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Abstract – Poor performance is typically the outcome of 

processor-based implementations of DSP algorithms since the 
architecture is compromised in order to gain programmability 
simplicity. Because of this, architects have turned to a variety 
of hardware platforms on which the architecture may be 
tailored to meet the necessary performance goals. DSP 
algorithms can now be implemented on FPGAs, thanks to the 
technology's recent appearance as a viable platform. With 
today's higher performance demands, classic LUT-based 
FPGAs are no longer sufficient. Because of this, the underlying 
FPGA fabric has seen an increase in both its quality and 
quantity from the manufacturers. Special macro blocks for 
digital signal processing have been added to current FPGAs. 
These aid in the quick and efficient completion of various 
mathematical operations, such as addition, multiplication, and 
so on. Direct and Transposed FIR filter topologies are 
discussed in this work utilizing these DSP blocks. For example, 
Xilinx Spartan-6 FPGAs exhibit an increase in performance 
relative to older implementations after extensive testing. 

 
Keywords –FPGA, FIR filters, LTI systems, DSP48A1, LUT 

I. INTRODUCTION 

The electronic industry's digital signal processing (DSP) 
sector is one of the most rapidly expanding in the world. 
Digital signal processing with a high-performance 
requirement is becoming more used [1-4]. As a result, DSP 
calculations need a platform capable of continually 
processing fresh data samples. Any number of sample rates 
from as little as a few hertz (Hz) up to hundreds of 
megahertz (MHz) may be used by the source. A DSP 
algorithm must be split up into many redundant 
architectures, each with its own set of performance 
characteristics to account for the wide range of possible 
sampling rates [7]. 

Intense mathematical computations are always at the 
heart of any DSP system. These may range from simple 

The concept of developing the architecture on demand 
requires some sort of underlying platform. Traditionally, 
Application Specific Integrated Circuits (ASICs) have been 
used as the implementation platform of choice [9]. 
However, the non-recurring engineering (NRE) costs 
associated with the design cycle of ASICs has limited their 
use to some specialized domains only. FPGAs provide an 
alternate platform for developing the architecture on 
demand. FPGAs have many advantages over ASICs like 
large-scale integration, lower NRE costs, re-configurable 
design approach [9-11] etc. thereby providing an attractive 
platform for rapid system prototyping [12-13]. Recently 
FPGA fabric has evolved enormously with state of art 
FPGAs supporting many specialized primitives, IPs and 
macro blocks in addition to the conventional LUT resources 
[14-16]. This has prompted designers to develop fully 
customized systems on these devices, thus, extending the 
domain of FPGAs beyond prototyping to low and medium 
volume productions [17-19]. 

The rest of the paper is organized as follows. Section II 
briefly discusses the FIR systems. Section III discusses the 
structures for FIR systems that have been considered for 
implementation in this work. Section IV discusses the 
DSP48A1 macro block that is an inherent element in 
modern FPGAs. Section V analyses the metrics obtained 
from synthesis and implementation. The paper concludes in 
section VI and references are listed at the end. 

II. FIR SYSTEMS 

A particularly important class of systems consists of 
those that are linear and time invariant. These two properties 
in combination lead to special kind of systems known as 
Linear Time Invariant (LTI) systems. LTI systems are 
characterized in time domain by their response to a unit  
sample sequence: 

arithmetic operations like addition and multiplication to 
more complex operations such as convolution. Filtering is  
one such operation that is frequently used in many DSP 
applications. Traditionally, filtering algorithms are coded 

𝑦[𝑛] =  ∑∞ 

𝑦[𝑛] = ∑−1 

𝑥[𝑘]ℎ[𝑛− 𝑘] 

ℎ[𝑘] 𝑥[𝑛− 𝑘] + ∑∞ 

(1) 

ℎ[𝑘] 𝑥[𝑛− 𝑘] 
(2) 

using some high-level language and then implemented using 
a general or a DSP processor. This, however, results in poor 
hardware efficiency as the hidden concurrencies in these 
algorithms remain unutilized [6]. Processor based solutions,  
therefore, limit the evolution of the architecture [8]. This  
calls for some hardware-oriented solutions where the notion 
is to develop the architecture that specifically meets the 
performance requirements of the application. 

= {ℎ[−∞]𝑥[𝑛+ ∞] + ⋯ ⋯ + ℎ[−2]𝑥[𝑛+ 2] 

+ℎ[−1]𝑥[𝑛+ 1]} + {ℎ[0]𝑥[𝑛] + ℎ[1]𝑥[𝑛− 1] + 
⋯⋯ } (3) 

The class of LTI systems can be divided in to two types: 
Those having a finite duration impulse response (FIR) and 
those having an infinite duration impulse response (IIR). 
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Thus, an FIR system has an impulse response that is zero 
outside of some finite time interval: 

𝑦[𝑛]  =  ∑𝑀−1 ℎ[𝑘] 𝑥[𝑛− 𝑘] (4) 

𝑦[𝑛] = 𝑦[0]𝑥[𝑛] + ℎ[1]𝑥[𝑛− 1] + ⋯ ⋯ 

+ℎ[𝑀 − 1]𝑥[𝑛− 𝑀+ 1] (5) 

An FIR system simply weights, by the value of the 
impulse response ℎ[𝑘], 𝑘 = 0,1,2 ⋯ 𝑀 − 1, the most recent 
M signal samples and sums the resulting M products. In 
effect, the system acts as a window that views only the most  
recent M input signal samples in forming the output. Thus, 
we say that an FIR system has a finite memory of length M 
samples. 

III. STRUCTURES FOR FIR SYSTEMS 

An FIR system is mathematically represented as: 

 
 
 
 
 
 
 
 
 

y[n] 
 
 
 
 
 
 
 
 
 
 
 
 

y[n] 

 
 
 
 
 
 
 
 
 

 
Fig. 1 Direct FIR Filter 

 
x[n] 
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𝑦[𝑛]  = ∑𝑀    𝑏k 𝑥[𝑛− 𝑘] (6)  
Fig. 2 Transposed FIR Filter 

Taking Z transform 

𝑌[𝑧] = ∑𝑀 𝑏k 𝑍−kX [𝑧] (7) IV. DSP48A1 BLOCK 

𝑌[𝑧] 
= ∑𝑀     𝑏

 𝑍−k (8) The DSP48A1 is the advanced version of DSP48A that 
𝑋[𝑧] k=0   k existed in the earlier Spartan-3A family [20-22]. It supports 

𝐻[𝑧] = ∑𝑀 𝑏k 𝑍−k (9) 
many arithmetic operations that are implemented with 
minimal use of general purpose FPGA fabric. This ensures 

Taking inverse Z transform 
𝑏k, fo𝑟 0 ≤ 𝑘 < 𝑀 

high performance and efficient device utilization. The macro 
block supports an 18-bit pre-adder; an 18×18 multiplier and 

ℎ(𝑛) = {  

 
Therefore, 

𝑦[𝑛] = ∑𝑀 

0,   o𝑡ℎe𝑟wi𝑠e 
(10)

 

 
𝑏k  𝑥[𝑛− 𝑘] (11) 

a 48-bit sign-extended adder cum subtractor cum 
accumulator. The entire DSP48A1 block is rigorously 
pipelined - a feature that enables the block to be clocked at 
high frequencies. One of the important features of these 
macro blocks is that they can be easily cascaded without the 

𝑦[𝑛] = ∑𝑀 𝑏[𝑘]𝑥 [𝑛− 𝑘] (12) use of general routing. Architecture highlights of the 
DSP48A1 slices are: 

𝑦[𝑛] = 𝑏[0]𝑥[𝑛] + 𝑏[1]𝑥[𝑛− 1] + 𝑏[2]𝑥[𝑛− 2] 

+⋯ ⋯  + 𝑏[𝑀 − 1]𝑥[𝑛− 𝑀+ 1]𝑏[𝑀]𝑥[𝑛− 𝑀] (13) 

A. Direct Form Structure 

The Direct form structure consists of a chain of delay 
elements and thus this structure is also referred to as a 
tapped delay line structure or a transversal filter structure. 
The signal sample at each tap along this chain is  weighted 
by the appropriate coefficient (impulse response) and the 
resulting products are summed to form the output y[n]. The 
realization requires M multiplication and M-1 additions per 
sample. The critical path for such a realization  would 
include a multiplier unit and M-1 adder units and is given 
by: 

𝐶𝑃𝐷i𝑟e𝑐𝑡 = 𝑇𝑀𝑢𝑙𝑡 + (𝑀 − 1)𝑇Æ𝑑𝑑e𝑟 (14) 

Where TMult and TAdder is the delay associated with multiplier 
and an adder respectively. 

B. Transposed Form Structure 

The transposed form structure is obtained by applying 
the transposition theorem to the direct form. The realization 
again requires M multiplication and M-1 additions per 
sample. The critical path for such a realization  would 
include a multiplier unit and an adder unit and is given by: 

𝐶𝑃𝑇𝑟𝑎𝑛𝑠𝑝𝑠oe𝑑 = 𝑇𝑀𝑢𝑙𝑡 + 𝑇Æ𝑑𝑑e𝑟 (15) 

1) Two-input pre-adder/subtractor. 

2) Two-input, flexible 48-bit post-adder/subtractor. 

3) Advanced carry management. 

4) Performance enhancing pipeline options. 

5) Ability to perform multiply-add operation. 

6) Separate reset and clock enable for control and data 
registers, ensuring maximum clock performance and 
highest possible sample rates with no area cost. 

V. EXPERIMENTATION AND ANALYSIS 

In this work, FPGAs that have specialized DSP48 blocks 
have been considered. Although DSP48 blocks were 
introduced in earlier Xilinx FPGAs, it is only recently that 
they have gained significance in terms of number, 
performance optimality and ease of use. Our work, 
specifically targets the DSP48 block of the Spartan-6 FPGA 
device. Extensive experimentation is done by carrying out 
implementations for varying filter orders (keeping operand 
word-length constant) and varying operand word-lengths 
(keeping filter order constant). For analysis resources 
utilized, performance (timing) and power have been 
considered. 

Resources include both general FPGA fabric (LUTs, 
flip-flops etc.) and special FPGA primitives (carry-chains, 
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DSP48 blocks etc.). Performance is measured by carrying 
out the timing analysis of the realized filter structures. Such  
an analysis may be static or dynamic in nature. The former 
is mainly concerned with the combinational delays incurred 
along different paths from input to output. However, for  
practicality, we have reported the combinational delay along 
the critical path (largest combinational path) only. Further,  
the reported numbers are recorded after complete 
constrained placement and routing of the design. This is  
because post-synthesis timing analysis is often vulnerable to 
change, as the logic has not yet been mapped on to the 
FPGA device. Therefore, post place & route timing analysis 
has been done which is more accurate. Unlike static timing 
analysis, dynamic timing analysis, typically checks the 
functionality of the design in a real time constrained 
environment. A straightforward approach towards dynamic 
timing analysis is to design a test bench and apply numerous 
test vectors. Corresponding to each test vector an output  
vector is recorded and verified for correctness. If correct, the 
functionality of the design is confirmed. 

Dynamic timing analysis also enables the designer to 
capture a realistic picture of the switching activity that is 
occurring within a routed design. The same is used to assess 
the power dissipation (dynamic) of an implemented design.  
Generally, a value change dump (VCD) or a simulation 
activity interchange format (SAIF) file captures the 
switching activity of a design, which in combination with 
the design netlist and power constraint file is used to 
generate a detailed power report. Power dissipation involves 
both static and dynamic components. While static power is 
device specific, dynamic power depends on the complexity 
of the routed design. The amount of mapped logic, clock 
frequency, density of interconnects and the toggle rate of  
signals along nodes are some of the factors that will affect  
the reported power metrics from the synthesizer database. 

Xilinx ISE 14.1 has been used to carry out the synthesis,  
simulation and implementation of different filter structures.  
For power estimation, Xpower analyzer has been used. The 
entire analysis has been done on a comparative basis and 
some frequently used filter designs have been considered.  
Such an analysis gives a good measure of the achievable 
performance speed-up using DSP48 blocks. Filter 
realizations reported in [23-24] have been considered. 
However, the filters in [23-24] have been  implemented 
using Virtex-5 FPGAs. Since our work focusses on Spartan- 
6 FPGAs, the filter designs presented in [23-24] are re- 
implemented using Spartan-6 FPGAs. 

A.  Resource Analysis 

A comparison of different FPGA resources utilized by 
different FIR filter realizations proposed in this work and 
those reported in [23] and [24] is presented in table 1. The 
analysis considers an input operand word-length of 16 bits. 
It is observed that filter realizations based on DSP48 macro 
blocks utilize the underlying FPGA device efficiently 
compared to other realizations. Further, Transposed form 
realizations show a higher occupied slice count than the 
Direct form filters. This is due to the extra registers utilized 
by the transposed form structures. Table 2 provides a 
comparison of various resources utilized by different filter  
realizations for an operand word-length of 16 bits. Further 

analysis plots different utilized resources as a function of 
operand word-length (for constant tap length of 16) and tap 
length (for constant operand word-length of 16 bits). The 
results are shown in figures 3 and 4 respectively. 

 
TABLE 1. OCCUPIED SLICES FOR DIFFERENT FIR FILTERS 

 

Design Order Occupied Slices 

6:3 Compressor based CSD[23] 8 452 

Systolic (transposed form)[23] 8 120 

MAC based (2-parallel/unfold)[23] 8 17 

MATLAB based (Pipelined) [23] 16 613 

IP based MAC (Systolic) [23] 16 511 

Canonic sign. Digit (transposed) [23] 16 1011 

Direct Form [24] 8 169 

Transposed Form [24] 8 140 

Direct Form [24] 16 302 

Transposed Form [24] 16 219 

Direct Form [DSP48] 8 16 

Transposed Form [DSP48] 8 38 

Direct Form [DSP48] 16 32 

Transposed Form [DSP48] 16 61 

 
TABLE 2. LUTS, REGISTERS, SLICES, DSP48S FOR DIFFERENT PROPOSED 

FIR FILTERS 
 

Design Order LUTs Registers Slices DSP48s 

Direct 
Form 

8 53 112 16 15 

Transposed 
Form 

8 81 224 37 15 

 
 

84 

77 

70 

63 

56 

49 

42 

35 

28 

21 

14 

7 

2 4 6 8 10 12 14 16 

WORD LENGTH 

525 

 
450 

 
375 

 
300 

 
225 

 
150 

 
75 

 
0 

2 4 6 8 10 12 14 16 

WORD LENGTH 

Fig. 3 Slice and registers versus word length for 16 bit operands. 
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relaxing the switching along these high activity nodes. A 
comparison of power dissipation for different FIR filters is  
provided in figure 5. Further analysis plots dynamic power 
dissipation as a function of operand word-length (for 
constant tap length of 16) and tap length (for constant 
operand word-length of 16 bits). The results are shown in 
figures 7 and 8 respectively. 

 
TABLE 3. TIMING ANALYSIS FOR DIFFERENT FIR FILTERS 
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Fig. 4 Resource utilization versus filter order for 16 bit operands. 
 

B.  Performance (Timing Analysis) 

 
 
 
 
 
 
 
 
 
 

TABLE 4. TIMING ANALYSIS FOR DIFFERENT PROPOSED FIR FILTERS 

Table 3 provides a comparison of the maximum 
achievable clock frequency by different FIR filter 
realizations proposed in this work and those reported in [23] 
and [24]. The analysis is done for an operand word-length of 
16 bits. It is observed that filter realizations based on DSP48 
macro blocks have high operating frequencies compared to 
other realizations. This is because structures based on 
DSP48 are implemented with a high degree of optimality. 
There are two reasons for this. First, the adder and multiplier 
units are implemented using the internal fabric of DSP48 
block. Therefore, general FPGA routing, which incurs a lot  
of delay is avoided. Second, the DSP48 macro block is 
internally rigorously pipelined as the data transfer within the 
block is done via the registers. This breaks the critical paths 
and enables the filter to be operated at high frequencies. A 
comparison of clock frequency for different filter 
realizations is provided in table 4. Further analysis plots  
clock frequency as a function of operand word-length (for 
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constant tap length of 16) and tap length (for constant 
operand word-length of 16 bits). The results are shown in 
figures 5 and 6 respectively. 

C. Power Analysis 

The use of DSP48 macro blocks results in a reduction in 
dynamic power dissipation. This is achieved by reducing the 
amount of mapped logic and switching activity in the filter 
structure. Since general LUT fabric is not used there is a 
reduction in the power dissipated in logic. The switching 
activity is reduced in two ways. First, the general FPGA 
routing is avoided as the adder and multiplier units are 
implemented using DSP48 blocks. This eliminates the 
switching along the general FPGA interconnects. Second, 
the blocks are rigorously pipelined by placing  registers 
along different computational nodes. This also helps in 

Fig. 5 Operating Frequency versus word length for 16 tap filters 
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Fig. 6 Operating Frequency versus filter order for 16 bit operands. 
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Design Order Throughput 
(MHz) 

6:3 Compressor based CSD[23] 8 85.32 

Systolic (transposed form)[23] 8 185.4 

MAC based (2-parallel/unfold)[23] 8 212.18 

MATLAB based (Pipelined) [23] 16 183.32 

IP based MAC (Systolic) [23] 16 203.64 

Canonic sign. Digit (transposed) [23] 16 220.31 

Direct Form [24] 8 217.14 

Transposed Form [24] 8 246.22 

Direct Form [24] 16 190.01 

Transposed Form [24] 16 233.12 

Direct Form [DSP48] 8 224.4 

Transposed Form [DSP48] 8 271 

Direct Form [DSP48] 16 191.54 

Transposed Form [DSP48] 16 245.71 

 

Design Order Throughput (MHz) 

Direct Form 8 230 

Transposed Form 8 278 
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TABLE 5. POWER ANALYSIS FOR DIFFERENT PROPOSED FIR FILTERS 
 

Design Order Dynamic Power (mW) 

Direct Form 8 3.01 

Transposed Form 8 4.19 
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Fig. 7 Dynamic Power versus word length for 16 tap filters 
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Fig. 8 Dynamic Power versus filter order for 16 bit operands 

 
VI. CONCLUSION 

This work implemented FIR filters using adder and 
multiplier units based on DSP48 macro blocks. The analysis 
done in this work showed that involving DSP48 macro 
blocks in the synthesis process can directly impact the 
resources, performance and power requirements of the 
design. Different filter realizations were considered, and it 
was shown that the realizations based on DSP48 will always 
outperform the other traditional approaches. However, a 
major limitation in using DSP48 macro blocks is their 
limited number which kind of hinders their usage in DSP 
applications. Thus, the complexity of the intended design 
and the capacity of the target FPGA device is an important  
consideration while using these macroblocks. 

. 
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