

A Peer Revieved Open Access International Journal

www.ijiemr.org

## COPY RIGHT



2018IJIEMR. Personal use of this material is permitted. Permission from IJIEMR must

be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. No Reprint should be done to this paper, all copy right is authenticated to Paper Authors

IJIEMR Transactions, online available on 25th Dec 2018. Link

:http://www.ijiemr.org/downloads.php?vol=Volume-07/ISSUE-13

Title Assessment of Physico- Chemical Parameters to Govern the Ground Water Quality and Its Criteria in the Purlieu of the Industrial zone of Parawada, Visakhapatnam, A.P, India. - A Case Study

Volume 07, Issue 13, Pages: 747-767 Paper Authors Bujjibabu Miriyala, Hari Babu Bollikolla





USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER

To Secure Your Paper As Per UGC Guidelines We Are Providing A Electronic Bar Code



International Journal for Innovative

Engineering and Management Research

A Peer Revieved Open Access International Journal

www.ijiemr.org

## Assessment of Physico- Chemical Parameters to Govern the Ground Water Quality and Its Criteria in the Purlieu of the Industrial zone of Parawada, Visakhapatnam, A.P, India. - A Case Study

#### Bujjibabu Miriyala<sup>1</sup>, and Hari Babu Bollikolla<sup>2,3,\*</sup>

<sup>1</sup>Acharya Nagarjuna University, Department of Environmental Sciences, Guntur- 522510. Andhra Pradesh, India. <sup>2</sup> Acharya Nagarjuna University, Department of Chemistry, Guntur-522510. Andhra Pradesh, India. <sup>3</sup>Acharya Nagarjuna University, Department of Nanotechnology, Guntur-522510. Andhra Pradesh, India.

Corresponding Author: Dr. HariBabu Bollikolla, Email: dr.b.haribabu@gmail.com

#### Abstract:

The main objectives of this study are to investigate groundwater pollution and its remedial measures in the study area in order to ascertain the extent of health effects in industrialized areas and to evaluate groundwater quality and its suitability for drinking needs. For this study, groundwater samples were collected from tanam, pinamadaka, bottavanipalem, chintalagorlavanipalem, lankelapalem, jellalapalem, chinatadi, and parawada villages of rural Visakhapatnam, Andhra Pradesh, India during the period of pre-monsoon (March) and postmonsoon (September) seasons of 2018. To determine the quality of the water, physicochemical parameters like P<sup>H</sup>, Dissolved Oxygen (DO), Electrical Conductivity (EC), Total Dissolved Solids (TDS), Total Hardness, Calcium (Ca<sup>2+</sup>), Magnesium (Mg<sup>2+</sup>), Sodium (Na<sup>+</sup>), Potassium  $(K^+)$ , Chlorides (Cl<sup>-</sup>), Total Alkalinity (TA), Sulphates (SO<sub>4</sub>-<sup>2</sup>), Fluorides (F<sup>-</sup>), Nitrates (NO<sub>3</sub><sup>-</sup>), Phosphate  $(PO_4)$  and Turbidity were utilised. The results are compared with BIS (IS 10500:2012) and WHO drinking water standards. The mean concentration level of cat ions is in the following sequence:  $Na^+ > Ca^{+2} > Mg^{+2} > K^+$  and the mean concentration level of anions is in the following sequence:  $Cl^- > SO4^{-2} > NO3^- > F^- > PO4^{-2}$ . The dominant hydrochemical facies of groundwater are CaHCO3, mixed CaNaHCO3, mixed Ca<sup>+2</sup>-Mg<sup>+2</sup>-Cl<sup>-</sup>, and Na<sup>+</sup>-Cl<sup>-</sup> water types. Because of the high concentrations, the water is unfit for drinking, and it must be protected from contaminants.

**Keywords**: Groundwater, Hazards, Hydro chemical facies, Physicochemical parameters, Industrial zone.

#### Introduction:

Water is an indispensable element of nature for the nourishment of Organisms and life on earth. Three fourth of the Earth's surface is covered with water. But, the major part of it is in the



A Peer Revieved Open Access International Journal

www.ijiemr.org

form of oceans. Which is not useful for drinking or agricultural purpose, and only sweet water is required but it is very little. Freshwater; is in the form of rivers, lakes, ponds, and groundwater. Groundwater is vital for human life is found only in selected provinces and it is very little. The problem with groundwater quality is primarily caused by geological and man-made errors, many researchers have made the same assertion in this regard<sup>1-4</sup>. Unlike many materials, and there is no substitute for water in many of its uses<sup>5</sup>. Groundwater supplies a significant portion of the water supply for both domestic and industrial use. Water scarcity and pollution are major issues in many parts of the world<sup>6-8.</sup> Almost half of the world's population lacks access to safe drinking water, and the demand for water doubles every 21 years<sup>9</sup>. Contaminated water can cause numerous infections and has been identified as the primary cause of certain diseases<sup>10</sup>. A child dies from a water-related disease every eight seconds around the world, 50% of people in developing countries suffer from one or more water-related diseases, and contaminated water causes 80% of diseases in developing countries <sup>11</sup>.

Moreover, the influence of solid waste dumping sites, undignified drainage, aquifer material mineralogy, domestic wastewater together with semiarid weather, and unconscious anthropogenic activities have adversely affected the groundwater quality<sup>12</sup>. Before the industrial revolution, surface, as well as groundwater quality, is good enough with respect to quality and quantity. From the 18<sup>th</sup> century onwards, tremendous growth in industrial establishment causes to frantic growth of anthropogenic activities leading to water resources being vulnerable to contamination by various pollutants<sup>13</sup>. Groundwater is generally recharged by surface or river water and is used as a major source of drinking water as well as other uses such as agriculture, industry, and a variety of recreational activities. In recent days, there is strange pollutant contamination in groundwater is being observed due to the penetration of industrial wastewater, agricultural activities & runoffs, mining extracts, and urban sewages containing toxic chemical components<sup>14</sup>, so it needs to be protected from the perils of contamination by avoiding abnormal concentrations major ions and parameters. Groundwater in several parts of India is contaminated with arsenic and fluoride as a result of both natural and anthropogenic contamination. A similar observation was made in the case of fluoride in groundwater in some areas of Kadapa District<sup>15</sup>: the groundwater in rural areas is getting polluted due to modern farming deeds. A surplus quantity of fertilizers and pesticides are utilized in village cropping to get high yields, and the excess concentration of residues may penetrate the groundwater and spoil the groundwater



A Peer Revieved Open Access International Journal

www.ijiemr.org

balance. The excessive use of nitrate fertilisers and related substances is the primary source of nitrate pollution of groundwater.

#### Materials and methods:

Visakhapatnam area is in a bowl shape. It has a geographical area of  $681.96 \text{ km}^2$  (263.31 sq mi) and is located between the Eastern Ghats and the coast of the Bay of Bengal. It is located between  $17^{\circ}$  15' and  $18^{\circ}$  32' North latitude and  $18^{\circ}$  54' and  $83^{\circ}$  30' East longitude.

#### Material Used for the study:

Freshly purchased plastic cans, sterilised glass bottles, pipettes, burettes, beakers, measuring cylinders were used. AR-grade chemicals were used during analysis.

#### **Study Area:**

This is also a bumpy, slope area. The population density in this area is around 2500 per square kilometre. The gender ratio is 1120 females for every 1000 males. In November/December, the mean minimum temperature ranges from 28°C to 34°C recorded. In May/June, the mean maximum temperature ranges from 35°C to 42°C recorded. Every year, the southwest monsoon begins in the third week of April, and the northeast monsoon begins in October. The average annual rainfall ranges between 1100 and 1208 mm<sup>16.</sup> The photographic view of the study area is tabulated in the **Figure 1**.

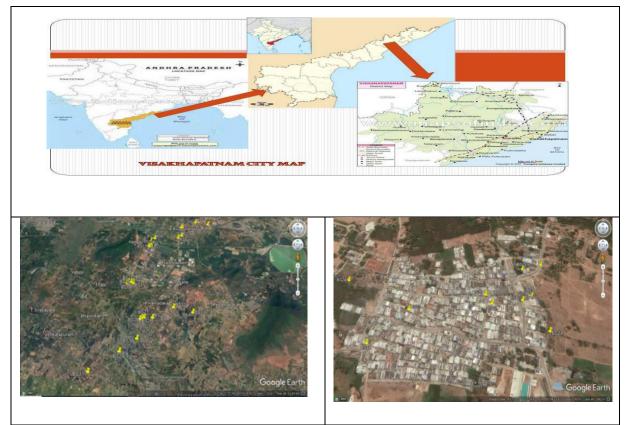



Figure 1. Study area map with geological locations covered 8 neighbouring villages.

ISSN 2456 - 5083



# International Journal for Innovative

Engineering and Management Research

www.ijiemr.org

A Peer Revieved Open Access International Journal

#### **Sampling Locations:**

For this study, 40 sampling locations were identified from 8 villages. The list of sampling

stations and their details are tabulated in Table 1.

#### Table 1: List of sampling stations and its Geographical location in the study area:

| Code     | Location                      | Latitude             | Longitude        | Code     | Location                                             | Latitude          | Longitude        |
|----------|-------------------------------|----------------------|------------------|----------|------------------------------------------------------|-------------------|------------------|
| Borewell | sample at Lankelepalem        | village area (Area-  | -01)             | BS19     | Anjaneya Swami temple                                | 17° 38' 49.722''N | 83° 4' 6.567" E  |
| BS1      | HP Gas go- Dom                | 17° 41' 18.85" N     | 83° 6' 40.215''E | BS20     | K.Sanyarasirao house                                 | 17° 38' 52.623"N  | 83° 4' 17.173"E  |
| BS2      | Reddy mango garden            | 17° 41' 22.502"<br>N | 83° 6' 13.838''E | BS21     | S.Kumari house                                       | 17° 38' 52.900" N | 83° 4' 17.84" E  |
| BS3      | M. Srinivasa Rao house        | 17° 41' 7.926" N     | 83° 5' 45.765"E  | BS22     | B.Sannyasirao house                                  | 17° 38' 50.485" N | 83° 4' 18.80" E  |
| BS4      | S. Raghavarao house           | 17° 41' 7.083" N     | 83° 5' 43.659"E  | BS23     | T. Gangaraju house                                   | 17° 38' 52.306"N  | 83° 4' 14.93" E  |
| BS5      | Shanti Talent School.         | 17° 40' 46.232''N    | 83° 5' 45.265"E  | BS24     | NTR statue                                           | 17° 38' 51.885"N  | 83° 4' 9.094" E  |
| BS6      | Kanakadurga temple            | 17° 40' 40.216''N    | 83° 5' 38.518"E  | BS25     | Z.P.High School                                      | 17° 38' 54.074"N  | 83° 4' 4.303" E  |
| BS7      | K.Ramullamma house            | 17° 41' 12.34 N      | 83° 5'41.35"E    | BS26     | T.Appala Naidu house                                 | 17° 38' 48.52 "N  | 83° 4' 08.77" E  |
| Borewell | sample at Chinatadi/ Kan      | nur village area (A  | (rea-02)         | Borewell | sample at Parawada village a                         | rea (Area-04)     |                  |
| BS8      | APGVB bank                    | 17° 40' 29.143''N    | 83° 4' 42.679''E | BS27     | Vinayaka temple                                      | 17° 37' 42.35" N  | 83° 04'39.68" E  |
| BS9      | House of S.Ramana.            | 17° 40' 35.583''N    | 83° 4' 49.807"E  | BS28     | Visakha Grameena Bank                                | 17° 37' 44.85" N  | 83° 4'42.826" E  |
| BS10     | P.V. Lakshmi house            | 17° 40' 36.620''N    | 83° 04' 49.77"E  | BS29     | Main road                                            | 17° 37'45.886" N  | 83° 4'46.729'' E |
| BS11     | MPP School                    | 17° 40' 19.992''N    | 83° 4' 43.108''E | BS30     | Maridimamba<br>CommunityHall                         | 17° 37'46.452" N  | 83° 5'1.712'' E  |
|          |                               |                      |                  | BS31     | Near K.Ramesh house                                  | 17° 37'43.24" N   | 83° 4'43.63" E   |
| BS12     | BC colony                     | 17° 40' 16.320''N    | 83° 04' 41.04''E | BS32     | Near Taviti Naidu house                              | 17° 37'43.68" N   | 83° 4'47.66" E   |
| D512     | BC cololly                    | 17 40 10.320 N       | 65 04 41.04 E    | BS33     | Near M. Sesha Rao house                              | 17° 37'39.02" N   | 83° 4'44.92" E   |
| BS13     | Panchayat water tank          | 17° 40' 15.600''N    | 83° 04'39.07" E  | Borewell | sample at Other village area                         | (Area-05)         |                  |
| 0010     | Tulendyat water talk          | 17 10 15.000 11      | 05 0159.07 1     | BS34     | Maridimamba temple<br>Jallelapalem                   | 17° 36'46.119'' N | 83° 4'12.457" E  |
| BS14     | Municipal Sub-Zonal<br>Office | 17° 40' 14.491''N    | 83°04' 40.46" E  | BS35     | Pydimamba temple-<br>Atchutauram – Parawada<br>road. | 17° 37' 8.713" N  | 83° 4'38.769" E  |
| Borewell | sample at Tanam village a     | area (Area-03)       |                  | BS36     | Overhead water tank-<br>Bottavanipalem               | 17° 36'11.660'' N | 83° 3'27.684'' E |
| BS15     | B.Nukaraju House.             | 17° 38' 55.402''N    | 83° 04' 18.86"E  | BS37     | Gowthulachanna Colony -<br>Pinamadaka                | 17° 38' 7.922" N  | 83° 5'37.417" E  |
| BS16     | Overhead tank                 | 17° 38' 55.15" N     | 83° 4' 17.44" E  |          | Ramalayam –                                          |                   |                  |
| BS17     | bore hole No.32/013           | 17° 38' 52.958"<br>N | 83° 4' 14.487"E  | BS38     | Chintalagorlavanipalem                               | 17° 38' 1.017" N  | 83° 6'12.106" E  |
| BS18     | M.Apparao house               | 17° 38' 52.648''N    | 83° 4' 17.166"E  | BS39     | Gollaveedhi                                          | 17° 38' 02.81" N  | 83° 6'09.68" E   |
| D310     | M.Apparao nouse               | 17 30 32.040 IN      | 65 4 17.100 E    | BS40     | Near K. Sreenivas house                              | 17° 38' 00.52'' N | 83° 5'58.09" E   |

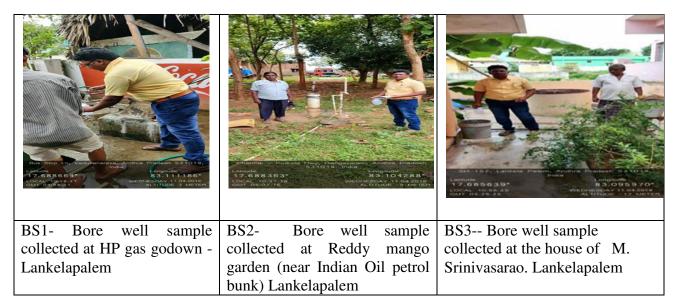



Figure - 02: Some photographic views of sampling in the study area.



#### Sampling:

After virtuous inventory, groundwater samples were collected from 40 locations for the period of pre-monsoon (March) and post-monsoon (September) seasons of 2018 in a simple random sampling method. In total, 80 samples were collected from 40 sampling locations in both seasons based on water consumption using the protocol and guidelines outlined in the Standards methods<sup>17</sup>. To avoid or minimise contamination, all practical precautions were taken at every stage, beginning with sample collection, adding preservatives, storage, transportation, analysis, and interpretation of the samples.

#### **Parameters analysed:**

The Analysis was carried out at the Zonal laboratory, APPCB, Kurnool, and Visakhapatnam by using standard methods and techniques (APHA  $23^{rd}$  edition). For this study, physicochemical parameters like P<sup>H</sup>, Dissolved Oxygen (DO), Electrical Conductivity (EC), Total Dissolved Solids (TDS), Total Hardness, Calcium (Ca<sup>2+</sup>), Magnesium (Mg<sup>2+</sup>), Sodium (Na<sup>+</sup>), Potassium (K<sup>+</sup>), Chlorides (Cl<sup>-</sup>), Total Alkalinity (TA), Sulphates (SO<sub>4</sub>-<sup>2</sup>), Fluorides (F<sup>-</sup>), Nitrates (NO<sub>3</sub><sup>-</sup>), Phosphate (PO<sub>4</sub><sup>-</sup>) and Turbidity were utilised. Flame photometers, digital pH & conductivity metres (Hach), Spectrophotometers (DR6000), and calibrated glassware were among the sophisticated instruments used.

#### **Scope of the Present Study:**

The previous researchers have focused on urban agglomeration and some physicochemical characteristics in Visakhapatnam city by covering residential zones & some industrial zones and noticed some abnormalities. They are not focused on the suitability of groundwater for drinking needs. Moreover, the present study area is also close to the industrial hub. As per the author's knowledge, groundwater studies are yet to be carried out in the present study area. The local public uses the groundwater for drinking, cattle feeding, household, and irrigation purposes. Due to industrial activity, there might be chances to get contamination of groundwater. The study area has no scientific drainage system. Moreover, the local public in the area is frequently suffering from fever, diarrhoea, and gastrointestinal diseases. This forms the basis for groundwater quality study and an attempt has been made to evaluate the concentration levels of some physicochemical parameters.



www.ijiemr.org

## Results and discussion Physicochemical parameters:

#### pH:

Normally the value of pH in drinking water is always neutral, if the value is increase or decreases can change the quality of water, and the recommended range is from 6.5 to 8.5as per IS 10500:2012 & WHO. This study ranged from 6.78 to 7.82 (mean of 7.32) and from 6.69 to 7.65 (mean of 7.13) for the 2018 monsoon and post-monsoon seasons, respectively. The maximum value is found at BS9. Compared the results, the pre-monsoon results are higher than the post monsoon seasons. The abnormal concentration of pH indirectly affects health in many ways. The water with its acidic nature can corrode the plumbing and lead to the leaching of metals like lead, manganese, iron, copper, zinc, etc. Excess levels of lead in drinking water can cause cancer, kidney disease, memory loss, high blood pressure, and other health problems in humans. The standard deviation is recorded as 0.19 & 0.15 respectively.

#### **Dissolved Oxygen:**

In groundwater investigations, the most important and perpetually considered parameter is DO. It is invariably regarded as a necessary and critical parameter. It varies greatly with water temperature and the partial pressure of oxygen in its gas phase <sup>18</sup>. The lower value of DO is an indicator of contamination and it may not be fit for direct consumption. If the Dissolved Oxygen levels are may be decreased, it may be an indication of bacteriological or chemical contamination and this may cause by the interaction of various constituents. The decrease in the DO of water in summer is due to its poor ability to hold O<sub>2</sub> at high temperatures as a result of the higher rate of microbial metabolism. This study ranged from 3.8 to 5.3 (mean of 4.4) and from 5.0 to 6.6 (mean of 6.14) for the monsoon and post-monsoon seasons of 2018, respectively. The maximum value is found at BS14 & BS30 and the minimum value is recorded at BS24. The standard deviation is recorded as 0.33 to 0.37 respectively. Among the results, very lower values were recorded during the pre-monsoon season due to high temperature.

#### **Electrical conductivity:**

The ability of water to carry an electrical current is referred to as conductivity. A sudden increase in water conductivity indicates the presence of pollutants in the water<sup>19, 20</sup>. The present study ranged from 401 to 2610  $\mu$ S/cm (mean 1188), and 381 to 2519  $\mu$ S/cm (mean 1072), during pre-monsoon and post-monsoon seasons, respectively. The maximum value is found at BS27. The standard deviation is recorded as 661 & 620 respectively.



A Peer Revieved Open Access International Journal

#### **Total Dissolved Solids:**

Total dissolved solids, the concentration ranged from 262 mg/L to 1707 mg/L (mean 777), and 249 mg/L to 1647 mg/L (mean 701) at pre-monsoon and post-monsoon seasons, respectively. The maximum value is found at BS27. TDS levels in groundwater may be high due to nutrient-rich surface waters contaminating the groundwater <sup>21</sup>. A high level of TDS in groundwater is not a significant health risk to the general public but affects people with kidney and heart disease. The standard deviation is recorded as 432 & 405 respectively. Among the results, the higher values were observed at tanam and parawada areas.

#### **Total Hardness:**

Hardness is also one of the prime parameter in drinking water quality assessment it is mainly caused by the presence of cat ions such as Calcium and Magnesium, strontium, ferrous iron, and manganous ions and accompanied by anions such as chlorides, sulfates and bicarbonates nitrate and silicate respectively. Calcium and magnesium are responsible for the majority of the hardness found in natural waters<sup>22, 23.</sup> Hard water is water that necessitates a substantial amount of soap to develop foam or lather and start generating scale in hot-water pipes, heating systems, boilers, and other appliances. As per IS 10500: 2012, the acceptable limit in drinking water is 200 mg/L and the permissible limit in drinking water is 600 mg/L. The present study ranged from 80.9 to 767 mg/L (mean 210), and 54.5 to 563.6 mg/L (mean 151), during the pre- and post-monsoon seasons. The maximum value is found at BS27. The standard deviation is recorded as 152 & 116 respectively.

#### **Calcium:**

Calcium is a vital nutrient that has helped to form and develop bones and teeth. High concentration levels produced cardiovascular diseases, create kidney stones, weaken bones, and interfere with heart and brain work. The high deficiency of calcium is often called hypocalcemia in humans and may cause rickets, poor blood clotting, bones fracture, etc. In the present study, the concentration ranged from 14 mg/L to 163 mg/L (mean 47.5), and 10 mg/L to 124 mg/L (mean 35) during the pre- and post-monsoon seasons. The maximum value was found at the BS27 sampling station. The standard deviation is recorded as 32 & 26 respectively.

#### Magnesium:

Before and after the monsoon, magnesium concentrations ranged from 8 mg/L to 88 mg/L (mean 22.4) and from 4 mg/L to 62 mg/L (mean 15.5), respectively. The maximum value was found at the BS27. Magnesium is also a much-needed nutrient for plants and living



A Peer Revieved Open Access International Journal

www.ijiemr.org

organisms. It can help in the formation and development of organisms and flowering as well as in the process of photosynthesis. Excess magnesium intake in the form of supplements has also been linked to laxative effects. The standard deviation is recorded as 20.8 & 15.2 respectively. **Sodium:** 

Sodium is a dominant cat ion in groundwater. It is found alkaline in nature. It present in the groundwater is from the silicate mineral group, Ionic imbalance shows the ill health of humans. It is a very vital ion for the nervous stimulation of animals. In the human being, it plays a very critical role in Blood Pressure activities. In the coastal area, the concentration of Na+ is very high in groundwater due to the intrusion of seawater. Abundantly, Sodium ions are presented in nature as Sodium Chlorides. Rock salt (NaCl) is a naturally occurring ionic compound that appears as white crystals. It is obtained through the mineral form halite or through seawater evaporation. Because NaCl has only one electron in its valence shell, it has weak metallic companionship and free electrons, which carry energy. The concentration levels of sodium in the present study varied from 59 mg/L to 550 mg/L (mean 208) and from 51 mg/L to 540 mg/L (mean 206) before and after the monsoon, respectively. The maximum value was found at the BS23. The standard deviation is recorded as 137 & 132 respectively.

#### **Potassium:**

The Occurrence of potassium ion in natural ground waters is very essential; as it is an important nutritional element and plays a crucial role in the human biological system. Potassium is commonly found in soils and rocks. There are no health-based drinking water standards, as it is not toxic. Potassium concentrations in shallow groundwater and deep aquifers may be elevated due to anthropogenic sources. Waste dump leachates are also significant contributors <sup>24</sup>. The concentration levels of potassium in the present study assorted from 0.36 mg/L to 3.2 mg/L (mean 1.06) and from 0.21 mg/L to 1.8 mg/L (mean 0.65) before and after the monsoon, respectively. The maximum value was found at the BS3. The standard deviation is recorded as 0.64 & 0.37 respectively.

#### **Total Alkalinity:**

Total alkalinity, the concentration ranged from 136 mg/L to 684 mg/L (mean 353) and 130 mg/L to 686 mg/L (mean 338) before and after the monsoon, respectively. The maximum value was found at the BS17 sampling station. Alkalinity can be caused by ammonia or hydroxides in some cases <sup>25</sup>. When water contains carbonates, it becomes more alkaline<sup>26</sup>. Alkalinity is not inherently harmful to human health <sup>27</sup>. The standard deviation is recorded as



155 & 144 respectively.

#### Chlorides:

During the pre-monsoon and post-monsoon seasons, chloride concentrations ranged from 22 mg/L to 425 mg/L (mean 155) and 18 mg/L to 400 mg/L (mean 130), respectively. The highest value was exposed at the BS27 sampling station. Weathering leaches chlorides from far most into the water and soil<sup>28</sup>. A higher result signifies that water pollution causes an unpleasant taste, is hazardous to human consumption, and contributes to health issues<sup>29</sup>. The standard deviation is recorded as 115 & 106 respectively.

#### Sulphates:

The presence of hydrogen sulphide causes pipe corrosion<sup>30</sup>. Drinking sulfate-rich water may result in diarrhea and dehydration. Sulfates are frequently more irritating to infants than to adults. In the present study, the concentration ranged from 12 mg/L to 223 mg/L (mean 61), and 10.2 mg/L to 208 mg/L (mean 52) at pre-monsoon and post-monsoon seasons, respectively. The maximum value was found at the BS24 sampling station. The standard deviation is recorded as 55.8 & 53 respectively.

#### Fluoride:

Fluoride concentration ranged from 0.42 mg/L to 1.49 mg/L (mean 0.99), and 0.24 mg/L to 1.29 mg/L (mean 0.8) during pre-monsoon and post-monsoon seasons, respectively. The maximum value was found at the BS29 sampling station. It is regarded as a vital component though either a deficiency or an excess amount can cause health problems<sup>31</sup>. A concentration of 0.4 ppm in drinking water causes a mild form of dental fluorosis <sup>32</sup>. Enamel hypo mineralization is triggered by an excessive intake of fluoride during tooth growth and mineralization as results a white spot or severe brown staining may appear. The standard deviation is recorded as 0.29 & 0.32 respectively.

#### Nitrate:

Nitrogenous fertilisers, domestic waste disposal, and animal wastes are the most common sources of nitrate in the aquatic system. Nitrogenous fertiliser used in intensive agriculture trickles down to groundwater and is likely one of the causes of the high nitrate concentration. Improper septic tank construction can also contribute to nitrate contamination in groundwater in urban areas. Organic pollution is triggered by the presence of nitrate in water. The WHO nitrate standard is 50mg/L, and levels above this limit can cause cyanosis ailment or blue baby syndrome in infants under 3 months old <sup>33-35</sup>.Nitrate concentration ranged from 6.3



A Peer Revieved Open Access International Journal

www.ijiemr.org

mg/L to 168 mg/L (mean 30.9), and 3.5 mg/L to 144 mg/L (mean 23.9) during pre-monsoon and post-monsoon seasons, respectively. The maximum value was found at the BS27 sampling station. The values are compared with standards specified<sup>36</sup>. The standard deviation is recorded as 31 & 27.5 respectively.

#### **Phosphates:**

Phosphates in water bodies, even in small quantities of around 25 mg/L, can fledged growth of algae and aquatic vegetation, resulting in eutrophication of the aqueous system <sup>33</sup>, as well as odour and taste problems. No amount of phosphate in water is thought to have any effect on human health (EPA, 1995). WHO and BIS have not specified acceptable limits for phosphates in drinking water. The Canadian Department of National Health and Welfare (1969) recommends a maximum concentration of PO4 in water of 0.2 mg/L, while the European Economic Community <sup>32</sup> recommends 0.54 mg/L. In the study area, phosphates concentration ranged from 0.03 mg/L to 0.42 mg/L (mean 0.17), and 0.01 mg/L to 0.28 mg/L (mean 0.1) during pre-monsoon and post-monsoon seasons, respectively. The maximum value was found at the BS27 sampling station. The standard deviation is recorded as 0.1 & 0.07 respectively.

#### **Biological Oxygen Demand:**

The Biological Oxygen Demand is the amount of oxygen required to break down a contaminant or organic residue biologically. It is frequently used to determine the extent of pollutants in normal and wastewater, as well as to assess the potency of waste such as sewage and industrial effluent, as well as seepage of contaminated wastewater. It is a water quality indicator parameter that represents the quality of freshwater ecosystems. An increased level indicates organic matter contamination <sup>34</sup>.Improper septic tank constructions can also contribute to nitrate contamination in groundwater in urban areas that gives rise to increase concentration of micro organisms, and leads to high BOD values. The concentration ranged from 0.4 mg/L to 5.04 mg/L (mean 1.56), and 0.6 mg/L to 5.9 mg/L (mean 2.0) during pre-monsoon and postmonsoon seasons, respectively in the present study area. The maximum value was found at the BS23 sampling station. The standard deviation is recorded as 1.12 & 1.29 respectively.

#### **Turbidity:**

The turbidity of water is determined by the amount of solid matter suspended in it; it appears cloudy or gloomy in nature. Turbidity, on the other hand, has no direct impact on health but can aid in the growth of infectious organisms. In the present study, the concentration ranged



A Peer Revieved Open Access International Journal

from 0.38 NTU to 5.36 NTU (mean 1.05), and 0.35 NTU to 6.84 NTU (mean 1.11) during premonsoon and post-monsoon seasons, respectively. The maximum value was found at the BS27 sampling station. The standard deviation is recorded as 0.96 & 1.33 respectively.

#### Hydro chemical facies:

The results of major cations (Na+,K+,Mg2+,Ca2+) and major anions (Cl-,HCO3-,SO42-,F-) are represented on the piper line diagram. Piper diagram was drawn by using the software GW chart (version1.260.0). The comparative concentration of the anions and cat ions are plotted in the lower triangles (left-side angle cat ions and right-side angle anions) and the resulting two points are drawn-out into the central field to represent the total ion concentration using the analytical data. In the present study 4 major hydrochemical facies were identified in the pre & post monsoon seasons, they are mixed Ca-Mg-Cl, mixed Ca-Na-HCO3, NaCl, and Ca-HCO3. But in post-monsoon season mixed Ca-Mg-Cl, were not recorded, instead of that NaHCO<sub>3</sub> recorded. This may be due to temporary hardness, high alkalinity, and salinity.

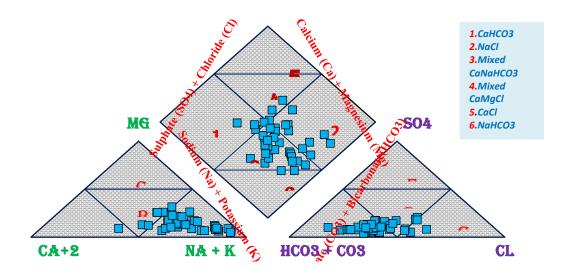



Figure 3. Piper diagram is showing pre-dominant hydro chemical facies in the study area during pre-monsoon season 2018.



# International Journal for Innovative

## Engineering and Management Research

A Peer Revieved Open Access International Journal

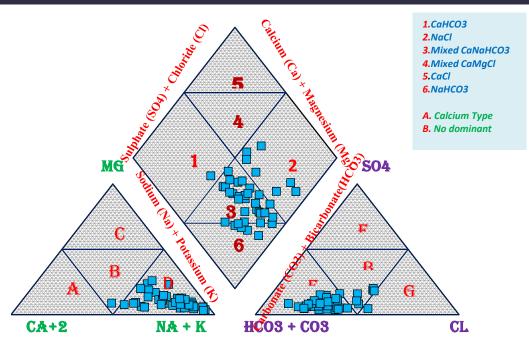



Figure 4. Piper diagram is showing pre-dominant hydro chemical facies in the study area during post-monsoon season 2018.



A Peer Revieved Open Access International Journal

www.ijiemr.org

Table 2: The results of physicochemical parameters during the pre-monsoon season of 2018.

| Location                     | Code | pН   | DO   | EC      | TDS     | TH     | Ca+2   | Mg+2  | Na     | K    | TA     | Cl-    | SO42-  | F-   | NO3    | BOD  | PO4  | Turbidity |
|------------------------------|------|------|------|---------|---------|--------|--------|-------|--------|------|--------|--------|--------|------|--------|------|------|-----------|
| HP Gas go- Dom               | BS1  | 7.12 | 4.2  | 1091    | 713     | 255.1  | 86     | 10    | 158    | 1.2  | 321    | 120    | 74.5   | 0.65 | 36.3   | 0.8  | 0.28 | 0.62      |
| Reddy mango garden           | BS2  | 7.09 | 4.3  | 969     | 633     | 352.9  | 122    | 12    | 92     | 1.2  | 362    | 89     | 32.6   | 0.82 | 36.5   | 1.0  | 0.22 | 0.63      |
| Manyam Srinivasa Rao house   | BS3  | 7.23 | 4.0  | 1133    | 741     | 342.0  | 68     | 42    | 146    | 3.2  | 402    | 136    | 28.3   | 0.94 | 40.3   | 1.2  | 0.11 | 0.58      |
| S. Raghavarao house          | BS4  | 7.25 | 4.6  | 1247    | 815     | 310.6  | 62     | 38    | 186    | 1.3  | 374    | 184    | 47.3   | 0.86 | 32.6   | 1.6  | 0.12 | 0.74      |
| Shanti Talent School.        | BS5  | 7.35 | 4.2  | 1966    | 1286    | 219.7  | 42     | 28    | 402    | 2.3  | 489    | 368    | 47.6   | 0.99 | 40.2   | 0.8  | 0.09 | 0.69      |
| Kanakadurga temple           | BS6  | 7.42 | 4.5  | 1726    | 1129    | 235.0  | 68     | 16    | 336    | 1.9  | 562    | 210    | 65.3   | 0.98 | 39.7   | 0.6  | 0.14 | 0.74      |
| K. Ramulamma house           | BS7  | 7.23 | 4.1  | 1325    | 866     | 168.8  | 48     | 12    | 265    | 0.6  | 436    | 178    | 26.7   | 0.68 | 32.5   | 0.5  | 0.12 | 0.82      |
| APGVB bank                   | BS8  | 7.56 | 4.6  | 639     | 418     | 152.3  | 48     | 8     | 96     | 0.8  | 226    | 64     | 26.0   | 1.02 | 18.6   | 1.2  | 0.04 | 0.82      |
| Sala Ramana house            | BS9  | 7.82 | 4.2  | 929     | 608     | 180.1  | 36     | 22    | 162    | 1.2  | 312    | 128    | 22.3   | 0.42 | 19.5   | 1.8  | 0.04 | 0.74      |
| P.Venkata Lakshmi house      | BS10 | 7.35 | 4.5  | 1103    | 721     | 204.0  | 39     | 26    | 196    | 0.6  | 396    | 118    | 36.2   | 1.02 | 32.6   | 0.6  | 0.03 | 0.62      |
| MPP School                   | BS11 | 7.32 | 5.2  | 516     | 337     | 117.5  | 34     | 8     | 84     | 0.6  | 236    | 22     | 24.0   | 0.65 | 6.4    | 1.6  | 0.04 | 0.53      |
| BC colony                    | BS12 | 7.15 | 5.3  | 680     | 444     | 145.6  | 42     | 10    | 113    | 0.8  | 256    | 76     | 14.3   | 1.12 | 12.5   | 1.7  | 0.08 | 0.42      |
| Panchayati water tank        | BS13 | 7.36 | 5.1  | 654     | 428     | 148.9  | 40     | 12    | 106    | 1.3  | 254    | 74     | 12.3   | 1.08 | 8.2    | 0.8  | 0.07 | 0.58      |
| Municipal Sub-Zonal Office   | BS14 | 7.56 | 4.8  | 661     | 432     | 211.1  | 65     | 12    | 80     | 0.9  | 236    | 82     | 22.3   | 1.32 | 6.5    | 2.0  | 0.09 | 0.74      |
| Batti Nukaraju house.        | BS15 | 7.54 | 4.2  | 1454    | 951     | 129.0  | 32     | 12    | 314    | 1.1  | 487    | 168    | 62.5   | 1.32 | 22.3   | 2.3  | 0.21 | 0.72      |
| Overhead tank                | BS16 | 6.89 | 4.6  | 1322    | 864     | 155.2  | 26     | 22    | 272    | 0.9  | 458    | 136    | 84.0   | 1.28 | 6.3    | 2.5  | 0.06 | 0.69      |
| bore hole No.32/013          | BS17 | 7.25 | 4.2  | 1690    | 1105    | 117.1  | 14     | 20    | 384    | 0.6  | 632    | 153    | 82.0   | 1.26 | 18.4   | 2.2  | 0.16 | 0.68      |
| Mullapaka Apparao House      | BS18 | 7.35 | 4.7  | 2112    | 1382    | 118.9  | 18     | 18    | 486    | 0.4  | 684    | 253    | 96.4   | 1.02 | 32.6   | 4.2  | 0.23 | 1.86      |
| Anjaneya Swami temple        | BS19 | 7.42 | 4.3  | 2251    | 1472    | 506.6  | 68     | 82    | 361    | 0.6  | 583    | 398    | 92.5   | 1.32 | 48.6   | 0.6  | 0.32 | 0.72      |
| Katta Sanyarasirao House     | BS20 | 7.65 | 4.1  | 1797    | 1176    | 196.5  | 36     | 26    | 366    | 1.2  | 514    | 224    | 136.0  | 1.36 | 20.6   | 1.8  | 0.33 | 0.38      |
| Sambangi Kumari House        | BS21 | 7.36 | 4.5  | 1515    | 991     | 155.4  | 36     | 16    | 322    | 0.6  | 536    | 168    | 62.0   | 1.02 | 16.3   | 0.4  | 0.12 | 0.48      |
| Burra Sannyasirao House      | BS22 | 7.24 | 4.1  | 1544    | 1010    | 108.9  | 14     | 18    | 340    | 0.8  | 425    | 210    | 86.3   | 1.33 | 36.5   | 1.2  | 0.19 | 1.02      |
| Thigiripalli Gangaraju House | BS23 | 7.25 | 3.9  | 2511    | 1642    | 130.5  | 26     | 16    | 550    | 0.6  | 462    | 410    | 210.3  | 1.32 | 72.5   | 5.0  | 0.26 | 3.64      |
| NTR statue                   | BS24 | 7.23 | 3.8  | 2504    | 1637    | 223.9  | 47     | 26    | 499    | 0.6  | 423    | 396    | 223.5  | 1.26 | 112.3  | 4.1  | 0.26 | 3.12      |
| Z.P.High School              | BS25 | 7.25 | 4.2  | 972     | 636     | 166.3  | 47     | 12    | 180    | 0.5  | 415    | 64     | 32.5   | 1.32 | 19.2   | 0.8  | 0.22 | 1.05      |
| Near T.Appala naidu house    | BS26 | 7.25 | 4.6  | 779     | 510     | 81.0   | 16     | 10    | 166    | 0.4  | 312    | 58     | 28.6   | 0.98 | 18.3   | 0.6  | 0.22 | 1.32      |
| Vinayaka temple              | BS27 | 7.32 | 4.0  | 2610    | 1707    | 767.6  | 163    | 88    | 296    | 2.6  | 462    | 425    | 204.6  | 1.23 | 168.2  | 4.2  | 0.42 | 5.36      |
| Visakha Grameena Bank        | BS28 | 6.78 | 4.2  | 2248    | 1470    | 680.8  | 143    | 79    | 264    | 1.6  | 554    | 314    | 178.2  | 1.24 | 86.5   | 1.2  | 0.29 | 0.86      |
| Main road -Parawada          | BS29 | 7.53 | 4.4  | 1540    | 1007    | 453.1  | 68     | 69    | 206    | 1.2  | 468    | 236    | 70.0   | 1.48 | 26.5   | 0.6  | 0.18 | 1.02      |
| Maridimamba Community Hall   | BS30 | 7.36 | 4.6  | 570     | 373     | 130.7  | 36     | 10    | 84     | 1.4  | 168    | 58     | 44.7   | 0.96 | 19.0   | 0.8  | 0.36 | 0.69      |
| Near govt.school             | BS31 | 7.25 | 4.2  | 479     | 313     | 137.4  | 42     | 8     | 59     | 0.6  | 142    | 48     | 36.5   | 0.96 | 18.3   | 1.2  | 0.15 | 2.12      |
| SC colany                    | BS32 | 7.36 | 4.1  | 504     | 330     | 129.0  | 32     | 12    | 72     | 0.5  | 174    | 46     | 29.5   | 1.12 | 16.5   | 1.3  | 0.16 | 1.23      |
| BC Colany                    | BS33 | 7.23 | 4.3  | 509     | 333     | 110.8  | 28     | 10    | 80     | 0.4  | 162    | 52     | 30.2   | 0.86 | 18.2   | 1.6  | 0.23 | 0.87      |
| Maridimamba temple -         | BS34 | 7.34 | 4.6  | 661     | 432     | 129.0  | 32     | 12    | 107    | 0.6  | 168    | 88     | 41.6   | 0.74 | 28.9   | 1.2  | 0.19 | 0.74      |
| Pydimamba temple -           | BS35 | 7.42 | 4.5  | 675     | 441     | 170.3  | 42     | 16    | 96     | 1.0  | 136    | 146    | 26.8   | 0.45 | 10.6   | 2.3  | 0.16 | 0.68      |
| Overhead water tank-         | BS36 | 7.21 | 4.6  | 709     | 464     | 160.6  | 48     | 10    | 110    | 0.9  | 187    | 125    | 22.3   | 0.58 | 12.5   | 1.0  | 0.14 | 0.65      |
| Gowthulachanna Colony        | BS37 | 7.33 | 4.7  | 535     | 350     | 94.2   | 18     | 12    | 97     | 1.2  | 212    | 42     | 18.3   | 0.62 | 16.8   | 1.0  | 0.09 | 0.78      |
| Ramalayam - Pinamadaka       | BS38 | 7.63 | 4.5  | 561     | 367     | 110.8  | 28     | 10    | 96     | 2.3  | 223    | 46     | 20.3   | 0.69 | 12.3   | 0.4  | 0.16 | 0.62      |
| Near Golla veedhi            | BS39 | 7.23 | 4.6  | 402     | 263     | 94.2   | 18     | 12    | 63     | 1.3  | 144    | 42     | 18.4   | 0.58 | 8.6    | 1.3  | 0.09 | 0.76      |
| SC -Colany - Pinamadaka      | BS40 | 7.36 | 4.5  | 448     | 293     | 117.3  | 24     | 14    | 64     | 0.9  | 142    | 58     | 22.3   | 0.65 | 10.3   | 2.2  | 0.06 | 0.65      |
|                              | Min  | 6.78 | 3.80 | 401.83  | 262.79  | 80.95  | 14.00  | 8.00  | 59.00  | 0.36 | 136.00 | 22.00  | 12.30  | 0.42 | 6.30   | 0.40 | 0.03 | 0.38      |
|                              | Max  | 7.82 | 5.30 | 2610.28 | 1707.12 | 767.61 | 163.00 | 88.00 | 550.00 | 3.20 | 684.00 | 425.00 | 223.50 | 1.48 | 168.20 | 5.04 | 0.42 | 5.36      |
|                              | Avg  | 7.32 | 4.42 | 1188.46 | 777.25  | 210.46 | 47.55  | 22.40 | 208.90 | 1.06 | 353.38 | 155.33 | 61.00  | 0.99 | 30.99  | 1.56 | 0.17 | 1.05      |

Volume 07 Issue 13, Dec 2018

ISSN 2456 - 5083

Page : 759



A Peer Revieved Open Access International Journal

www.ijiemr.org

|--|

#### Table 3: The results of physicochemical parameters during the post-monsoon season of 2018.

| Location                     | Code | pН   | DO  | EC   | TDS  | TH    | Ca <sup>+2</sup> | Mg <sup>+2</sup> | Na  | K   | ТА  | Cl- | SO4 <sup>2-</sup> | F <sup>-</sup> | NO3   | BOD | PO4  | Turbidity |
|------------------------------|------|------|-----|------|------|-------|------------------|------------------|-----|-----|-----|-----|-------------------|----------------|-------|-----|------|-----------|
| HP Gas go- Dom               | BS1  | 7.02 | 6.2 | 933  | 610  | 202.1 | 68               | 8                | 144 | 0.8 | 308 | 84  | 62.3              | 0.42           | 28.9  | 1.2 | 0.24 | 0.72      |
| Reddy mango garden           | BS2  | 7.01 | 6.5 | 804  | 526  | 255.1 | 86               | 10               | 96  | 0.6 | 324 | 68  | 22.5              | 0.65           | 22.4  | 1.3 | 0.18 | 0.68      |
| Manyam Srinivasa Rao house   | BS3  | 7.06 | 6.0 | 1036 | 677  | 273.4 | 52               | 35               | 154 | 1.2 | 412 | 104 | 18.6              | 0.68           | 32.4  | 1.4 | 0.09 | 0.66      |
| S. Raghavarao house          | BS4  | 7.05 | 5.9 | 1178 | 771  | 254.5 | 56               | 28               | 194 | 0.9 | 392 | 162 | 28.5              | 0.74           | 28.6  | 2.0 | 0.09 | 0.68      |
| Shanti Talent School.        | BS5  | 7.23 | 6.1 | 1673 | 1094 | 155.4 | 36               | 16               | 354 | 1.6 | 423 | 306 | 35.2              | 0.84           | 38.4  | 1.2 | 0.04 | 0.58      |
| Kanakadurga temple           | BS6  | 7.15 | 6.2 | 1450 | 948  | 158.1 | 47               | 10               | 302 | 0.8 | 501 | 168 | 42.8              | 0.76           | 31.2  | 0.8 | 0.08 | 0.72      |
| K. Ramulamma house           | BS7  | 7.02 | 6.3 | 1152 | 754  | 112.5 | 32               | 8                | 247 | 0.4 | 398 | 146 | 20.4              | 0.42           | 24.8  | 0.6 | 0.06 | 0.61      |
| APGVB bank                   | BS8  | 7.32 | 6.4 | 504  | 330  | 106.0 | 36               | 4                | 82  | 0.6 | 190 | 43  | 21.0              | 0.86           | 12.4  | 1.4 | 0.01 | 0.74      |
| Sala Ramana house            | BS9  | 7.65 | 6.2 | 798  | 522  | 102.4 | 18               | 14               | 161 | 0.8 | 276 | 104 | 20.3              | 0.36           | 13.2  | 1.9 | 0.02 | 0.72      |
| P.Venkata Lakshmi house      | BS10 | 7.12 | 6.5 | 1028 | 672  | 143.7 | 28               | 18               | 204 | 0.4 | 396 | 96  | 30.5              | 0.86           | 24.8  | 1.2 | 0.01 | 0.65      |
| MPP School                   | BS11 | 7.08 | 6.2 | 451  | 295  | 79.4  | 22               | 6                | 84  | 0.5 | 214 | 18  | 18.0              | 0.47           | 3.5   | 1.8 | 0.01 | 1.03      |
| BC colony                    | BS12 | 7.01 | 6.4 | 452  | 295  | 114.2 | 36               | 6                | 68  | 0.6 | 179 | 42  | 14.0              | 1.02           | 6.4   | 1.9 | 0.06 | 0.46      |
| Panchayati water tank        | BS13 | 7.06 | 6.3 | 492  | 322  | 95.1  | 25               | 8                | 88  | 0.5 | 189 | 56  | 10.2              | 1.02           | 4.5   | 1.2 | 0.03 | 0.48      |
| Municipal Sub-Zonal Office   | BS14 | 7.35 | 6.6 | 571  | 374  | 145.7 | 47               | 7                | 85  | 0.5 | 214 | 64  | 18.7              | 1.08           | 4.2   | 2.4 | 0.04 | 0.72      |
| Batti Nukaraju house.        | BS15 | 7.36 | 6.3 | 1326 | 867  | 92.6  | 24               | 8                | 298 | 0.8 | 486 | 124 | 60.2              | 1.2            | 18.2  | 2.6 | 0.09 | 0.84      |
| Overhead tank                | BS16 | 6.69 | 6.2 | 1204 | 787  | 110.6 | 18               | 16               | 262 | 0.5 | 426 | 118 | 74.2              | 1.23           | 4.1   | 2.8 | 0.03 | 0.62      |
| bore hole No.32/013          | BS17 | 7.12 | 6.2 | 1691 | 1106 | 82.5  | 10               | 14               | 403 | 0.4 | 686 | 134 | 68.9              | 1.05           | 10.3  | 2.4 | 0.09 | 0.74      |
| Mullapaka Apparao House      | BS18 | 7.25 | 6.4 | 1926 | 1259 | 71.0  | 12               | 10               | 459 | 0.2 | 647 | 218 | 88.2              | 0.98           | 22.8  | 5.1 | 0.12 | 2.14      |
| Anjaneya Swami temple        | BS19 | 7.14 | 6.5 | 1922 | 1257 | 377.0 | 49               | 62               | 334 | 0.4 | 536 | 320 | 76.3              | 1.25           | 32.5  | 1.3 | 0.24 | 1.12      |
| Katta Sanyarasirao House     | BS20 | 7.25 | 6.4 | 1628 | 1065 | 136.3 | 25               | 18               | 351 | 0.8 | 488 | 186 | 122.3             | 1.28           | 16.8  | 2.2 | 0.24 | 0.65      |
| Sambangi Kumari House        | BS21 | 7.22 | 6.5 | 1265 | 827  | 101.6 | 21               | 12               | 280 | 0.4 | 426 | 147 | 58.3              | 1.01           | 12.4  | 0.9 | 0.08 | 0.65      |
| Burra Sannyasirao House      | BS22 | 7.14 | 6.4 | 1555 | 1017 | 74.3  | 10               | 12               | 362 | 0.4 | 496 | 184 | 80.4              | 1.05           | 20.8  | 1.6 | 0.18 | 1.05      |
| Thigiripalli Gangaraju House | BS23 | 7.05 | 6.2 | 2394 | 1566 | 90.9  | 20               | 10               | 540 | 0.3 | 453 | 384 | 203.4             | 1.12           | 60.5  | 5.9 | 0.21 | 5.62      |
| NTR statue                   | BS24 | 7.05 | 6.1 | 2372 | 1551 | 163.6 | 36               | 18               | 496 | 0.4 | 423 | 365 | 208.6             | 1.02           | 98.3  | 5.0 | 0.10 | 3.87      |
| Z.P.High School              | BS25 | 7.09 | 6.4 | 809  | 529  | 112.5 | 32               | 8                | 163 | 0.2 | 362 | 48  | 22.4              | 1.15           | 12.0  | 1.2 | 0.11 | 1.12      |
| Near T.Appala naidu house    | BS26 | 7.02 | 6.4 | 589  | 385  | 54.5  | 12               | 6                | 130 | 0.2 | 246 | 42  | 18.2              | 0.68           | 10.4  | 1.2 | 0.14 | 0.85      |
| Vinayaka temple              | BS27 | 7.11 | 5.3 | 2519 | 1648 | 563.6 | 124              | 62               | 362 | 1.8 | 456 | 400 | 200.1             | 1.09           | 144.5 | 5.7 | 0.16 | 6.84      |
| Visakha Grameena Bank        | BS28 | 7.02 | 5.0 | 2003 | 1310 | 515.8 | 118              | 54               | 274 | 1.2 | 489 | 284 | 146.3             | 1.08           | 75.6  | 1.4 | 0.21 | 1.02      |
| Main road -Parawada          | BS29 | 7.14 | 5.3 | 1313 | 859  | 331.9 | 54               | 48               | 196 | 0.8 | 369 | 210 | 68.0              | 1.29           | 18.3  | 1.2 | 0.09 | 0.65      |
| Maridimamba Community Hall   | BS30 | 7.02 | 6.6 | 532  | 348  | 86.9  | 25               | 6                | 96  | 0.8 | 186 | 42  | 36.8              | 0.62           | 12.3  | 1.2 | 0.28 | 0.71      |
| Near govt.school             | BS31 | 7.03 | 6.1 | 382  | 250  | 103.5 | 35               | 4                | 51  | 0.4 | 130 | 36  | 22.8              | 0.52           | 10.2  | 1.8 | 0.06 | 0.96      |
| SC colany                    | BS32 | 7.12 | 5.4 | 423  | 277  | 95.1  | 25               | 8                | 67  | 0.3 | 162 | 32  | 20.6              | 0.98           | 12.3  | 1.8 | 0.08 | 1.25      |
| BC Colany                    | BS33 | 7.10 | 5.6 | 420  | 275  | 72.7  | 16               | 8                | 76  | 0.2 | 145 | 43  | 18.9              | 0.45           | 12.3  | 2.4 | 0.14 | 0.36      |
| Maridimamba temple           | BS34 | 7.12 | 6.1 | 541  | 354  | 92.6  | 24               | 8                | 94  | 0.3 | 162 | 57  | 29.3              | 0.45           | 26.9  | 1.4 | 0.06 | 0.62      |
| Pydimamba temple             | BS35 | 7.08 | 6.2 | 842  | 550  | 114.9 | 28               | 11               | 167 | 0.7 | 270 | 128 | 20.4              | 0.24           | 6.8   | 2.6 | 0.08 | 0.48      |
| Overhead water tank          | BS36 | 7.11 | 6.2 | 741  | 484  | 127.4 | 38               | 8                | 136 | 0.5 | 256 | 100 | 14.6              | 0.32           | 10.4  | 1.2 | 0.06 | 0.56      |
| Gowthulachanna Colony        | BS37 | 7.25 | 6.4 | 497  | 325  | 57.8  | 10               | 8                | 105 | 0.9 | 214 | 36  | 10.5              | 0.41           | 10.5  | 1.2 | 0.04 | 0.69      |
| Ramalayam - Pinamadaka       | BS38 | 7.36 | 6.1 | 543  | 355  | 64.5  | 16               | 6                | 112 | 1.2 | 223 | 40  | 20.1              | 0.45           | 8.6   | 0.8 | 0.12 | 0.54      |

Volume 07 Issue 13, Dec 2018

ISSN 2456 - 5083



A Peer Revieved Open Access International Journal

| ĺ | Near Golla veedhi       | BS39 | 7.04 | 6.2  | 464     | 303     | 62.8   | 12     | 8     | 95     | 0.9  | 204    | 34     | 10.5   | 0.32 | 5.8    | 2.2  | 0.03 | 0.35 |
|---|-------------------------|------|------|------|---------|---------|--------|--------|-------|--------|------|--------|--------|--------|------|--------|------|------|------|
|   | SC -Colany - Pinamadaka | BS40 | 7.01 | 6.3  | 487     | 319     | 90.9   | 20     | 10    | 87     | 0.6  | 186    | 46     | 19.5   | 0.38 | 8.5    | 2.6  | 0.02 | 0.45 |
| Ī |                         | MIN  | 6.69 | 5.00 | 381.98  | 249.82  | 54.54  | 10.00  | 4.00  | 51.00  | 0.20 | 130.00 | 18.00  | 10.20  | 0.24 | 3.50   | 0.60 | 0.01 | 0.35 |
|   |                         | MAX  | 7.65 | 6.60 | 2519.18 | 1647.54 | 563.60 | 124.00 | 62.00 | 540.00 | 1.80 | 686.00 | 400.00 | 208.60 | 1.29 | 144.50 | 5.92 | 0.28 | 6.84 |
|   |                         | AVG  | 7.13 | 6.17 | 1072.72 | 701.56  | 151.14 | 35.08  | 15.53 | 206.48 | 0.65 | 338.58 | 130.48 | 52.07  | 0.80 | 23.95  | 2.00 | 0.10 | 1.11 |
|   |                         | SD   | 0.15 | 0.37 | 620.25  | 405.65  | 116.52 | 26.03  | 15.21 | 132.27 | 0.37 | 143.99 | 106.30 | 53.73  | 0.32 | 27.50  | 1.29 | 0.07 | 1.33 |



A Peer Revieved Open Access International Journal

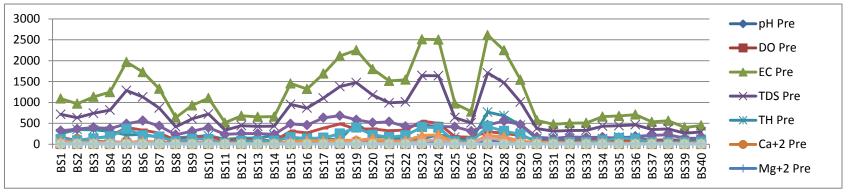



Figure 5: Graphical value of physicochemical parameters during Pre monsoon season-2018

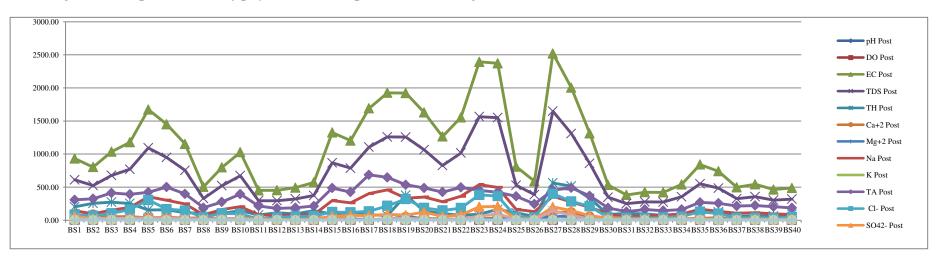



Figure 6: Graphical value of physicochemical parameters during Post- monsoon season- 2018.



# International Journal for Innovative

Engineering and Management Research

A Peer Revieved Open Access International Journal

#### **Correlation Analysis:**

In both seasons, the correlation coefficient matrix between the various groundwater parameters in the study area revealed both positive and inverse relationships. Some parameters were strongly correlated and some were weakly correlated with others, and some parameters were negatively correlated with others (Tables 4 & 5). A strong correlation was observed among EC to TDS (0.999) followed by TA (0.850), Cl (0.967), and SO4-2 (0.912). TDS is strongly correlated with Mg+ (0.674), TA (0.850), Cl (0.969), SO4-2 (0.922). Calcium & Magnesium were moderately correlated with other parameters but strongly correlated with TH (0.858) & (0.921). Total Alkalinity is strongly correlated with EC (0.922), TDS (0.922) and Cl-(0.894), pH is negatively correlated with other parameters. Turbidity, DO and Phosphates were weakly correlated with other parameters.

 Table 4. The Correlation coefficient matrix among physicochemical parameters in the Study area during the pre- monsoon season of 2018.

| ۰. |           | pH      | DO      | EC     | TDS    | TH     | Ca+2   | Mg+2   | Na      | K       | TA     | Cl-    | SO42-  | F-     | NO3    | BOD    | PO4    | Turbidity |
|----|-----------|---------|---------|--------|--------|--------|--------|--------|---------|---------|--------|--------|--------|--------|--------|--------|--------|-----------|
|    | pH        | 1       |         |        |        |        |        |        |         |         |        |        |        |        |        |        |        |           |
|    | DO        | 0.0317  | 1.0000  |        |        |        |        |        |         |         |        |        |        |        |        |        |        |           |
|    | EC        | -0.1395 | -0.5429 | 1.0000 |        |        |        |        |         |         |        |        |        |        |        |        |        |           |
|    | TDS       | -0.1395 | -0.5429 | 0.9999 | 1.0000 |        |        |        |         |         |        |        |        |        |        |        |        |           |
|    | TH        | -0.2130 | -0.3077 | 0.5602 | 0.5602 | 1.0000 |        |        |         |         |        |        |        |        |        |        |        |           |
|    | Ca+2      | -0.2794 | -0.2386 | 0.3787 | 0.3787 | 0.9049 | 1.0000 |        |         |         |        |        |        |        |        |        |        |           |
|    | Mg+2      | -0.1131 | -0.3194 | 0.6341 | 0.6341 | 0.9157 | 0.6576 | 1.0000 |         |         |        |        |        |        |        |        |        |           |
|    | Na        | -0.0532 | -0.4792 | 0.9154 | 0.9154 | 0.1839 | 0.0035 | 0.3222 | 1.0000  |         |        |        |        |        |        |        |        |           |
|    | K         | 0.0688  | -0.1700 | 0.1566 | 0.1566 | 0.4698 | 0.4704 | 0.3874 | -0.0417 | 1.0000  |        |        |        |        |        |        |        |           |
|    | TA        | -0.1029 | -0.3587 | 0.8520 | 0.8520 | 0.3965 | 0.2261 | 0.4884 | 0.8474  | 0.0852  | 1.0000 |        |        |        |        |        |        |           |
|    | Cl-       | -0.0812 | -0.5350 | 0.9515 | 0.9515 | 0.5972 | 0.3985 | 0.6809 | 0.8347  | 0.2085  | 0.6932 | 1.0000 |        |        |        |        |        |           |
|    | SO42-     | -0.2310 | -0.5615 | 0.8666 | 0.8666 | 0.5088 | 0.3836 | 0.5384 | 0.7556  | 0.0705  | 0.5655 | 0.8293 | 1.0000 |        |        |        |        |           |
|    | F-        | -0.0860 | -0.2625 | 0.5741 | 0.5741 | 0.3118 | 0.1509 | 0.4095 | 0.5397  | -0.0841 | 0.5798 | 0.4749 | 0.5397 | 1.0000 |        |        |        |           |
|    | NO3       | -0.2224 | -0.5454 | 0.7492 | 0.7492 | 0.7217 | 0.6587 | 0.6556 | 0.5092  | 0.3311  | 0.4020 | 0.7732 | 0.8203 | 0.3214 | 1.0000 |        |        |           |
|    | BOD       | -0.0562 | -0.2507 | 0.4940 | 0.4940 | 0.0869 | 0.0338 | 0.1219 | 0.5118  | -0.0904 | 0.2208 | 0.4903 | 0.6598 | 0.2420 | 0.5098 | 1.0000 |        |           |
|    | PO4       | -0.1278 | -0.4903 | 0.5254 | 0.5254 | 0.4787 | 0.4314 | 0.4401 | 0.3723  | 0.0819  | 0.3083 | 0.5067 | 0.6496 | 0.3772 | 0.6004 | 0.2836 | 1.0000 |           |
|    | Turbidity | -0.0857 | -0.4414 | 0.5394 | 0.5394 | 0.3809 | 0.3374 | 0.3556 | 0.4155  | 0.0846  | 0.1712 | 0.5732 | 0.7080 | 0.2913 | 0.8111 | 0.7162 | 0.4973 | 1.0000    |

 Table 5. The Correlation coefficient matrix among physicochemical parameters in the Study area during the post- monsoon season of 2018.

|           | pH      | DO      | EC     | TDS    | TH     | Ca+2   | Mg+2   | Na     | K       | TA     | Cl-    | SO42-  | F-     | NO3    | BOD    | PO4    | Turbidity |
|-----------|---------|---------|--------|--------|--------|--------|--------|--------|---------|--------|--------|--------|--------|--------|--------|--------|-----------|
| pH        | 1       |         |        |        |        |        |        |        |         |        |        |        |        |        |        |        |           |
| DO        | 0.1265  | 1.0000  |        |        |        |        |        |        |         |        |        |        |        |        |        |        |           |
| EC        | -0.0227 | -0.2448 | 1.0000 |        |        |        |        |        |         |        |        |        |        |        |        |        |           |
| TDS       | -0.0227 | -0.2448 | 0.9999 | 1.0000 |        |        |        |        |         |        |        |        |        |        |        |        |           |
| TH        | -0.1343 | -0.5896 | 0.5270 | 0.5270 | 1.0000 |        |        |        |         |        |        |        |        |        |        |        |           |
| Ca+2      | -0.1648 | -0.5258 | 0.3704 | 0.3704 | 0.9179 | 1.0000 |        |        |         |        |        |        |        |        |        |        |           |
| Mg+2      | -0.0795 | -0.5535 | 0.5978 | 0.5978 | 0.9119 | 0.6742 | 1.0000 |        |         |        |        |        |        |        |        |        |           |
| Na        | 0.0303  | -0.0414 | 0.9435 | 0.9435 | 0.2205 | 0.0619 | 0.3463 | 1.0000 |         |        |        |        |        |        |        |        |           |
| K         | 0.1702  | -0.3879 | 0.2365 | 0.2365 | 0.5473 | 0.5396 | 0.4606 | 0.0550 | 1.0000  |        |        |        |        |        |        |        |           |
| TA        | 0.0261  | -0.0258 | 0.8464 | 0.8464 | 0.3397 | 0.1741 | 0.4523 | 0.8671 | 0.1013  | 1.0000 |        |        |        |        |        |        |           |
| Cl-       | -0.0100 | -0.3159 | 0.9540 | 0.9540 | 0.5847 | 0.4216 | 0.6523 | 0.8619 | 0.3060  | 0.6859 | 1.0000 |        |        |        |        |        |           |
| SO42-     | -0.1127 | -0.3267 | 0.8800 | 0.8800 | 0.4749 | 0.3766 | 0.4944 | 0.8025 | 0.1686  | 0.5709 | 0.8544 | 1.0000 |        |        |        |        |           |
| F-        | -0.0375 | -0.1006 | 0.5771 | 0.5771 | 0.3338 | 0.1897 | 0.4252 | 0.5449 | -0.0455 | 0.5704 | 0.5017 | 0.5367 | 1.0000 |        |        |        |           |
| NO3       | -0.0896 | -0.4888 | 0.7534 | 0.7534 | 0.7037 | 0.6646 | 0.6223 | 0.5641 | 0.4490  | 0.3881 | 0.7964 | 0.8139 | 0.2815 | 1.0000 |        |        |           |
| BOD       | -0.0647 | -0.1709 | 0.5819 | 0.5819 | 0.1363 | 0.0845 | 0.1664 | 0.5862 | 0.0058  | 0.3078 | 0.5730 | 0.7265 | 0.2798 | 0.5786 | 1.0000 |        |           |
| PO4       | -0.1459 | -0.0826 | 0.4242 | 0.4242 | 0.3653 | 0.3339 | 0.3346 | 0.3416 | 0.0800  | 0.3249 | 0.3862 | 0.4921 | 0.2626 | 0.3361 | 0.1394 | 1.0000 |           |
| Turbidity | -0.0591 | -0.2812 | 0.6708 | 0.6708 | 0.3885 | 0.3510 | 0.3601 | 0.5848 | 0.1764  | 0.3012 | 0.7014 | 0.8142 | 0.3191 | 0.8252 | 0.8212 | 0.2866 | 1.0000    |



A Peer Revieved Open Access International Journal

#### **Remedial measures:**

This study area is a highly mineralized area. Some parameters are showing higher values. Hence, the following water purification methods are recommended to minimize the abnormal concentration of the above-mentioned parameters. They are ultra filtration, flocculation, precipitation, reverse osmosis, ion exchange technique, slow sand filtering, and membrane filtering. Moreover, flotation ion exchange and electrochemical deposition are some best useful techniques for the removal of pollutants and contaminants to purify groundwater.

#### **Conclusions:**

The majority of health problems are caused by contaminated water with high concentration levels. This study found that the concentration levels of electrical conductivity, total dissolved solids, total hardness, sodium, potassium, total alkalinity, and chlorides were higher at most of the sampling stations when compared to BIS and WHO standards. At some sampling stations, the remaining parameters have also recorded higher values. The concentration levels were higher in the pre-monsoon season than in the post-monsoon season. DO and turbidity levels were higher in post monsoon season. Sulfate concentrations were slightly higher at a few sampling stations due to sewers, seepage and unsanitary practises. Tanam and Parawada samples had the highest concentrations in the study area among all stations. As a result, the water is unfit for drinking. If no other source is available, it is recommended that the water be treated before consumption. During the monsoon season, pay close attention to this area.

#### Scope for further study:

From the present study, it is understood that the local ground water is affected. Further, it is suggested to carry out studies to establish sources of impact on ground water in this area viz to see whether sea water intrusion is occurring; to see if any industrial activity is influencing the ground water quality in the area; to see if any percolation is taking place from septic tanks; The current study will aid in the proper planning and management of available drinking water resources.

#### **Recommendations:**

Ground water in the study area is showing slightly higher values. Hence, it is recommended that, alternate drinking water sources shall be provided to these villagers.

#### Acknowledgements:

The authors are thankful to the Department of Environmental Sciences, Acharya Nagarjuna University, Nagarjuna Nagar for constant encouragement.



A Peer Revieved Open Access International Journal

#### **Author contribution:**

M. Bujjibabu conceptualised, methodology, formal analysis and investigation, and draught preparation. Dr. B. Hari Babu conducted the investigation, supervision, review, and editing.

#### Data availability:

The author analysed the data and used it in the current study.

#### **Testimonies:**

**Ethics approval**- This article contains no studies with human or animal participants conducted by any of the authors, and permission to publish. The authors declared that all authors reviewed, authorised, and consented to the publication of the final draft of the manuscript.

**Consent for publication** - The authors confirms that all authors reviewed, authorised, and acceded to the publication of the final draft of the manuscript.

#### **Competing interests** - NA.

#### **References:**

- 1. Anwar, F; Assessment and analysis of industrial liquid waste and study disposal at Unlined landfill sites in arid climate. *Waste Manage*. **2003**, 23, (9), 817-824.
- 2. Amina, C., Lhadi; L.K., Younsi; A., Murdy; J. Environmental Impact of an Urban Landfill on a coastal aquifer. *J. Afr. Earth. Sic.*, **2004**, 39, (3-5), 509-516.
- 3. Kass, A; YechiniGavrieli, Y., Vengosh, A., Starinsky; The impact of fresh water and waste water irrigation on the chemistry of shallow ground water: A case study from the Israeli Coastal aquifer. *J. Hydro.*, **2005**, 300, (1-4), 314-331.
- 4. Oren, O; Yechieli, Y., Bohlke, J. K., Dody, A; Contamination of ground water under cultivated fields in an arid environment, Central Arava valley Israel. *J. Hydrol.*, **2004**, 290, (3 / 4), 312-328.
- 5. Sylvester. A; Quality of surface water, River Birim as a case study. Dept. of Chemistry, KNUST, Kumasi, Ghana **2003**, pp 34.
- 6. Arnell, N; Climate change and global water resources. Global Environmental Change **1999**, 9: 31-49.
- 7. Bouwer, H. Integrated water management: Emerging issues and challenges. Agricultural Water Management **2000**, 45: 217–228.
- 8. Falkenmark, M; Global water issues confronting humanity. J. of Peace and Res. 27, **1990**, 177-190.



9.

## International Journal for Innovative Engineering and Management Research

A Peer Revieved Open Access International Journal

- Vidal, J; No water world, the Guardian (newspaper), London, August 8<sup>th</sup> **1995**, 46(314).
- 10. D.Chaitanya et al, Assessment of the Quality of Ground Water from Melghat Reserve forest villages in India Carib. J. Sci. Tech., **2014**, Vol.2, 451-456.
- 11. Anumakonda Jagadeesh; Safe Drinking Water For All Through Solar Disinfection, Journal of Rural Development **2010**, Vol.58, No.7, Pp.11-13.
- 12. Saralakumari, D. and Rao, P.R; Endemic fluorosis in the village Ralla, Anantapuram in Andra Pradesh. An epidemiological study, Fluoride **1993**, 26(3), pp 177-180.
- 13. Justus Kwetegyeka **et al**; Impact of the disused Kilembe mine pyrites on the domestic water quality of Kasese town, western Uganda, Carib. J. Sci. Tech., **2014**, Vol.2, 482-495.
- Amirabdollahian M; Datta B; Identification of contaminant source characteristics and monitoring network design in groundwater aquifers: an overview. J Environ Prot 2013, 4:26–41.
- Haribabu.B; Suresh.P; Ramesh babu.A; Swarna Latha. K; and AVVS Swamy; Determination of fluoride concentration in ground water of Yerraguntla and Jammalamadugu area of YSR Kadapa district of Andhra Pradesh (India). Rasayanam J.of Chem. ; **2016**, 9 (2): 222-226.
- 16. District Hand book-Visakhapatnam; 2016.
- 17. APHA ; Standard methods for the examination of water and waste water 23<sup>rd</sup>American public health association and water pollution control federation, Washington D.C. **2017**.
- 18. Renn, C.E; Investigating water problems. Educational Products Div., La Molte Chemical Products Company, Maryland **1970.**
- 19. Prakash, K.L. & Somashekar, R.K; Groundwater quality assessment in AnekalTaluk, Bangalore Urban district, India. J Environ Biol. **2006**, 27(4): 633-637.
- 20. Trivedy, R.K. & Goel, P.K; Chemical and biological methods for water pollution studies. Environmental publications, Karad, India **1986.**
- 21. Indirabai, W.P.S. and S. George; Assessment of drinking water quality in selected areas of Tiruchirappalli town after floods. Poll.Res., **2002**, 21(3), 243-248.
- 22. Sawyer, Clair N., Perry L. McCarty and Gene F. Parkin; Chemistry for environmental engineering. IVth Ed., Tata McGraw-Hill. New Delhi **2000**.
- 23. Rai, Narain & Sharma, J.P.N; Bacterial contamination of groundwater in rural area of northwest U.P. India. J. Env. Hlth. **1995**, 37(1): 37-47.



A Peer Revieved Open Access International Journal

- 24. Szymanska-Pulikowska, A; Sodium and Potassium in the Groundwater in areas near the Maslice Municipal Refuse Dump in Wroclaw. J. Elementol **2008**, 13(4): 665-673.
- 25. Suryanarayana, K; Effect of groundwater quality on health hazards in parts of eastern Ghats, Indian journal of environmental protection **1995**, 15(7), pp 497-500.
- 26. WHO; Guidelines for drinking water quality, 4th edn. World Health Organization, Geneva, Switzerland **2011**.
- 27. Kataria, H.C. & Dubey, K.S; Trace element analysis in groundwater of Bhopal. Asian J. of Chem. 10(2): **1998**, 395-396.
- 28. Gopal, Ram and P.K. Gosh; Fluoride in drinking water Its effects and removal, defence science journal, 35(1), **1985**, pp 71-88.
- 29. Yadav, J.P. and S. Lata; Fluoride levels in drinking water sources in rural areas of block Jhajjar, district Jhajjar, Haryana, Journal of Indian water works association **2004**, pp 131-136.
- 30. Jellison, R.; L. G. Miller; J. M. Melack & G. L. Dana; Meromixis in hyper saline Mono Lake, California-2, Nitrogen fluxes, Limnol. Oceanogr. **1993**, 38, pp. 1020 1039.
- 31. Romero, J. R., R. Jellison & J.M. Melack; Stratification, vertical mixing, and upward ammonium flux in hyper saline Mono Lake, California Arch. Hydrobiol **1998**, 142, pp. 283-315.
- 32. SubbaRao N., and Krishna Rao G; Geo. Phy. Res. Bull., 1998, 26: 4, 140-144
- 33. Handa, B.K; Contamination of groundwater by phosphates. Bhujal News 1990, 24-36.
- 34. Smeats, J. & Amavis, P; European Community directives relating to the quality of water intended for human consumption. Water Air Soil Pollut**1981**, 15(4): 483-502.
- 35. Rao, N.S. & Rajendra Prasad, P; Phosphate pollution in the groundwater of lower Vamsadhara river basin, India. Environ Geo **1997**,31(1-2): 117-122.
- 36. BIS (1991 / 1993 / 2003 /2010/2012) IS 10500; Amendments: 1993, 2003, 2010 & 2012. Drinking Water Bureau of Indian Standards **2012**.