexible data

paths have been proposed to efficiently map

primitive or chained operations found in the

initial data-flow graph (DFG) of a kernel.

The templates of complex chained

operations are either extracted directly from

the kernel’s DFG or specified in a

predefined behavioral template library.

Design decisions on the accelerator’s data

M

mailto:3dicedola@gmail.com

Vol 06 Issue08, Sept2017 ISSN 2456 – 5083 Page 328

path highly impact its efficiency. Existing

works on coarse-grained reconfigurable data

paths mainly exploit architecture-level

optimizations. The domain-specific

architecture generation algorithms vary the

type and number of computation units

achieving a customized design structure.

Flexible architectures were proposed

exploiting ILP and operation chaining.

Recently, Ansaloniet adopted aggressive

operation chaining to enable the

computation of entire sub expressions using

multiple ALUs with heterogeneous

arithmetic features.In this brief, we propose

a high-performance architectural scheme for

the synthesis of flexible hardware DSP

accelerators by combining optimization

techniques from both the architecture and

arithmetic levels of abstraction. The

proposed architecture compromising flexible

computational units that support the

execution of a large set of operation

templates found in DSP kernels. The

proposed accelerator architecture delivers

average gain in area- delay product and also

in energy consumption compared with the

state-of-art flexible data paths.

II. CARRY SAVE ARITHMETIC

CS representation has been widely used to

design fast arithmetic circuits due to its

inherent advantage of eliminating the large

carry-propagation chains. CS arithmetic

optimizations rearrange the application’s

DFG and reveal multiple input additive

operations (i.e., chained additions in the

initial DFG), which can be mapped onto CS

compressors. The goal is to maximize the

range that a CS computation is performed

within the DFG. However, whenever a

multiplication node is interleaved in the

DFG, either a CS to binary conversion is

invoked or the DFG is transformed usingthe

distributive property. Thus, the CS

optimization approaches have limited impact

on DFGs dominated by multiplications, e.g.,

filtering DSP applications.We tackle the

limitation by exploiting the CS to modified

Booth (MB) recoding each time a

multiplication needs to be performed within

a CS-optimized data path. Thus, the

computations throughout the multiplications

are processed using CS arithmetic and the

operations in the targeted data path are

carried out without using any intermediate

carry-propagate adder for CS to binary

conversion, thus improving performance.

III. FLEXIBLE ACCELARATOR

The proposed flexible accelerator

architecture is shown in Fig. 1. Each FCU

operates directly on CS operands and

produces data in the same form 1 for direct

reuse of intermediate results. Each FCU

operates on 16-bit operands. Such a bit-

length is adequate for the most DSP data

paths, but the architectural concept of the

FCU can be straightforwardly adapted for

smaller or larger bit-lengths. The number of

FCUs is determined at design time based on

the ILP and area constraints imposed by the

designer. The CS to Bin module is a ripple-

carry adder and converts the CS form to the

two’s complement one. The register bank

consists of scratch registers and is used for

storing intermediate results and sharing

operands among the FCUs. Different DSP

kernels (i.e., different register allocation and

Vol 06 Issue08, Sept2017 ISSN 2456 – 5083 Page 329

data communication patterns per kernel) can

be mapped onto the proposed architecture

using post-RTL data path interconnection

sharing techniques. The control unit drives

the overall architecture (i.e., communication

between the data port and the register bank,

configuration words of the FCUs and

selection signals for the multiplexers) in

each clock cycle

A.Structure of the Proposed Flexible

Computational Unit

The structure of the FCU (Fig. 2) has been

designed to enable high-performance

flexible operation chaining based on a

library of operation templates. Each FCU

can be configured to any of the T1–T5

operation templates shown in Fig. 3. The

proposed FCU enables intra template

operation chaining by fusing the additions

performed before/after the multiplication

and performs any partial operation template

of the following complex operations

 W* = A x (X*+Y*) + K*

 W* = A x K* + (X* + Y*).

Fig. 2 Flexible Computational Unit

The following relation holds for all CS data

X∗={XC,XS}=XC+XS. The operand A is a

two’s complement number. The alternative

execution paths in each FCU are specified

after properly setting the control signals of

the multiplexers MUX1 and MUX2 (Fig. 2).

The multiplexer MUX0 outputs Y∗ when

CL0 = 0(i.e., X∗+Y∗ is carried out) or Y∗

when X∗−Y∗ is required and CL0 =1. The

two’s complement 4 2 CS adder produces

the N∗=X∗+Y∗ when the input carry equals

0 or the N∗=X∗−Y∗ when the input carry

equals 1. The MUX1 determines if N∗(1) or

K∗(2) is multiplied with

A.TheMUX2specifies if K∗(1) or N∗(2)is

added with the multiplication product. The

multiplexer MUX3accepts the output of

MUX2 and its 1’s complement and outputs

the former one when an addition with the

multiplication product is required (i.e.,

CL3=0) or the later one when a subtraction

is carried out (i.e., CL3=1). The 1-bit ace for

the subtraction is added in the CS adder tree.

The multiplier comprises a CS-to-MB

module, which adopts a recently proposed

technique to recode the 17-bit P∗ in its

respective MB digits with minimal carry

propagation. The multiplier’s product

consists of 17 bits. The multiplier includes a

compensation method for reducing the error

imposed at the product’s accuracy by the

Vol 06 Issue08, Sept2017 ISSN 2456 – 5083 Page 330

truncation technique. However, since all the

FCU inputs consist of 16 bits and provided

that there are no overflows, the 16 most

significant bits of the 17-bit W∗ (i.e., the

output of the Carry-Save Adder (CSA) tree,

and thus, of the FCU) are inserted in the

appropriate FCU when requested.

B.DFG Mapping onto the Proposed FCU-

Based Architecture

In order to efficiently map DSP kernels

onto the proposed FCU-based accelerator,

the semiautomatic synthesis methodology

has been adapted. At first, a CS-aware

transformation is performed onto the

original DFG, merging nodes of multiple

chained additions/subtractions to 4 2

compressors. A pattern generation on the

transformed DFG clusters the CS nodes with

the multiplication operations to form FCU

template operations (Fig. 3). The designer

selects the FCU operations covering the

DFG for minimized latency.Given that the

number of FCUs is fixed, a resource-

constrained scheduling is considered with

the available FCUs and CS to Bin modules

determining the resource constraint set. The

clustered DFG is scheduled, so that each

FCU operation is assigned to a specific

control step. A list-based scheduler has been

adopted considering the mobility of FCU

operations. The FCU operations are

scheduled according to descending mobility.

The scheduled FCU operations are bound

onto FCU instances and proper

configuration bits are generated. After

completing register allocation, a FSM is

generated in order to implement the control

unit of the overall architecture

IV. DADDA MULTIPLIER

The Dadda multiplier is a hardware

multiplier design, invented by computer

scientist Luigi Dadda in 1965. It is slightly

faster (for all operand sizes) and requires

fewer gates (for all but the smallest operand

sizes) than array multiplier. Dadda

multipliers have the same 3 steps 1. Multiply

(that is - AND) each bit of one of the

arguments, by each bit of the other, yielding

N2 results. Depending on position of the

multiplied bits, the wires carry different

weights, for example wire of bit carrying

result of a2b3 is 32. 2. Reduce the number

of partial products to two layers of full and

half adders. 3. Group the wires in two

numbers, and add them with a conventional

adder.The proposed multiplier 16x16 Dadda

multiplier requires six reduction stages with

intermediate matrix heights of 13, 9,6,4,3

and finally 2.

Vol 06 Issue08, Sept2017 ISSN 2456 – 5083 Page 331

The Dadda scheme essentially minimizes

the number of adder stages required to

perform the summation of the partial

products. This is achieved by using full and

half adders to reduce the number of rows in

the matrix of bits at each summation stage

by a factor of 3/2.The results in a final

matrix consisting of two rows of bits which

must be summed using a multiple-bit adder

(e.g. a ripple-carry or carry look-ahead

adder). The corresponding circuit for a

multiplier using this scheme shown in Fig 2.

V. SIMULATION

This simulation is run by Xilinx ISE Design

Suite. Fig. 5 shows the simulation result for

Flexible control unit and Fig. 6 shows the

Area results

VI. CONCLUSION

In this brief, we introduced a flexible

accelerator architecture that exploits the

incorporation of CS arithmetic optimizations

to enable fast chaining of additive and

multiplicative operations. The proposed

flexible accelerator architecture can operate

on both conventional two’s complement and

CS-formatted data operands, thus enabling

high degrees of computational density to be

achieved. Theoretical and experimental

analyses have shown that the proposed

solution forms an efficient design tradeoff

point delivering optimized latency/area and

energy implementations.

Vol 06 Issue08, Sept2017 ISSN 2456 – 5083 Page 332

REFERENCES

[1] P. Ienne and R. Leupers, Customizable

Embedded Processors: Design

Technologies and Applications. San

Francisco, CA, USA: Morgan

Kaufmann, 2007.

[2] P. M. Heysters, G. J. M. Smit, and E.

Molenkamp, “A flexible and energy-

efficient coarse-grained reconfigurable

architecture for mobile systems,” J.

Supercomput., vol. 26, no. 3, pp. 283–
308, 2003.

[3] B. Mei, S. Vernalde, D. Verkest, H. D.

Man, and R. Lauwereins, “ADRES: An

architecture with tightly coupled VLIW

processor and coarse-grained

reconfigurable matrix,” in Proc. 13th Int.

Conf. Field Program. Logic Appl., vol.

2778. 2003, pp. 61–70.

[4] M. D. Galanis, G. Theodoridis, S.

Tragoudas, and C. E. Goutis, “A high-

performance data path for synthesizing

DSP kernels,” IEEE Trans. Comput. -

Aided Design Integr. Circuits Syst., vol.

25, no. 6, pp. 1154–1162, Jun. 2006.

[5] K. Compton and S. Hauck, “Automatic

design of reconfigurable domain-specific

flexible cores,” IEEE Trans. Very Large

Scale Integr. (VLSI) Syst., vol. 16, no. 5,

pp. 493–503, May 2008.

[6] S. Xydis, G. Economakos, and K.

Pekmestzi, “Designing coarse-grain

reconfigurable architectures by inlining

flexibility into custom arithmetic data-

paths,” Integr., VLSI J., vol. 42, no. 4,

pp. 486–503, Sep. 2009.

[7] S. Xydis, G. Economakos, D. Soudris,

and K. Pekmestzi, “High performance

and area efficient flexible DSP data path

synthesis,” IEEE Trans. Very Large

Scale Integr. (VLSI) Syst., vol. 19, no. 3,

pp. 429–442, Mar. 2011.

[8] G. Ansaloni, P. Bonzini, and L. Pozzi,

“EGRA: A coarse grained

reconfigurable architectural template,”
IEEE Trans. Very Large Scale Integr.

(VLSI) Syst., vol. 19, no. 6, pp. 1062–
1074, Jun. 2011.

[9] M. Stojilovic, D. Novo, L. Saranovac, P.

Brisk, and P. Ienne, “Selective

flexibility: Creating domain-specific

reconfigurable arrays,” IEEE Trans.

Comput. -Aided Design Integr. Circuits

Syst., vol. 32, no. 5, pp. 681–694, May

2013.

[10] T. Kim and J. Um, “A

practical approach to the synthesis of

arithmetic circuits using carry-save-

adders,” IEEE Trans. Comput. -

Aided Design Integr. Circuits Syst.,

vol. 19, no. 5, pp. 615–624, May

2000.

[11] A. K. Verma, P. Brisk, and P.

Ienne, “Data-flow transformations to

maximize the use of carry-save

representation in arithmetic circuits,”
IEEE Trans. Comput. -Aided Design

Integr. Circuits Syst., vol. 27,

no. 10, pp. 1761–1774, Oct. 2008.

 B. Parhami, Computer Arithmetic:

Algorithms and Hardware

 Designs. Oxford, U.K.: Oxford

Univ. Press, 2000.

[12] Dadda, "Some Schemes for

Parallel Multipliers," Alta

Frequenza, vol. 34, pp. 349-356,

1965.

Vol 06 Issue08, Sept2017 ISSN 2456 – 5083 Page 333

[13] An efficient floating-point

multiplier design using combined

booth and dada algorithms. 30th June

2014. Vol. 64 No.3

[14] Design and Analysis of

CMOS Based DADDA Multiplier.

IJCEM, VOL .16 ISSUE 6, NOV

2013

Authors profile:

Yedukondalu Udara

Received the B.Tech in

Electronics &

Communication

Engineering from

VRSEC, Vijayawada in 2001 and

M.Tech in I & CS from JNTU,

KANINADA in 2007. Ph.D. He

obtained doctorate from ANU College

of Engineering and Technology. His

area of interest comprises is Low Power

VLSI Design. Presently, he is working

as Head of the department and

professor, Department of Electronics

and Communication Engineering,

Ramachandra College of Engineering.

Sasi Priya Musunuri

Received the B.Tech in

Electronics &

Communication Engineering from

Rama Chandra college of Engineering

affiliated to JNTU, KAKINADA in

2014 and pursing M.Tech in VLSI from

Ramachandra College of Engineering,

Andhra Pradesh. Her research interests

include VHDL, Verilog modeling of

digital circuits and testing, Schematic

Diagram and Simulation, Digital circuits

using Mentor Graphics, Pyxis and

Calibre.

Dola Sanjay. S

Received the B.Tech in Electronics &

Communication Engineering from

UBDTCE, (Govt College) Davanagere,

Karnataka in 1999, M.Tech in Applied

Electronics from Dr.MGR University,

Chennai in 2007 and Ph.d from JNTUA,

Anantapur, AP in 2007. He has Over 14+

years experience in Teaching with reputed

Engineering colleges. Insightful experience

as principal in-charge principal, Vice

principal, All India Council for Technical

Education(AICTE) , Local Inspection

Committee (LIC), Facts Finding Committee

(FFC), National Board of Accreditation

(NBA). Presently he is working as Principal

in Ramachandra College of Engineering.

	I. INTRODUCTION
	II. carry save arithmetic
	III. FLEXIBLE ACCELARATOR
	A.Structure of the Proposed Flexible Computational Unit
	B.DFG Mapping onto the Proposed FCU- Based Architecture

	V. SIMULATION
	References

