
 
 

Vol 06  Issue08, Sept2017         ISSN 2456 – 5083                                                          www.ijiemr.org 

 

COPY RIGHT  

2017 IJIEMR.Personal use of this material is permitted. Permission from IJIEMR must be 

obtained for all other uses, in any current or future media, including 

reprinting/republishing this material for advertising or promotional purposes, creating new 

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted 

component of this work in other works. No Reprint should be done to this paper, all copy 

right is authenticated to Paper Authors   

IJIEMR Transactions, online available on 25
th

 Sept2017. Link 

:http://www.ijiemr.org/downloads.php?vol=Volume-6&issue=ISSUE-8 

 

Title: VLSI DESIGN OF AN AREA EFFICIENT ARCHITECTURE OF DSP ACCELERATOR USING 

DADDA ALGORITHM 

 

Volume 06, Issue 08, Pages: 327– 333. 

Paper Authors  

DR.UDARA YEDUKONDALU,SASI PRIYA MUSUNURI ,DR. DOLA 

SANJAY.S  

Ramachandra College of Engineering, Eluru, A.P., India  

 

 

 

 

 

                                         

                                                                                    USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER  

 

To Secure Your Paper As Per UGC Guidelines We Are Providing A Electronic 

Bar Code 



 

Vol 06  Issue08, Sept2017                              ISSN 2456 – 5083   Page 327 

 

 

VLSI DESIGN OF AN AREA EFFICIENT ARCHITECTURE OF DSP 

ACCELERATOR USING DADDA ALGORITHM 

1
DR. UDARA YEDUKONDALU, 

2
SASI PRIYA MUSUNURI , 

3
DR. DOLA SANJAY.S          

1
HOD & Professor, Dept. of ECE, Ramachandra College of Engineering, Eluru, A.P., India                                                

               
2
M.Tech Student, Dept. of ECE, Ramachandra College of Engineering, Eluru, A.P., India 

     
3
Principal, Ramachandra College of Engineering, Eluru, A.P., India 

             1
yedukondalu.udara@gmail.com,  

2
musunuri.priya@gmail.com, 

3
dicedola@gmail.com 

ABSTRACT— Hardware acceleration has been proved an extremely promising implementation 

strategy for the digital signal processing (DSP) domain. Rather than adopting a monolithic 

application-specific integrated circuit design approach, in this brief, we present a novel 

accelerator architecture comprising flexible computational units that support the execution of a 

large set of operation templates found in DSP kernels. We differentiate from previous works on 

flexible accelerators by enabling computations to be aggressively performed with carry-save 

(CS) formatted data. Advanced arithmetic design concepts, i.e., recoding techniques, are utilized 

enabling CS optimizations to be performed in a larger scope than in previous approaches. 

Extensive experimental evaluations show that the proposed accelerator architecture delivers 

average gain in area-delay product and also in energy consumption compared with the state-of-

art flexible data paths. 

Key Words: DSP, CS, Flexible Accelerator 

I. INTRODUCTION 

odern embedded systems target high-end 

application domains requiring efficient 

implementations of computationally 

intensive digital signal processing (DSP) 

functions. The incorporation of 

heterogeneity through specialized hardware 

accelerators improves performance and 

reduces energy consumption. Although 

application-specific integrated circuits 

(ASICs) form the ideal acceleration solution 

in terms of performance and power, their 

inflexibility leads to increased silicon 

complexity, as multiple instantiated ASICs 

are needed to accelerate various kernels.  

 

 

Many researchers have proposed the use of 

domain-specific coarse-grained 

reconfigurable accelerators in order to 

increase ASICs’ flexibility without 

significantly compromising their 

performance.High-performance flexible data 

paths have been proposed to efficiently map 

primitive or chained operations found in the 

initial data-flow graph (DFG) of a kernel. 

The templates of complex chained 

operations are either extracted directly from 

the kernel’s DFG or specified in a 

predefined behavioral template library. 

Design decisions on the accelerator’s data  
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path highly impact its efficiency. Existing 

works on coarse-grained reconfigurable data 

paths mainly exploit architecture-level 

optimizations. The domain-specific 

architecture generation algorithms vary the 

type and number of computation units 

achieving a customized design structure. 

Flexible architectures were proposed 

exploiting ILP and operation chaining. 

Recently, Ansaloniet adopted aggressive 

operation chaining to enable the 

computation of entire sub expressions using 

multiple ALUs with heterogeneous 

arithmetic features.In this brief, we propose 

a high-performance architectural scheme for 

the synthesis of flexible hardware DSP 

accelerators by combining optimization 

techniques from both the architecture and 

arithmetic levels of abstraction. The 

proposed architecture compromising flexible 

computational units that support the 

execution of a large set of operation 

templates found in DSP kernels. The 

proposed accelerator architecture delivers 

average gain in area- delay product and also 

in energy consumption compared with the 

state-of-art flexible data paths. 

II. CARRY SAVE ARITHMETIC 

CS representation has been widely used to 

design fast arithmetic circuits due to its 

inherent advantage of eliminating the large 

carry-propagation chains. CS arithmetic 

optimizations rearrange the application’s 

DFG and reveal multiple input additive 

operations (i.e., chained additions in the 

initial DFG), which can be mapped onto CS 

compressors. The goal is to maximize the 

range that a CS computation is performed  

 

within the DFG. However, whenever a 

multiplication node is interleaved in the 

DFG, either a CS to binary conversion is 

invoked or the DFG is transformed usingthe 

distributive property. Thus, the CS 

optimization approaches have limited impact 

on DFGs dominated by multiplications, e.g., 

filtering DSP applications.We tackle the 

limitation by exploiting the CS to modified 

Booth (MB) recoding each time a 

multiplication needs to be performed within 

a CS-optimized data path. Thus, the 

computations throughout the multiplications 

are processed using CS arithmetic and the 

operations in the targeted data path are 

carried out without using any intermediate 

carry-propagate adder for CS to binary 

conversion, thus improving performance. 

III. FLEXIBLE ACCELARATOR 

The proposed flexible accelerator 

architecture is shown in Fig. 1. Each FCU 

operates directly on CS operands and 

produces data in the same form 1 for direct 

reuse of intermediate results. Each FCU 

operates on 16-bit operands. Such a bit-

length is adequate for the most DSP data 

paths, but the architectural concept of the 

FCU can be straightforwardly adapted for 

smaller or larger bit-lengths. The number of 

FCUs is determined at design time based on 

the ILP and area constraints imposed by the 

designer. The CS to Bin module is a ripple-

carry adder and converts the CS form to the 

two’s complement one. The register bank 

consists of scratch registers and is used for 

storing intermediate results and sharing 

operands among the FCUs. Different DSP 

kernels (i.e., different register allocation and  
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data communication patterns per kernel) can 

be mapped onto the proposed architecture 

using post-RTL data path interconnection 

sharing techniques. The control unit drives 

the overall architecture (i.e., communication 

between the data port and the register bank, 

configuration words of the FCUs and 

selection signals for the multiplexers) in 

each clock cycle 

 

A.Structure of the Proposed Flexible 

Computational Unit 

The structure of the FCU (Fig. 2) has been 

designed to enable high-performance 

flexible operation chaining based on a 

library of operation templates. Each FCU 

can be configured to any of the T1–T5 

operation templates shown in Fig. 3. The 

proposed FCU enables intra template 

operation chaining by fusing the additions 

performed before/after the multiplication 

and performs any partial operation template 

of the following complex operations 

 

              W*   =  A x (X*+Y*) + K* 

     W*  =   A x K* + (X* + Y*). 

 

 

 
Fig. 2 Flexible Computational Unit 

The following relation holds for all CS data 

X∗={XC,XS}=XC+XS. The operand A is a 

two’s complement number. The alternative 

execution paths in each FCU are specified 

after properly setting the control signals of 

the multiplexers MUX1 and MUX2 (Fig. 2). 

The multiplexer MUX0 outputs Y∗ when 

CL0 = 0(i.e., X∗+Y∗ is carried out) or Y∗ 

when X∗−Y∗ is required and CL0 =1. The 

two’s complement 4 2 CS adder produces 

the N∗=X∗+Y∗ when the input carry equals 

0 or the N∗=X∗−Y∗ when the input carry 

equals 1. The MUX1 determines if N∗(1) or 

K∗(2) is multiplied with 

A.TheMUX2specifies if K∗(1) or N∗(2)is 

added with the multiplication product. The 

multiplexer MUX3accepts the output of 

MUX2 and its 1’s complement and outputs 

the former one when an addition with the 

multiplication product is required (i.e., 

CL3=0) or the later one when a subtraction 

is carried out (i.e., CL3=1). The 1-bit ace for 

the subtraction is added in the CS adder tree. 

The multiplier comprises a CS-to-MB 

module, which adopts a recently proposed 

technique to recode the 17-bit P∗ in its 

respective MB digits with minimal carry 

propagation. The multiplier’s product 

consists of 17 bits. The multiplier includes a 

compensation method for reducing the error 

imposed at the product’s accuracy by the  
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truncation technique. However, since all the 

FCU inputs consist of 16 bits and provided 

that there are no overflows, the 16 most 

significant bits of the 17-bit W∗ (i.e., the 

output of the Carry-Save Adder (CSA) tree, 

and thus, of the FCU) are inserted in the 

appropriate FCU when requested. 

B.DFG Mapping onto the Proposed FCU- 

Based Architecture 

In order to efficiently map DSP kernels 

onto the proposed FCU-based accelerator, 

the semiautomatic synthesis methodology 

has been adapted. At first, a CS-aware 

transformation is performed onto the 

original DFG, merging nodes of multiple 

chained additions/subtractions to 4 2 

compressors. A pattern generation on the 

transformed DFG clusters the CS nodes with 

the multiplication operations to form FCU 

template operations (Fig. 3). The designer 

selects the FCU operations covering the 

DFG for minimized latency.Given that the 

number of FCUs is fixed, a resource-

constrained scheduling is considered with 

the available FCUs and CS to Bin modules 

determining the resource constraint set. The 

clustered DFG is scheduled, so that each 

FCU operation is assigned to a specific 

control step. A list-based scheduler has been 

adopted considering the mobility of FCU 

operations. The FCU operations are 

scheduled according to descending mobility. 

The scheduled FCU operations are bound 

onto FCU instances and proper 

configuration bits are generated. After 

completing register allocation, a FSM is 

generated in order to implement the control 

unit of the overall architecture 

 

 

 

 

IV. DADDA MULTIPLIER 

The Dadda multiplier is a hardware 

multiplier design, invented by computer 

scientist Luigi Dadda in 1965. It is slightly 

faster (for all operand sizes) and requires 

fewer gates (for all but the smallest operand 

sizes) than array multiplier. Dadda 

multipliers have the same 3 steps 1. Multiply 

(that is - AND) each bit of one of the 

arguments, by each bit of the other, yielding 

N2 results. Depending on position of the 

multiplied bits, the wires carry different 

weights, for example wire of bit carrying 

result of a2b3 is 32. 2. Reduce the number 

of partial products to two layers of full and 

half adders. 3. Group the wires in two 

numbers, and add them with a conventional 

adder.The proposed multiplier 16x16 Dadda 

multiplier requires six reduction stages with 

intermediate matrix heights of 13, 9,6,4,3 

and finally 2. 
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The Dadda scheme essentially minimizes 

the number of adder stages required to 

perform the summation of the partial 

products. This is achieved by using full and 

half adders to reduce the number of rows in 

the matrix of bits at each summation stage 

by a factor of 3/2.The results in a final 

matrix consisting of two rows of bits which 

must be summed using a multiple-bit adder 

(e.g. a ripple-carry or carry look-ahead 

adder). The corresponding circuit for a 

multiplier using this scheme shown in Fig 2. 

V. SIMULATION 

This simulation is run by Xilinx ISE Design 

Suite. Fig. 5 shows the simulation result for 

Flexible control unit and Fig. 6 shows the 

Area results 

 

 

 

VI. CONCLUSION 

In this brief, we introduced a flexible 

accelerator architecture that exploits the 

incorporation of CS arithmetic optimizations 

to enable fast chaining of additive and 

multiplicative operations. The proposed 

flexible accelerator architecture can operate 

on both conventional two’s complement and 

CS-formatted data operands, thus enabling 

high degrees of computational density to be 

achieved. Theoretical and experimental 

analyses have shown that the proposed 

solution forms an efficient design tradeoff 

point delivering optimized latency/area and 

energy implementations.  
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