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Abstract— Lossy transmission is a common problem suffered from monitoring systems based on wireless 

sensors. Though extensive works have been done to enhance the reliability of data communication in 

computer networks, few of the existing methods are well tailored for the wireless sensors for structural 

health monitoring (SHM). These methods are generally unsuit-able for resource-limited wireless sensor 

nodes and intensive data SHM applications. In this paper, a new data coding and transmission method is 

proposed that is specifically targeted at the wireless SHM systems deployed on large civil infrastructures. 

The proposed method includes two coding stages: 1) a source coding stage to compress the natural 

redundant information inherent in SHM signals and 2) a redundant coding stage to inject artificial 

redundancy into wireless transmission to enhance the transmission reliability. Methods with light memory 

and com-putational overheads are adopted in the coding process to meet the resource constraints of wireless 

sensor nodes. In particular, the lossless entropy compression method is implemented for data compression, 

and a simple random matrix projection is proposed for redundant transformation. After coding, a wireless 

sensor node transmits the same payload of coded data instead of the original sensor data to the base station. 

Some data loss may occur during the transmission of the coded data. However, the complete original data 

can be reconstructed losslessly on the base station from the incomplete coded data given that the data loss 

ratio is reasonably low. The proposed method is implemented into the Imote2 smart sensor platform and 

tested in a series of communication experiments on a cable-stayed bridge. Examples and statistics show that 

the proposed method is very robust against the data loss. The method is ableto withstand the data loss up to 

30%andstillprovide lossless reconstruction of the original sensor data with overwhelming probability. This 

result represents a significant improvement of data transmission reliability of wireless SHM systems. 

 

Index Terms— Data loss recovery, wireless sensor network, structural health monitoring, lossless entropy 

compression, redundant coding, Imote2. 

 

I. INTRODUCTION 

 

Despite the good qualities of WSSN, the data 

transmis-sion of wireless SHM systems is 

particularly susceptible to packet loss. The 

transmission reliability highly relies on the 

communication environment and antenna. Data loss  

 

 

 

 

during wireless transmission impairs the data 

quality and decreases the accuracy of subsequent 

procedures that operate on the data. Such data loss 

has been reported by several researchers for various 

applications [3]–[8]. Nagayama [9], in particular,  
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has analyzed the influence of data loss on structural 

and modal analysis. It was found that the impact of 

0.5 percent data loss is equivalent to that of 5 to 10  

percent measurement noise on the power spectral 

density (PSD) estimation and modal identification 

results. As data loss increases, the quality of results 

based on these measurements further 

degrades.Though a certain amount of data loss is 

tolerable in many SHM applications, more reliable 

data transmission is always favored to provide more 

accurate analysis based on the data. Different 

approaches have been proposed to enhance the 

reliability of wireless transmission. Generally, they 

can be classified into two main categories, i.e., 

reactive retransmission and redundant coding. In 

reactive retransmission [10]–[13], the sender is 

notified to retransmit lost data packets until all data 

packets are received at the destination. Such an 

approach suffers from communication delay and 

significant bidirectional traffic (NACK/ACK 

messages). On the other hand, redundant coding 

takes another approach to transmit redundant coded 

packets to the receiver instead of the original data 

packets; the complete original data can be 

reconstructed once a sufficient number of coded 

packets are received [14]–[19]. Though such 

redundant coding has advantages over reactive 

retransmission in terms of efficiency and flexibility, 

few of the existing methods are well tailored for the 

wireless sensor node with constrained onboard 

resources; even fewer are targeted for data-

intensive SHM applications.specifically solve the 

lossy transmission problem for wireless SHM 

systems, Bao et al [20] has investigated the 

possibility of using compressive sensing (CS) based 

techniques for lost data recovery. The idea of the 

CS based transmission method also belongs to the 

redundant coding category. Though the method 

shows promise to increase data transmission 

reliability of wireless SHM systems, it is essentially 

a lossy reconstruction method whose performance 

heavily depends on the sparse characteristics of the 

target signal that is not always guaranteed. 

However, the random projection employed by CS is 

indeed an inspiration for the random coding 

proposed in this research.In this article, a new 

communication method is proposed to enhance the 

data transmission reliability of the WSSN based 

SHM systems, considering the application specific 

require-ments of WSSN and SHM. The proposed 

method includes two coding stages, i.e., a source 

coding stage to compress the natural redundant 

information inherent in SHM signals and a 

redundant coding stage to inject artificial 

redundancy into wireless transmission to enhance 

the transmission reliability. A particular 

contribution of this research is the proposal of a 

simple random matrix projection to achieve 

redundant coding of the compressed SHM 

bitstream. For SHM signals including acceleration, 

temperature, wind speed and etc., the proposed 

method enables lossless reconstruction of the 

original sensor data with high probability by only 

transmitting the same payload of coded data instead 

of the original data, given that the data loss ratio is 

low (typically below 30%) during the transmission 

process.To keep the computation and memory 

overheads afford-able by the resource-limited 

wireless sensor nodes, a simple lossless 

compression method called lossless entropy com-

pression(LEC)[21],[22] is adopted to firstly 

downsizethe original sensor data; meanwhile, a 

random matrix projection with sparse matrix entries 

is subsequently used to generate random 

redundancy and the coded data that is transmit-ted 

over the lossy wireless links. If the receiver catches 

a sufficient portion of the transmitted data, 

complete recov-ery of the original data is 

guaranteed with overwhelming probability through 

an inverse reconstruction process. This 
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communication method is embedded into the 

Imote2 smart sensor platform [23], which is based 

on the middle-ware provided by the Illinois 

Structural Health Monitoring Project (ISHMP) 

Services Tool-suite [24]. Data communica-tion 

experiments on a cable-stayed bridge are then 

carried out to validate the applicability of the 

embedded program.In the following of this article, 

the LEC method is firstly reviewed; its application 

for the source coding of the orig-inal SHM data is 

explained. The proposed random projec-tion based 

redundant coding method is then presented with 

mathematical formulations. Examples of various 

experiment data are employed at last to demonstrate 

the efficacy of the communication method. It is 

shown that the method is able to withstand data loss 

up to 30% and still provides lossless reconstruction 

of the original sensor data with overwhelming 

probability. This result represents a significant 

improvement   of data transmission reliability of 

wireless SHM systems. 

 

II. LOSSLESS ENTROPY COMPRESSION 

(LEC)FOR SHM SIGNALS 

Several previous works have addressed the data 

compression issue in wireless sensor systems for 

SHM. In particular,Lynch et al. [25] have proposed 

the use of Huffman coding to achieve lossless 

compression of sensor data to reduce energy 

consumption. Caffrey et al. [26], Zhang et al. [27] 

have proposed the use of lossy compression 

techniques using wavelet transforms. In comparison 

with lossless compression methods, lossy methods 

sacrifice the details of the raw signal in exchange 

for higher compression ratio. In this research, 

lossless methods are chosen over lossy methods to 

preserve the complete information of the sensor 

data.There are several lossless compression 

algorithms that can be used to reduce the inherent 

redundant information of sensor data. For example, 

the Huffman codes-based method [28], [29] exploits 

the prior probability of input symbols of the data; it 

represents the more frequent symbols with shorter 

codes to achieve compression in a statistically 

optimal manner. However, the static Huffman 

codes-based method relies on an explicit prior 

dictionary. The dictionary is not only difficult to 

generate on recourse limited wireless sensor node, it 

also needs to be reliably transmitted along with the 

data for decoding on the base station. The Lempel-

Ziv-Welch (LZW) method [30], [31] takes 

advantage of the repetitive patterns in the sensor 

data and represents the patterns that already 

observed in the data with short references. 

However, LZW-based methods suffer from a 

growing dictionary which can become quite large 

and requires unaffordable efforts to maintain on 

wireless sensors.On the other hand, lossless entropy 

compression (LEC) [21], [22] is a simple yet 

efficient lossless compression algorithm specifically 

designed for wireless sensor nodes with limited 

onboard resources. LEC exploits the high 

correlation between the consecutive digital samples 

of a signal and provides efficient compression using 

only a very small fixed dictionary whose size is 

determined by the analog-to-digital converter 

(ADC). LEC can be implemented using only a few 

lines of codes and requires very low memory space 

and computational power. The desirable 

characteristics of LEC make it the best choice for 

the lossless compression stage of the proposed 

communication method in this study. This section 

reviews the procedure of LEC and illustrates its role 

in the proposed data communication method for 

SHM data obtained by wireless sensors. The 

effectiveness of LEC for different digital sensor 

signals (smooth and non-smooth, low frequency and 

high frequency) have been thoroughly justified by 

Marcelloni et al. [21], [22].The basic idea behind 

LEC is to divide the alphabet of numbers into 
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groups according to their entropy (that is the 

number of bits required to specify a number in that 

group). The size of the groups grows exponentially 

as their entropy grows. The LEC then uses a 

combination of two codes, i.e., a unary code to 

specify the group and a binary code to specify the 

index within the group, to fully represent a number. 

In case of SHM signals obtained by wireless 

sensors,each data point is digitalized by the onboard 

ADC to a binary representation ri on R bits. To 

store a signal of N data points, N · R bits are 

required. As the first step of LEC algorithm, an 

alternative data series, which is called the 

differential signal, is generated using the 

differences between every two consecutive data 

points of the original series, i.e., di = ri −ri −1 

 

 

 

 

 

 

 

 

 

(d0 = r0) [21]. The differential signal is then fed into 

the entropy encoder of LEC instead of the original 

signal in the subsequent coding steps. Due to the 

high correlation between the consecutive samples of 

the original SHM signal, di (i > 0) tends to be 

clustered around zero, i.e., di has a higher 

probability to fall into number groups with lower 

entropy and smaller size. This feature is exploited 

by assigning shorter unary codes to such smaller 

groups in order to achieve compression. Figure 1 

illustrates the importance of differential signal for 

LEC compression, in which the raw acceleration 

sensor signal and its differential signal are 

compared by their bit-size distribution. Clearly, 

each di can be represented using a much lower 

number of bits than ri . Specifically, each di is coded 

as a bit sequence composed of two parts si |ai , 

where si codifies the number composed of two parts 

si |ai , where si codifies the number ncomposed of 

two parts si |ai , where si codifies the number ni of 

bits required to specify di (i.e., the group to which di 

belongs to) and ai is the binary representation of di 

(i.e., the index in the group). When di = 0, the 

corresponding group size equals to 1 and there is no 

need to specify the group index ai . Otherwise, ni is 

trivially obtained by ni = l og2(|di |) (note that ni is at 

most equal to R). The corresponding unary code si 

to ni is given in Table 1. Though Table I is specified 

according to the previous works on JPEG algorithm 

[32], it can also be obtained by a Huffman coding 

process on the distribution of ni . However, to save 

such efforts, Table 1 is used as it is in the LEC 

algorithm. Its efficacy has been verified 

[22].Meanwhile, to manage the negative di , a 

bijective mapping is introduced to map each di to a 

proper index in its group according to Equation 1. ai 

is simply the binary representation of index on ni 

bits. Note that, because di is commonly represented 

by two’s complement notation, ai equals to the ni 

low order bits of di − 1 when di < 0. This treatment 

assures each di has an unique index in its own 

group. Once si |ai is generated for a di , it is 

appended to a bitstream that form the compressed 

version of the original N data points. The ratio 

between the length of the bitstream and N · R is 

defined as the compression ratio that is achieved by 

LEC. For SHM signals 

investigated in this study, LEC compression ratio is 

typically between 40% and 70%. 

 = 2
n
i  − 1 − |di |di  < 0  

i nd 

ex  di di  ≥ 0 (1) 

 

On the other hand, given si and ai , di can be 

uniquely decoded by an inverse process on the base 
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station. After decoding di , the original signal ri can 

be trivially reconstructed subsequently. The 

embedment of LEC into a smart wireless sensor 

platform is a trivial process that will not be further 

discussed in this study. 

III. RANDOM REDUNDANCY TO ACHIEVE 

LOSSLESS DATARECOVERY AFTER 

WIRELESS TRANSMISSION 

Upon compressing the sensor data using LEC, a 

short-ened bitstream is obtained on the wireless 

sensor node. The bitstream needs to be reliably 

transmitted over the lossy wire-less link to the base 

station in order to reconstruct the original sensor 

data. To this end, different approaches are 

available. However, as discussed earlier, reactive 

retransmission that suffers from delay and traffic 

congestion is inferior to the redundant coding-based 

methods in terms of flexibility and efficiency. 

Therefore, in this article, a new redundant coding 

scheme is proposed.Actually, the idea of redundant 

coding has been exploited by researchers under the 

name of erasure codes. Two promi-nent members 

of such codes are Reed-Solomon (RS) code [15], 

[16] and Luby Transform (LT) code [18], [19]. 

While the RS code employs a vandermonde matrix 

to encode the data for transmission, the complexity 

of the vandermonde matrix and its computational 

overhead make RS code only practical for small 

scale problems . For intensive data SHM 

applications, RS code is inefficient. On the other 

hand, the LT code generates each coded data point 

by applying XOR (Exclusive or) operations on σ (1 

≤ σ < N ) randomly selected original data points, 

where σ is drawn from a given probability 

distribution. Though LT code performs 

encodingand decoding with a much lower 

computational complexity than RS code, the 

number of coded data points required to 

successfully recover the original data√ (i.e., N 

original data points can be decoded from N + O ( N 

l n
2( N /δ)) coded data points with a probability of 1 

− δ) can be large and adver-sary for wireless 

sensors. Meanwhile, decoding complexity is usually 

not an issue for SHM systems, because once data is 

collected by the base station, decoding can be 

performed by more powerful computers. Therefore, 

the suitability for large data sets, the low encoding 

complexity with low redundant communication are 

emphasized in this article. The proposed method 

possesses these essential qualities 

exactly.successfully recover the original data√ (i.e., 

N original data points can be decoded from N + O ( 

N l n
2( N /δ)) coded data points with a probability 

of 1 − δ) can be large and adver-sary for wireless 

sensors. Meanwhile, decoding complexity is usually 

not an issue for SHM systems, because once data is 

collected by the base station, decoding can be 

performed by more powerful computers. Therefore, 

the suitability for large data sets, the low encoding 

complexity with low redundant communication are 

emphasized in this article. The proposed method 

possesses these essential qualities exactly.The 

proposed method uses a simple sparse matrix 

projection to introduce random redundancy into the 

coded data (i.e. a transformed bitstream to be 

transmitted), which effectively neutralize the 

potential data loss during wireless transmission. A 

similar redundant coding method using random 

matrix pro-jection has been proposed by Bao et al 

[20] in the framework of compressive sensing (CS). 

However, the CS based method projects the raw 

sensor data directly without compression. Though 

the CS-based method is simpler to implement, it 

requires the sparsity of the raw signal. The 

redundancy in the transformed data to 

accommodate data loss is highly dependent on such 

sparse characteristics that is not always guaranteed. 

On the other hand, the proposed method in this 

research, as explained later, projects the artificial 

data points of the LEC compressed bitstream using 
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a redundant matrix with more rows. This artificial 

injection of redundancy makes it robust against data 

loss for any signals that are compressible by LEC. 

The injection of redundancy into the LEC 

bitstream results in a growth of its size. However, it 

is important to limit the size from above to avoid 

excessive transmission that causes longer delay and 

higher energy consumption. In the proposed 

method, the size of the final coded data  (as a 

bitstream) with redundancy is equal to the size of 

the original N data points (i.e., N · R bits). That is, 

after two stages of coding, transmitting the same 

payload of coded bits as the original bits has much 

higher robustness and reliability against data loss. 

 

A. The Random Redundant Coding Theory 

 

Assume that a wireless sensor node has obtained a 

digital signal x ∈ R
N
 (R

N
 denotes the N -

dimensional space of real coordinates; x contains N 

data points with R bits for each point), and that the 

onboard LEC algorithm has reduced the into equal 

pieces of R bits, a compressed signal y ∈ RK
 with K 

= R
k
 (typically, K is only 40%-70% of N depending 

on the LEC compression ratio) data points is 

obtained. The LEC process is nonlinear and 

expressed as Equation 2. The inversion from y to x 

is trivial using the LEC dictionary, which is denoted 

by Equation 3. 

 

y = L E C (x ) (2) 

x = I L E C (y) (3) 

 

The redundant coding by random projection, on the 

other hand, transforms y ∈ RK
 back to a vector z ∈ R 

N
 using a random matrix A ∈ RN

 
×K

 . The process is 

linear and expressed as 

 

 

 

 

 

 

 

 

Equation 4. 

 

z = Ay (4) 

 

The sensor node then transmit z instead of x to the 

base station. Considering data loss in z during the 

transmission, the received data by the base station is 

denoted by zˆ ∈ RM
 (M ≤ N ), which only consists of 

the received points of z. Because wireless sensor 

transmits z in sequential radio packets with 

sequence numbers, the lost data points and thus zˆ 
can be easily identify on the base station. Therefore, 

Equation 4 is modified to be 

  ˆ = 

A
ˆ
y (5) 

ˆ ∈ 
z  

R
M

 
×K

   is  

a 

properly  

indexed 

sub-matrix 

of 

where  

A  

A according to the received data points of z. That is, 

the rows of A corresponding to the lost data points 

in z are dropped 

ˆ 
to form A. Then, y is recovered using the Equation 

6 where 

A
ˆT

   is the transpose of 

A
ˆ
. x 

is decoded subsequently 

using 

Equation 3. 

= ˆ ˆ ˆ ˆ 
 

  

y  (AT A)−1
A

T z (6) 
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The entire process of the proposed random 

redundant coding is illustrated in Figure 2. 

ˆ T  ˆ ˆ 
For A A to be invertible, the columns of A must 

be linearly independent, which requires M ≥ K as 

the first necessary condition. Fortunately, M ≥ K is 

almost always satisfied for properly deployed SHM 

systems and SHM signals; this fact will be 

demonstrated by the extensive examples later. 

There-fore, M ≥ K is assumed for the following 

analysis. However, 

M ≥ K  alone does not guarantee the linear 

independence of 

ˆ 
the columns of A. To establish the probability of 

successful recovery of x from zˆ, the composition of 

the random matrix Aneeds to be considered.To 

reduce memory occupation and computational 

overhead of Equation 4, A is desired to have as few 

nonzero entries as possible; and each nonzero entry 

of A is preferably equal. To this end, the matrix A 

used in the proposed method is only composed of 

sparse ones. Each column of A is randomly 

dispersed with ρ unit entries (ρ is a small number in 

comparison with N ). The position of the ρ entries 

of each column is chosen independently and 

randomly. 

ˆ − 

Note that A is simply A eliminating N M rows by 

data loss. Because data loss is unpredictable during 

the 

transmission, these N − M  rows are assumed to be 

dropped 

ˆ 

randomly. Therefore, the probability of the columns 

of A being 

 

independent can be explicitly evaluated. Assume 

that P ( F ) 

ˆ 
is the probability of the columns of A being 

dependent (i.e., 

probability of reconstruction failure), that P ( F1) 

represents the 

ˆ 
probability of any one column of A has no nonzero 

entries left 

after data loss, and that P ( F2) represent the 

probability of any 

ˆ 
two columns of A have the same nonzero entries 

left, Boole’s  

 

number of the joint patterns so that these two 

columns have s 

nonzero entries in common. This number is further 

scaled by 

the total number of joint patterns to return the 

probability. 

Given two columns of A with s common nonzero 

entries, let 

p2(s, l ) be the probability of these two columns 

having only 

l  (l ≤ s) common nonzero entries left after data loss 

during 

 

transmission. p2(s, l ) is 

expressed as       

           

s 

    N 

−(2ρ−
s ) 

     

                    

           l  N   

M 

−(2ρ−s     

−l) 

    p2(s, l )  

= 

    −  N       (10) 

              

N −M 

      

Wit

h 

 p1(s)  and  p2(s, l 

), 

            

   P ( can be found by a 
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F2) simple 

summation as 

follows 

                        

                        

         ρ          s        

    P ( F2) 

= 

    p1(s

) 

     

p2(s, l ) 

 

(11)      

1 l 

     

       s           1       

                     

        =        =        

Therefor

e, the 

overal

l 

 probabili

ty 

  

of 

reconstruction 

failure    

P ( F ) given M ≥ K  is 

bounded by 

        

     

s 

  

    

K 

       

K 

     ρ     

p2(s, l ) 

 

                         

P ( F ) ≤    

1 P ( F1) +   2 

s 

   

p1(s

) 

 

(12) 

                    1     

                       

                    =    

l=

1   

Using  Equation  12,  it  is  possible  to  evaluate  the  

failure 

probability in practical cases by substituting proper 

values of 

the parameters N , K , M , ρ into the equation. On 

Imote2, 500 

of sensor data. Meanwhile, for typical SHM signals, 

LEC can 

 

achieve a conservative compression ratio as low as 

60% (i.e., 

       

40% of the original bits are compressed out), which 

gives a       

K  of 300. On the other hand, the proposed 

communication       

method is mainly targeted at moderate data loss 

below 20%       

in practical applications of wireless SHM systems       

(better radio 

equipments or retransmission approach can be used 

instead if  

data loss ratio is too high). Here, the option of 20% 

is rooted  

on the authors’ experiences with wireless SHM 

systems. 20%  

is a large loss that can severely impair the 

subsequent analysis  

based on the incomplete data. The authors’ wireless 

sensor  

TABLE II 

FEATURES OF IMOTE2 SMART SENS 

OR PLATF ORM 

 

 

 

 

 

 

 

 

To embed the random encoding method into 

Imote2, an important problem needs to be 

addressed. In Equation 4, each entry of z is 

implicitly assumed to fit into an R-bit representation 

as the entries of y and x . However, given the 

random nature of the projection matrix A, each 

entry of z could be the summation of tens of the 

entries of y. By forcing R-bit representations on the 

entries of z, overflow could easily occur that 

destroys the projection relation in Equation 4 and 5 

and hence the reconstruction relation in Equation 6. 

Once that happens, recovery of the original sensor 

data x is impossible.On Imote2, each digital sample 

of the original sensor signal is represented by 16 

bits, i.e., R = 16. To guarantee that the entries of z 

also fit into 16 bits after the projection z = Ay, the 

value of the entries of y and the number of nonzero 

entries in each row of A should be bounded 
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simultaneously. Because the entries of y are equally 

sliced from the bitstream after LEC, its entry values 

can be easily adjusted by changing the size of the 

bit slices. Meanwhile, the number of nonzero 

entries in each row of A can be forced below a 

limit, say, 15, during the generation of the matrix 

using a simple iterative process. With a maximum 

of 15 nonzero entries in each row of A, each entry 

of z is summed from at most 15 entries of y. As a 

result, the bit size of the entries of z is at most 4 bits 

larger than that of the entries of y. Therefore, 

requiring the entries of z to fit into 16-bit 

representations without overflow entails slicing the 

LEC bitstream into pieces of 12 bits to construct y. 

Nevertheless, by doing so, K is increased to a 133% 

larger number, which demands much lower data 

loss ratio to guarantee M ≥ K .To remedy this 

problem, a 32-bit representation is adopted to store 

z. In order to maintain the overall bit size of z 

(equal to the overall bit size of the original sensor 

data x ), the number of entries in z is reduced by 

half to N /2. Accordingly, the size of bit slices used 

to construct y is increased to 28, leaving 4 bits 

redundant to avoid overflow. Hence the inflation of 

K caused by the redundant bits is only about 114%. 

This simple modification does not overturn the 

theoretical developments presented in Section III-

A, because the bitstream after LEC is neither 

inflated nor modified. The change is only about 

reducing the dimension of Equation 4 by half (both 

N and K , K with a slight inflation). The increased K 

due to the introduction of redundant bits to avoid 

overflow is termed inflated K in the following 

contents. The subsequent devel-opments change 

accordingly. Meanwhile, a desirable side-effect of 

this dimension reduction by increasing the bit size 

for representation is the size reduction of matrix A, 

which in turn reduces both memory occupation and 

computational 

 

loads when Equation 4 is being applied on the 

wireless sensor nodes. For example, the encoding 

of 1000 16-bit sensor data points now only needs an 

embedded random matrix A with a dimension of 

500.The coding of the original sensor signal x on 

Imote2 is performed segment by segment. Each 

data segment of 

x contains 1,000 successive data points, i.e., xi  ∈ 
R

1000
 where 

i indicates the index of i -th data segment. The 

choice of 1,000 is entirely empirical to 

accommodate continuous data loss (as opposed to 

random data loss). If this number is too small, 

continuous data loss can result in large data loss 

ratios for data segments, M ≥ K becomes more 

difficult to be satisfied. On the other hand, if 

segment length becomes quite large, the storage of 

A consumes much more memory space; 

thecomputational loads becomes higher as well. 

After the two stages of coding, the corresponding 

coded segments zi ∈ R500
 are arranged back in order 

to form z. During the data recoveryphase, a similar 

segment-by-segment procedure is followed to 

reconstruct xi from complete/incomplete zˆi and to 

form the final result x .Lastly, the matrix A (A ∈ 
R

500×K
 ) must be predetermined and stored statically 

in the memory of Imote2 for the pro- 

jection from y  to z  after sensor data is acquired. 

Because 

¯ ∈ 

R500×5

00 

K  (K < 500) is unknown beforehand, a 

square A  

instead is generated externally and written into 

Imote2 as part of the embedded program. A is 

simply composed of the first 

¯ 

K  columns of A once K  is determined after LEC. 

Moreover,because A only has sparse entries of 
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ones, only the locations of the entries need to be 

stored. This saves considerable memory space of 

the wireless sensor node. 

 

IV. EXPERIMENTAL VALIDATION OF 

THE EMBEDDED DATA TRANSMISSION 

METHOD 

A. Description 

To demonstrate the performance of the embedded 

program, a series of sensing and communication 

experiments has been performed on the Songpu 

Bridge in Harbin. The Songpu Bridge is a single-

tower cable-stayed bridge with a main span of 268 

meters. It has eight lanes and two sidewalks, with a 

total width of 39.5 meters.Imote2s are used to is 

assured for all tests. Figure 4 shows the setup of the 

experiments. An antenna with a gain of 6 dBi is 

used at both ends, i.e., sensing node and base 

station. The default maximum transmission power 

of Imote2, i.e., 0 dBm, is assumed for the data 

transmission. Two fixed sensor nodes are used as 

leaf-nodes to sense (at 100Hz), code and send 

acceleration signals, whereas a base station node 

connected to a laptop computer is placed at 140 

meters from the leaf-nodes to test the 

communication performance. Multiple 

communication tests are conducted. The received 

data is then put through a statistical analysis of data 

loss and reconstruction.It should be mentioned that 

Imote2 is a powerful wire-less sensor platform for 

SHM applications with  

transmission ability, see reference [8]. ISHMP tool-

suite [24] also has an integrated reliable 

transmission protocol that is based on reactive 

retransmission [10]. However, for the purpose to 

demonstrate the efficacy of the proposed data 

communication method, the radio transmission of 

Imote2 is used unreliably without packets 

acknowledgement and retrans-mission to generate 

the desired communication data loss.The distance 

of 140 meters is chosen based on the authors’ 
previous experiments on the communication 

distance and data loss statistics. It is a distance 

approaching the limit of accept-able transmission 

for the specific equipments (i.e., Imote2 and 

antenna) in this research. Data transmission at 

distances larger than 140 meters suffers from severe 

unreliability and data loss that sometimes goes 

beyond 50%. Such excessive communi-cation 

distances should be avoided in properly deployed 

SHM systems. However, if such weak links are 

indeed unavoidable, the re-transmission based 

communication method can be firstly used to 

reduce data loss to the extent where redundant 

coding can take effect. 

B. Example 

In this subsection, two examples taken from the 

communi-cation experiments are presented to 

demonstrate the efficacy of the embedded algorithm 

and the procedure of data loss recovery. Example 1 

employs a data segment from the bridge deck 

whereas example 2 employs a data segment from 

the stay cable. They have different spectral 

characteristics and ampli-tudes that, to some extent, 

influence the bit-size distribution of their 

differential signals. The inflated K and received M 

of the two examples are summarized in Table III, 

respectively.Fig. 5. Data transmission example 1: 

typical deck acceleration (a) original sensor data, 

(b) frequency content of the detrended data, (c) 

differential data,(d) sliced data from LEC bitstream, 

(e) data to be transmitted over wireless link, (f) 

received data on the base station, (g) recovered 

differential data with reconstruction error, (h) 

recovered original sensor data, and (i) frequency 

content of the recovered data.and its frequency 

content are finally shown in (h) and (i). Clearly, 

because M ≥ K is satisfied for both examples, exact 

(lossless) reconstruction is achieved. 

C. Statistics 
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In the communication experiments, multiple 

acceleration data segments are obtained for the 

bridge deck and stay cable;and multiple data 

communication trials were performed for each data 

segment. Figure 7 shows the mean and standard 

deviation of the inflated K using 10 data segments 

each for both deck and cable. Clearly, the LEC 

method achieves high compression for all segments 

in the experiments. It can be further seen that the 

LEC compression ratio ( 500
K
 ) is smaller for deck 

accelerations than for the cable accelerations. This 

fact is attributed to the lower vibration level of the 

deck that makes its differential signal more 

clustered to small values (see Figure 5(c), 6(c)). In 

Figure 8, twelve data segments, six from the deck 

and six from the cable each, are associated with 

their observed data loss patterns in the experiments. 

The black squares indicate the inflated K for each of 

the segments, whereas the circles indicate the 

received M in each communication trials. The only 

reconstruction failure is marked in red, which is 

clearly attributed to the excessive data loss that 

causes M to drop below K . All other cases yield 

lossless recovery of the original sensor data.The 

communication experiments demonstrate the 

efficacy of the proposed data communication 

method in terms of its robustness against data loss. 

By transmitting the same payload of coded data 

instead of the original sensor data, the proposed 

method is able to withstand data loss up to 30% and 

still provides lossless reconstruction of the original 

sensor data with overwhelming probability. This 

result represents a significant improvement of data 

transmission reliability of wireless SHM systems. 

The tradeoff made is using slightly more 

computations in exchange for enhanced reliability 

of subsequent data transmission. It has a great 

potential to overcome the data loss problems for 

wireless SHM systems. 

 

V. CONCLUSION 

This article tackles the data loss problem of 

wireless struc-tural health monitoring (SHM) 

systems by a new random redundant coding 

method. After sensor data is acquired on the sensor 

node, the embedded lossless entropy compres-sion 

(LEC) method is firstly activated to reduce the data 

size, which is then followed by a random projection 

to inflate the compressed data back to the original 

data size using artificial redundancy. The entire 

procedure amounts to a size preserving 

transformation on the original sensor data, the 

output from which is transmitted over the lossy 

wireless links instead of the original data.The 

method is implemented on the Imote2 smart sensor 

platform. Both theoretical developments and 

experimental validations are employed to justify the 

efficacy of the data transmission method. It has 

been shown in this article that, for properly 

deployed wireless SHM systems, the method can 

significantly increase the data transmission 

reliability without increasing the transmission 

payload. Data loss below 30% during the wireless 

transmission can be easily tolerated without 

sacrificing the complete recovery of the original 

sensor data at all. It is a simple yet practical method 

to overcome the data loss problems for wireless 

SHM system. 
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