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ABSTRACT 

      If 
][)( xxf pZ  is an irreducible polynomial, the number of polynomials )(xg  with 

))(())(( xfdegxgdeg  1=))(),(( xfxg  is the order of the multiplicative group of
))(]/([ xfxpZ . In this 

paper we introducing analogues 
 p to Mobius function    defined on 

],[xpZ
 the set of all primitive 

polynomials in 
][xpZ . 
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1. INTRODUCTION 

 

In the construction of cryptosystems with polynomials 

in 
][xpZ  for prime p , the quotient ring of the 

polynomial ring in 
][xpZ  with an ideal generated by 

))(( xf ,  for )(xf  a polynomial in 
][xpZ  is 

considered and the group of units of this quotient is 
taken as the message space.  

In this paper we introducing analogues 
 p to Mobius 

function    defined on 
],[xpZ

 the set of all 

primitive polynomials in 
][xpZ . 

 We introduce the functions p   on 
][xpZ

 and 

prove one result relating 
 p  in the following section. 

 
Definition of Mobius functtion μ(n): 

 
The mobius function μ is defined as μ(1) = 1, 

if n>1, where n = p1a1 … pkak then μ(n) ={(−1)k   if a1 = a2 = ⋯ = ak = 10                             otherwise  

Note that μ(n) = 0  if and only if ‘n’ has a square 
factor >1 
  Here is a short table of valuees of μ(n). 
Theorem:- if n ≥ 1, we have ∑ μ(d) = [1n]d/n ={1     if n = 10     if n > 1. 

Proof: The formula is clearly true if n = 1 
      Now assume, then that n > 1 and write n =p1a1 … pkak 

In the sum ∑ μ(d)d/n  the only non zero terms comes 

from d = 1 and from thosee divisors of ‘n’ which are 
products of distinct primes. 
  Thus, 
       ∑ μ(d) = μ(1) + μ(p1d/n ) + ⋯ + μ(pk) +μ(p1p2) + ⋯ + μ(pk−1pk) + ⋯ μ(p1p2 … pk) 

           = 1 + (k1) (−1) + (k2) (−1)2 + ⋯ + (kk) (−1)k 

           = (1 − 1)K = 0  
       
                Hence proved    
 

2.  


 ANALOGUES IN 
][xpZ  

 
 
In this section we define two functions 

][ on  xpp Z
 that analogue to the arithmetical 

functions Mobius function )(n . 
 

2.1  p  AN ANALOGUE TO MODIUS FUNCTION ON 

AN
][xpZ

 
 

Definition 2.1.1 A real valued function p  on 

][xpZ
 is defined as follows : 

 

 
0.=))((  deg  if  1=))(( xfxfp  

If 0>))((deg xf  and 
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 for 

)(f xi  irreducible polynomials in 
],[xpZ  
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Theorem 2.1.2 For 
][)( xxf pZ
 with 

0))(( xfdeg  we have 





0.>))(( i,0

0,=))(( i,1 
=))((

)()|( xfdegf

xfdegf
xd

xfxd

p
 

 

Proof. Let 
][)( xxf pZ
, then )(xf  is a primitive 

polynomial. If 0=))(( xfdeg , 

0  =)(  candcxf pZ  further note 1=c  as )(xf  

is primitive. therefore 

.1=))((
)()|(

xdp

xfxd


  

If ,0>))(( xfdeg  with 
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D is the set of divisors of 
][)( xxf pZ  then for  

 

and }factor eirreducibl square no has )( and )(|)(:)({=1 xdxfxdxdD

 
 

}factor   eirreducibl square a has)( with)(|)(:)({=2 xdxfxdxdD

 
 

 and =)}(|)(:][)({by given  is 21 DDxfxdxxdD p Z
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 now as 1D  consists of the factors  

)),()()()(()),.......()(()),()((),......,(),(),(1, 3213121321 xfxfxfxfxfxfxfxfxfxfxf r

 we have 
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0.>))(( i 0=))((

)()|(

xfdegfxd
xfxd

p

 

Therefore 


)()|(

))((
xfxd

p xd
=0 fi 0.>))(( xfdeg   

 
\ 
 

3.CONCLUSION 

 

 This formula for 
))(( xfp  gives the order of the 

multiplicative group 
))(]/([ xfxpZ  for )(xf  any 

primitive polynomial in 
][xpZ ; This product formula 

developed is quite useful in the construction of 

cryptosystem with polynomial in 
))(]/([ xfxpZ , with 

the group of units of the quotient 
))(]/([ xfxpZ  as 

message space.  
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