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Abstract: Time-frequency (TF) analysis including the wavelet transform (WT) offers 

simultaneous interpretation of the biomedical signal in both the time and frequency domains  for 

analyzing signals such as electromyography (EMG), electroencephalography (EEG), 

electrocardiography (ECG), and Doppler ultrasound. In this paper A novel multi-scale two-

directional two-dimensional principal component analysis for high-dimensional signal 

classification is proposed for efficient extraction of essential feature information from high 

dimensional signal. Spatial-time frequency discriminate information from high-dimensional 

EMG electrode array can be effectively extracted and reduced using this method.  Multi-scale 

matrices constructed in the first step incorporate the spatial correlation and physiological 

characteristics of sub-band signals among channels The efficiency and effectiveness of the 

method can be further validated by using high-dimensional EEG, MEG, fMRI signals. Although 

the present study focuses on high-dimensional signal pattern classification, based on the PCs 

obtained at multiple scales, it is relatively straightforward to expand MS2D2PCA for high-

dimensional signal compression, denoising, component extraction, and other related tasks. 

Results are presented from an experiment, which illustrates the efficiency and effectiveness of 

the proposed method for high-dimensional biomedical signal analysis 

Index Terms—time-frequency analysis, wavelet transform 

 

1. INTRODUCTION 

Simultaneously preserving the most 

original Most biomedical signals are 

typically nonlinear and non stationary. 

Time-frequency (TF) analysis including the 

wavelet transform (WT), offers 

simultaneous interpretation of the 

biomedical signal in both the time and 

frequency domains, allowing the elucidation 

of local, transient or intermittent 

components at various scales [1]. However, 

there are typically a large amount of wavelet 

coefficients generated from such a two-

dimensional analysis. In addition, noise 

artifacts as well as redundant information 

may be present in these time-frequency 

coefficients. Principal component analysis 

(PCA) decomposes the covariant structure 

of the dependent variables into orthogonal 

components by calculating the Eigen values 

and eigenvectors of the data covariance 

matrix. It linearly projects the original data 

from a high-dimensional space to a set of 

uncorrelated components in a low-
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dimensional feature space, while 

simultaneously preserving the most original 

information. Therefore, WT combined with 

PCA (WT-PCA) has been one of the most 

powerful approaches for simultaneously 

extracting discriminative features and 

reducing the dimension for bio signals 

classification tasks. The basic algorithm for 

this hybrid method consists of decomposing 

biomedical signals into the time-frequency 

plane, re-arranging the time-frequency 

elements into a row vector, and reducing the 

dimension using PCA. Examples of 

application of this algorithm in the area of 

electromyography (EMG) signal analysis 

include Engle hart et al. [2, 3], who 

decomposed four channels of transient EMG 

signals using short-time Fourier transform 

(STFT), WT, and wavelet packet transform 

(WPT) methods to discriminate six hand 

motions for prosthetic hand control. They  

 
Fig.1Contour plots of multi-scale matrices 

for 89-channel EMG traces of 20 hand 

movements 

Compared the performance of PCA 

feature reduction against the Euclidean 

distance class separability (CS) criterion. 

The results indicated TF-PCA was vastly 

superior to TF-CS in classification accuracy, 

as well as a significant improvement of all 

TF-based methods compared to time domain 

feature extraction when using a linear 

discriminant analysis (LDA) classifier.  

II. LITERATURE SURVEY: 

TOPIC: Real-time intelligent pattern 

recognition algorithm for surface EMG 

signals Electromyography (EMG) is the 

study of muscle function through the inquiry 

of electrical signals that the muscles 

emanate. EMG signals collected from the 

surface of the skin (Surface 

Electromyogram: semg) can be used in 

different applications such as recognizing 

musculoskeletal neural based patterns 

intercepted for hand prosthesis movements. 

Current systems designed for controlling the 

prosthetic hands either have limited 

functions or can only be used to perform 

simple movements or use excessive amount 

of electrodes in order to achieve acceptable 

results. In an attempt to overcome these 

problems we have proposed an intelligent 

system to recognize hand movements and 

have provided a user assessment routine to 

evaluate the correctness of executed 

movements. 

We propose to use an intelligent 

approach based on adaptive neuro-fuzzy 

inference system (ANFIS) integrated with a 

real-time learning scheme to identify hand 

motion commands. For this purpose and to 

consider the effect of user evaluation on 

recognizing hand movements, vision 

feedback is applied to increase the capability 

of our system. By using this scheme the user 

may assess the correctness of the performed 

hand movement. In this work a hybrid 

method for training fuzzy system, consisting 
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of back-propagation (BP) and least mean 

square (LMS) is utilized. Also in order to 

optimize the number of fuzzy rules, a 

subtractive clustering algorithm has been 

developed. To design an effective system, 

we consider a conventional scheme of EMG 

pattern recognition system. To design this 

system we propose to use two different sets 

of EMG features, namely time domain (TD) 

and time-frequency representation (TFR). 

Also in order to decrease the undesirable 

effects of the dimension of these feature 

sets, principle component analysis (PCA) is 

utilized This study shows that ANFIS real-

time learning method coupled with mixed 

time and time-frequency features as EMG 

features can provide acceptable results for 

designing semg pattern recognition system 

suitable for hand prosthesis control. 

TOPIC: Signal processing of the surface 

electromyogram to gain insight into 

neuromuscular physiologyA surface 

electromyogram (semg) contains 

information about physiological and 

morphological characteristics of the active 

muscle and its neural strategies. Because the 

electrodes are situated on the skin above the 

muscle, the semg is an easily obtainable 

source of information. However, different 

combinations of physiological and 

morphological characteristics can lead to 

similar semg signals and semg recordings 

contain noise and other artifacts. Therefore, 

many semg signal processing methods have 

been developed and applied to allow insight 

into neuromuscular physiology. This paper 

gives an overview of important advances in 

the development and applications of semg 

signal processing methods, including 

spectral estimation, higher order statistics  

III.EXISTING SYSTEM 

3.1.Discrete wavelet transform  

            The foundations of the DWT go back 

to 1976 when Crosier, Esteban, and Galand 

devised a technique to decompose discrete 

time signals. Crochiere, Weber, and 

Flanagan did a similar work on coding of 

speech signals in the same year. They named 

their analysis scheme as sub band coding. In 

1983, Burt defined a technique very similar 

to sub band coding and named it pyramidal 

coding which is also known as multi 

resolution analysis. Later in 1989, Vetterli 

and Le Gall made some improvements to the 

sub band coding scheme, removing the 

existing redundancy in the pyramidal coding 

scheme. Sub band coding is explained 

below. A detailed coverage of the discrete 

wavelet transform and theory of multi 

resolution analysis can be found in a number 

of articles and books that are available on 

this topic, and it is beyond the scope of this 

tutorial. S is the number of channels the Dij 

represents discrete wavelet detail 

coefficients vector for channel i at scale j 

and the AiL denotes the corresponding 

approximation coefficients vector for 

channel i 

 
Fig2 .Multi-scale 



 
 

Vol 06 Issue 07   Aug 2017                          ISSN 2456 – 5083 Page 176 

 

two-directional two-dimensional principal 

component analysis method for high-

dimensional biomedical signal classification.  

3.2.D
2
PCA 

One of the important technique of 

recognition is template matching in which a 

template to recognize is available and is 

compared with already stored template. In 

our approach PCA method for feature 

extraction and matching is used. Principal 

Component Analysis: PCA is used to reduce 

the dimensionality of the image while 

preserving much of the information. It is the 

powerful tool for analyzing the data by 

identifying patterns in the dataset and 

reduces the dimensions of the dataset such 

that maximum variance in the original data 

is visible in reduced data.  

3.2.1 ALGORITHM FOR PCA 

Training Stage: Calculation of Eigen vectors 

1. Obtain the database containing N 

training images of dimensions M×M : 

. 

2. Convert these N images into vectors  

,N of dimension  

3. Obtain mean image vector   

4. Obtain the difference image by 

subtracting the mean image vector from 

the training image.  

5. Obtain the covariance Matrix C having 

dimensions  

 
        A=[ .] Dimension 

 

6. Compute the Eigen vectors  of  

As the dimensions of  Are 

very large so computation of 

eigenvectors is impractical. 

7. Obtain Eigen vectors Of  

[dimensions N × N.  Has  Eigen 

vectors and Eigen values.  Has N 

Eigen vectors and Eigen values 

8. Obtain the best N eigenvectors of  

By following equation. = Take 

only V Eigen vectors corresponding to 

V largest Eigen values 

IV. Spatial Multi-Scale Muscle Activity 

Patterns 

Using the proposed multi-scale 

spatial matrix technique, the spatial EMG 

activity at each scale was obtained. Since 

approximate coefficients at level 5 contained 

considerable low-frequency artifact, whilst 

the detail coefficients for level 1 

corresponded to high-frequency components 

greater than 500 Hz, both of these were 

discarded in the analysis. Fig.  shows the 

typical contour plots obtained for the twenty 

movements for subject 5 at scales D2-D5 of 

Coif let 4 mother wavelet. The five panels 

from left to right in the first row 

corresponded to the spatial-time-frequency 

activities of intended movements 

corresponding to ulnar wrist up, fingers 3-5 

flexion, index-finger flexion, thumb 

extension, and wrist extension. With each 

intended movement, a significant difference 

between the intensity of the surface EMG 

signals at D2 over the upper limb muscles 

can be readily discerned in these contour 

plots. The second row of Fig. 3 indicates the 

STF distributions of hand open, elbow 

flexion, wrist suspiration, index-finger 

extension, and wrist pronation at scale D3. 
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The third row displays EMG activities 

corresponding to wrist flexion, elbow 

extension, hand closing, tip pinch, thumb 

flexion at scale D4. The final row of Fig. 

below displays the specific characteristics of 

the five remaining movements, namely 

fingers 3-5 extension, lateral pinch, fine 

pinch, gun posture, and ulnar wrist down. 

Similar to the panels in the top row, there 

was significant discrepancy in the intensity 

distributions of the remaining contour plots, 

indicating useful discriminate information in 

the multi-scale matrices. 

V.PROPOSED SYSTEM 

i)structured learning for emg signal 

segmentation Segmentation of handwritten 

document images into text-lines and EMG 

signals is an essential task for optical 

character recognition. However, since the 

features of handwritten document are 

irregular and diverse depending on the 

person, it is considered a challenging 

problem. In order to address the problem, 

we formulate the EMG signal segmentation 

problem as a binary quadratic assignment 

problem that considers pair wise correlations 

between the gaps as well as the likelihoods 

of individual gaps. Even though many 

parameters are involved in our formulation 

 
Scheme, removing the existing redundancy 

in the pyramidal coding scheme. Sub band 

coding is explained below. A detailed 

coverage of the discrete wavelet transform 

and theory of multi resolution analysis can 

be found in a number of articles and books 

that are available on this topic, and it is 

beyond the scope of this tutorial.  

i)For the EMG signal segmentation some of 

the features map selection and the adopted 

structured learning techniques are discussed 

as follows: 1) Normalized distances of the 

neighboring super pixels: The most 

important property of the EMG signal 

separators are their distances between two 

EMG signals. As compared to the intra-

EMG signal gap, width between the two 

EMG signals are large. In this paper four 

measures are used to represent the width of 

gaps. They are boundary distances between 

rectangles/ ellipses and center-to-center 

distances of them. All these distances are 

normalized to find the mean width W. 

ii) Features of projection profiles: The 

projection profile of a text-line shows the 

number of pixels for each horizontal 

position. The length of consecutive zeros of 

projection profile has been formulated for 

the EMG signal segmentation of machine 

printed documents [13].  

Hard-margin 

If the training data are linearly 

separable, we can select two parallel hyper 

planes that separate the two classes of data, 

so that the distance between them is as large 

as possible. The region bounded by these 

two hyper planes is called the "margin", and 

the maximum-margin hyper plane is the 

hyper plane that lies halfway between them. 

These hyper planes can be described by the 

equations  

https://en.wikipedia.org/wiki/Linearly_separable
https://en.wikipedia.org/wiki/Linearly_separable
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Geometrically, the distance between these 

two hyperplanes is so to maximize the 

distance between the planes we want to 

minimize . As we also have to prevent data 

points from falling into the margin, we add 

the following constraint: for each  either 

These constraints state that each data point 

must lie on the correct side of the margin. 

This can be rewritten as: We can put this 

together to get the optimization 

problem:"Minimize  subject   

 

 
To  for "The  and  that solve this problem 

determine our classifier, An easy-to-see but 

important consequence of this geometric 

description is that max-margin hyper plane 

is completely determined by those which lie 

nearest to it. These are called support 

vectors. 

Soft-margin 

 To extend SVM to cases in which 

the data are not linearly separable, we 

introduce the hinge loss function, This 

function is zero if the constraint in (1) is 

satisfied, in other EMG signals, if lies on the 

correct side of the margin. For data on the 

wrong side of the margin, the function's 

value is proportional to the distance from the 

margin. We then wish to minimize where 

the parameter determines the tradeoff 

between increasing the margin-size and 

ensuring that the ie on the correct side of the 

margin. Thus, for sufficiently small values 

of , the soft-margin SVM will behave 

identically to the hard-margin SVM if the 

input data are linearly classifiable, but will 

still learn a viable classification rule if not 

Feature Extraction Stage 

 Feature extraction is the process of 

getting useful information from the EMG 

signal/character image. The information will 

be used to generate modules to train the 

classifier and to be used for classification 

purposes. In general there are two categories 

of features extracted, structural and 

statistical features. Choosing the Wright 

feature extraction method might be the most 

important step for achieving a high 

recognition rate. However, in some cases the 

combination of several features extraction 

types could be a wise decision to enhance 

the overall recognition performance. 

Structural features are the character/EMG 

signal image geometrical and topological 

information. Those obtained information 

include the number of PAWS, descanters’, 
ascenders, dot below the baseline, above the 

baseline, etc. Figure shows a structural 

features example. Statistical feature are 

numerical measures computed over the 

signals 

2.Gaussian Mixture Model 

A Gaussian Mixture Model (GMM) is a 

parametric probability density function 

represented as a weighted sum of Gaussian 

component densities. Gmms are commonly 

used as a parametric model of the 

probability distribution of continuous 

measurements or features in a biometric 

system, such as vocal-tract related spectral 

features in a speaker recognition system. 

GMM parameters are estimated from 
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training data using the iterative Expectation-

Maximization (EM) algorithm or Maximum 

A Posteriori (MAP) estimation from a well-

trained prior model 

A Gaussian mixture model is a weighted 

sum of M component Gaussian densities as 

given by the equation,  

P(x|λ) = X M i=1 wi g(x|µi , Σi) 
Where x is a D-dimensional continuous-

valued data vector (i.e. Measurement or 

features), wi , i = 1, . . . , M, are the mixture 

weights, and g(x|µi , Σi), i = 1, . . . , M, are 
the component Gaussian densities. Each 

component density is a D-variate Gaussian 

function of the form, 

 G(x|µi , Σi) = 1 (2π)D/2|Σi | 1/2 exp − 1 2 (x 
− µi) ′ Σ −1 i (x − µi)  
 With mean vector µi and covariance matrix 

Σi . The mixture weights satisfy the 
constraint that PM i=1 wi = 1. The complete 

Gaussian mixture model is parameterized by 

the mean vectors, covariance matrices and 

mixture weights from all component 

densities. These parameters are collectively 

represented by the notation 

Λ = {wi , µi , Σi} i = 1, . . . , M.  
There are several variants on the GMM 

shown in Equation (3). The covariance 

matrices, Σi , can be full rank or constrained 
to be diagonal. Additionally, parameters can 

be shared, or tied, among the Gaussian 

components, such as having a common 

covariance matrix for all components, The 

choice of model configuration (number of 

components, full or diagonal covariance 

matrices, and parameter tying) is often 

determined by the amount of data available 

for estimating the GMM parameters and 

how the GMM is used in a particular 

biometric application. It is also important to 

note that because the component Gaussian 

are acting together to model the overall 

feature density, full covariance matrices are 

not necessary even if the features are not 

statistically independent. The linear 

combination of diagonal covariance basis 

Gaussians is capable of modeling the 

correlations between feature vector 

elements. The effect of using a set of M full 

covariance matrix Gaussians can be equally 

obtained by using a larger set of diagonal 

covariance Gaussians. Gmms are often used 

in biometric systems, most notably in 

speaker recognition systems, due to their 

capability of representing a large class of 

sample distributions. One of the powerful 

attributes of the GMM is its ability to form 

smooth approximations to arbitrarily shaped 

densities. The classical uni-modal Gaussian 

model represents feature distributions by a 

position (mean vector) and a elliptic shape 

(covariance matrix) and a vector quantizer 

(VQ) or nearest neighbor model represents a 

distribution by a discrete set of characteristic 

templates [1].  

 
Fig 3. Comparison of distribution modeling. 

(a) histogram of a single cepstral coefficient 

from a 25 second utterance by a male 

speaker (b) maximum likelihood uni-modal 

Gaussian model (c) GMM and its 10 

underlying component densities (d) 

histogram of the data assigned to the VQ 

centroid locations of a 10 element codebook 
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The use of a GMM for representing feature 

distributions in a biometric system may also 

be motivated by the intuitive notion that the 

individual component densities may model 

some underlying set of hidden classes. For 

example, in speaker recognition, it is 

reasonable to assume the acoustic space of 

spectral related features corresponding to a 

speaker’s broad phonetic events, such as 

vowels, nasals or fricatives. These acoustic 

classes reflect some general speaker 

dependent vocal tract configurations that are 

useful for characterizing speaker identity. 

The spectral shape of the ith acoustic class 

can in turn be represented by the mean µi of 

the ith component density, and variations of 

the average spectral shape can be 

represented by the covariance matrix Σi . 
Because all the features used to train the 

GMM are unlabeled, the acoustic classes are 

hidden in that the class of an observation is 

unknown. A GMM can also be viewed as a 

single-state HMM with a Gaussian mixture 

observation density, or an ergodic Gaussian 

observation HMM with fixed, equal 

transition probabilities. Assuming 

independent feature vectors, the observation 

density of feature vectors drawn from these 

hidden acoustic classes is a Gaussian 

mixture.The proposed two-directional two-

dimensional principal component analysis 

was then used to reduce the dimension of 

each matrix. Fig. 4 shows the contour plots 

of each matrix in Fig. 3 following dimension 

reduction using 2D2PCA when the energy 

conservation rate and total energy preserved 

were 98% and 88% respectively. Compared 

with Fig. 3, the intensity difference between 

certain sub-panels in Fig. 4 is further 

enhanced, including, Table I summarize the 

matrix sizes at all scales before and after 

2D2PCA for 93%, 88%, and 83% total 

energy conserved for subject 5. It would be 

obviously problematic to compute such a 

high dimensional covariance matrix 

containing more than 8 3×10 elements. 

However, the use of multi-scale matrices 

followed by 2D2PCA resulted in the size of 

all covariance matrices being less 

than100×100 , avoiding the Curse of 

dimensionality and small sample issue as 

well as improving the numerical stability. 

Method Technique Error rate Accuracy 

PCA DWT 0.2  

2DPCA PCA 0.5  

2D
2
MS

PCA 

SVM 0.6  

 GMM 0.66  

Table I. Multi-scale matrix size at various 

threshold values of total energy conserved 

for subject 5 

Recognition of Intended Movements 

Pattern recognition analysis was performed 

using the optimal number of PCs previously 

determined and SVM and classifiers with 

the fivefold cross-validation scheme.  

summarizes the subject-specific 

classification accuracy for all 20 intended 

upper-limb movements. A high average 

classification accuracy above 95% could be 

achieved for most subjects. Across all 

subjects, there was no significant difference 

in the accuracy of SVM and ELM (p>0.05), 

although the average accuracy for ELM was 

slightly lower. Compared with a previous 

study on the same EMG dataset using PCA 

reduction in the time domain feature [30], 

2D2PCA yielded higher average accuracy 



 
 

Vol 06 Issue 07   Aug 2017                          ISSN 2456 – 5083 Page 181 

 

with much fewer PCs for the same SVM 

classifier, indicating the efficiency and 

effectiveness of 2D2PCA. Although the PCs 

needed for ELM was higher than SVM, 

ELM exhibited better computational 

efficiency due to its unique learning scheme. 

In addition, the average accuracy of 

MS2D2PCA-ELM was also higher than 

GMM, LDA, and SVM classifiers used in 

conjunction with PCA in [30]. This further 

suggested that MS2D2PCA was more 

effective than PCA for high-dimensional 

EMG classification. It should be 

emphasized, however, that EMG activity is 

subject-dependent for both healthy subjects 

and stroke survivors. Therefore, the 

structure and information distribution in the 

multi-scale matrices varied between 

subjects, which led to different reduced sizes 

with MS2D2PCA. Ultimately, this subject-

specific spatial time- frequency distribution 

of EMG feature information led to 

inconsistent classification errors among 

different stroke subjects. The subject-

specific EMG activity and classification 

performance suggested that optimal my 

electric pattern-recognition control system 

parameters should be individually 

customized for stroke survivors. 

CONCLUSION: 

 In this paper we studied biomedical signals 

in Time-frequency coefficients at various 

scales were usually transformed into a one-

dimensional array using only a single or a 

few signal channels. The steady 

improvement of biomedical recording 

techniques has increasingly permitted the 

registration of a high number of channels. 

Time-frequency analysis incorporating the 

wavelet transform followed by principal 

component analysis (WT-PCA) has been a 

powerful approach for the analysis 

Biomedical signals .However, WT-PCA is 

not applicable to high-dimensional 

recordings due to the curse of 

dimensionality and small sample size 

problem. In this paper, we present a DWT 

based Technique and SVM based method 

for the efficient and effective extraction of 

essential feature information from high-

dimensional signals.. Results are presented 

from an experiment to classify 20 hand 

movements using 89-channel EMG signals 

recorded in stroke survivors, which 

illustrates the efficiency and effectiveness of 

the proposed method for high-dimensional 

biomedical signal analysis. 
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