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Abstract. The article is devoted to a shock wave propagation velocity study taking into account 

the two-phase flow in long pressure pumping stations pipelines. The shock wave velocity is the 

main water hammer parameter.  

Water hammer poses a danger to main stations equipment’ normal operation, control and 

measuring equipment, control devices and pressure pipelines.  

When establishing the strength of pressure pipelines indicators, it is necessary to make an 

accurate shock wave speed calculation, taking into account the undissolved air present in the 

water. 

The classical theory of water hammer is based on a homogeneous model and does not 

take air into the liquid. This circumstance reduces the calculating of shock wave velocity 

accuracy. 

The article presents the shock wave velocity calculating results by the finite difference 

method, taking into account the two-phase nature of the pressure flow. The proposed technique 

results are in good agreement with the experimental data. 

Keyword: shock wave propagation velocity, water hammer, two-phase flow, real fluid, finite 

difference method, pressure loss, polytropic exponent, Poisson's ratio. 

 

INTRODUCTION 

The water hammer theory for an 

ideal fluid in pressure pipelines was first 

developed by N.E. Djukovsky [1]. In this 

theory, it is assumed that the fluid moving in 

the pipeline is a continuous homogeneous 

(single-phase) fluid. Obviously, real liquids 

operating in irrigation, drainage, water 

supply systems, etc., differ to one degree or 

another from a “pure”' liquid, since they 

always contain a certain gaseous and solid 

impurities amount. The impurities presence 

significantly affects the water hammer 

nature in pressure pipelines. Therefore, the 

water hammer calculations of a real fluid 

based on a homogeneous model do not have  
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sufficient accuracy in many cases. To 

improve the calculations accuracy, it 

becomes necessary to take into account the 

real liquids complex structure phase, i.e., to 

construct calculated dependences based on 

multiphase media models. Of particular 

interest is the two-phase (water + air) flow 

study, since, firstly, liquids in irrigation 

networks almost always contain undissolved 

gases. Secondly, it is the gas inclusions 

presence that has the strongest effect on the 

shock wave propagation speed in the 

medium - one of the most important factors 

determining the entire course of the water 

hammer process.  

Natural and laboratory studies show 

that water almost always has an insignificant 

undissolved air amount, which, however, 

significantly reduces the water hammer С 

wave propagation speed [2,3]. 

The shock wave propagation speed 

in an unlimited gas-liquid flow is 

determined by the relationship [4,5,6] 
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where ρж - fluid density; ε - volumetric 

content of undissolved gases in the mixture. 

Dependence (1), called the low-frequency 

shock wave velocity approximation [4,5,6], 

is derived under the incompressibility 

assumptions of the liquid and the 

compression isothermal law-the gas 

expansion. Introducing into consideration 

the shock wave velocity in an unlimited 

ж
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where Eж is the bulk modulus of liquid 

elasticity, and generalizing (1) to the gas  

 

 

 

 

 

 

polytropic behavior case in bubbles, from 

(1) for ε<<1 we have  
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where n - polytropic exponent. 

The formulas disadvantage (1), (2) is 

that they do not take into account the 

elasticity effect of the liquid and the pipeline 

walls on the sound speed magnitude and, 

moreover, become meaningless at zero gas 

content. 

The formula for calculating the 

sound speed in a two-phase flow taking into 

account the liquid phase compressibility is 

given in D.N. Popova work [5] 
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Dependences for determining the 

shock wave velocity in a gas-liquid flow 

moving in an elastic pipeline are given in 

N.A. Kartvelishvili [8], G.I. Melkonyan [9], 

D.A. Fox [10] and many others works 

[11,12,13,14,15,16,17]. All these relations 

have a similar structure, since they are 

derived under the same assumptions. 

The research purpose is, using the 

numerical method - the finite difference 

method, to determine the shock wave 

velocity value in a two-phase flow and to 

establish the proposed method reliability by 

comparing the calculated water hammer 

values wave velocity with the experimental 

values.  
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CALCULATION METHOD 

The propagation speed of a water 

hammer C wave is the most important 

parameter when calculating a water hammer.  

In this work, the propagation water hammer 

wave speed was determined by the formula 

[2]: 
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where Еж and ρ are bulk modulus and 

density of the fluid, respectively;  

     D, е, Ет - diameter, wall thickness and 

bulk modulus of the pipeline wall material, 

respectively; 

       μ - Poisson's ratio; 

       ε - volumetric gas content at pressure 

before impact p0;  

      Δр - pressure rise during water hammer, 
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where х is adiabatic degree exponent. 

When calculating C in two-phase 

flows, pressure losses along the length are 

usually not taken into account, taking the 

pressure value before p0 impact equal to the 

pressure at the impact source. In reality, the 

pressure, and along with C speed, will vary 

along the length depending on the pressure 

loss and the geodetic the pipeline axis 

marks. Taking into account that the pressure 

changes continuously along the length, the 

averaged the wave impact velocity 

propagation in the Z length section is 

determined by the dependence: 
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where С is velocity in the section spaced 

from the impact source at a distance х.   
  In this case, applying the 

finite difference method [2], we obtain: 
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where ln is the length of an elementary 

section where Cn changes insignificantly, 

ln=xn-xn-1; 

К is sites number. 

The velocity Cn is determined by the 

pressure роп in section 
2

1 nn xх
 or Нср.п 

pressure. (Fig.1). 

The Cz values comparison, calculated 

taking into account the head loss with the 

experimental Cоп values, shows that most of 

the calculated Cz values exceed the 

experimental ones (Fig. 2).This is due to the 

fact that the calculation did not take into 

account the change in the elasticity of the 

system (water-air mixture - pipeline). When 

the shock wave propagates, each section, 

due to the difference in elasticity (pressure), 

will create an elementary reflection wave, 

which will entail a change in the shock 

pressure, and, accordingly, the C speed. To 

determine C taking into account the change 

in pressure along the length and variable 

elasticity, the method of characteristics is 

applied [2]. 

Let us write the system of equations 

for determining С on the n+1
th

 section (Fig. 

1): 
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Fig.1. Calculation scheme for 

determining C taking into account the 

changing pressure along the length and 

variable elasticity 
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where Hn - the shock pressure magnitude on 

the (n+1) site; 

      ϑ0 - steady flow rate. 

 The unknown quantities in the 

system are Hn, ϑn, Cn+1, the remaining 

quantities are determined when calculating 

C in the previous sections. The propagation  

 

 

 

velocity impact wave along the entire length 

is determined by the formula (4). 

STUDIES AND DISCUSSION RESULTS 

The pressures obtained by solving 

equations (5) - (7) will be less than the 

pressures found without taking reflection 

into account by the value ΔH (see Figure 1). 

Therefore, the speed Cz, calculated from 

these dependencies, will be less than the 

speed obtained only taking into account the 

head losses. In this case, the calculated Cz 

values are closer to the experimental data 

(see Figure 2.). According to the described 

method, several experiments series were 

processed on a computer (120 total 

experiments with gas content reduced to 

atmospheric φ=0,5÷3,0% by volume). 

Figure 2 shows two experiments series, the 

calculations results using data at φ = 1,0 % 

and φ=1,5%. 

In water hammer studies, it is 

assumed that water hammer propagation 

speed wave is equal to the sound speed, and 

the wave profile does not change in length 

and time. 

This solution accurately describes the 

propagation case of weak acoustic waves 

due to the fact that the change in density and 

pressure in the liquid is small. 

However, with a hydraulic shock 

with a sufficiently large value of excess 

pressure p/p0 and a significant change in 

density, the nature of the motion becomes 

much more complicated (this is especially 

manifested in a two-phase mixture). A finite 

perturbation propagates at a speed U±C 

depending on the propagation direction. 

Since U and C are density functions 

(  dp
C

U


 is the material drift rate that 

appears when a disturbance occurs
d

dp
C  ),  
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then in the general plane wave case 

with an arbitrary amplitude there is no 

definite constant "wave velocity" U±C. 

The shock wave for all normal liquids has a 

concavity directed to the abscissa axis. As a 

result, 
d

dp and 
d

dp
C   increase with 

increasing compression, the speed U also 

increases with ρ. 

Due to this, at subsequent moments in time, 

the high wave pressures region, since it 

causes a higher ρ, will approach the low 

pressures region. This effect increases with 

increasing pressure difference. 

 
Fig. 2. Calculation results 

comparison: 

, + - C speed calculated from the 

pressure at the valve, respectively φ = 
1,0 % and   φ = 1,5 %; 

,  - C speed, calculated taking into 

account the head loss, respectively at 

φ = 1,0 % and φ = 1,5 %; 
,  - C speed, calculated taking into 

account the pressure and stiffness loss, 

respectively at φ = 1,0 % and φ = 1,5 
%. 

The end result of such wave profile 

points movement at different speeds will be 

the very steep front formation. The wave  

profile can bend so much that the ρ(х) curve 

turns out to be ambiguous, that is, three 

different ρ values will correspond to a  

 

 

 

certain х value., Of course, physically such a 

phenomenon is impossible. Therefore, in 

ambiguity places, discontinuities will 

appear, while ρ everywhere, except for the 

discontinuity points, will be unique, that is, a 

shock wave will appear in the liquid [2, 18, 

19]. On the other hand, when the rarefaction 

wave propagates, the shock wave formation 

is not observed, since the compression 

points of the wave profile will move 

forward, and the rarefaction points will lag 

behind, that is, the wave will expand during 

propagation. 

а 

 
б 

 
Fig. 3. Diagrams of the 

experimental setup (a) and water hammer 

oscillograms in a two-phase flow (b): 

a - experimental setup [2]: 1-water 

source; 2-suction pipeline; 3-pump; 4-

valve; 5-check valve; 6-pressure head 

pipeline; 7-head pool. 
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б - water hammer oscillograms, starting 

with a decrease in pressure at φ=1,0%, р0 

= 350,0 kPa, ϑ0 = 1,36 m/s [2]  

It should be noted that a steep wave 

formation front will lead to a sharp pressure 

gradient in two adjacent wave layers. In this 

case, the liquid energy when passing 

through the fracture surface will increase, 

that is, a fracture surface presence will lead 

to a significant increase in energy 

dissipation. As an example, Fig. 3 (a, b) 

shows two oscillograms schemes obtained 

by us in the experimental water hammer 

study in a two-phase flow [2]. Two lines on 

the oscillograms correspond to the pressure 

records at two points (pressure sensors D1, 

D2) along the pipeline length (see Figure 3 

c). The obtained oscillograms analysis 

confirms the conclusion about shock waves 

occurrence in the pressure pipeline in the 

case of a water hammer in a two-phase flow 

[2, 20]. 

CONCLUSIONS 

1. When a homogeneous liquid 

moves, there is always a small amount of 

undissolved air in the pressure pipes. Based 

on this, any liquid in nature (for example, 

water) must be considered as a two-phase 

flow. These factors must be taken into 

account when calculating pressure pipelines 

for water hammer with two-phase flow.  The 

main parameter of water hammer is the 

propagation speed of the shock wave. 

2. As the application result of the 

finite difference method, dependence is 

proposed for calculating the shock wave 

velocity in a two-phase flow. 

3. The proposed dependence 

reliability is proved by comparing the 

calculated values of the shock wave velocity 

with the experimental values. 

 

 

 

 

References 

1. Djukovsky N.Ye. About water 

hammer in water pipes. - M., 

Gostekhizdat, 1949.- 104 p. 

2. Arifjonov A.M., Jonkobilov U.U. 

Water hammer in homogeneous and 

gas-liquid pressure pipelines. 

Monograph. Toshkent, TIIIMSKh, 

2018.- 142 p. 

3. Alyshev V.M. Velocity of 

propagation of a hydraulic shock 

wave in a ring pipeline when moving 

a gas-liquid mixture along it. On Sat. 

"Questions of hydraulics", M., 

MGMI, 1969, p. 269 ... 273. 

4. Batchelor J. Compression waves in a 

suspension of gas bubbles in a liquid. 

- Mechanics, Sat. translation of 

foreign articles, 1968, No. 3, p. 58 ... 

76. 

5. Van Weingarden L. One-dimensional 

flows of liquid and gas. - In the 

book: Rheology of suspensions. - M., 

1975, p. 68 ... 103.  

6. Kutateladze SS, Styrikovich MA 

Hydrodynamics of gas-liquid 

systems. - M.: Energiya, 1976.- 296 

p. 

7. Popov D.N. Non-stationary 

hydromechanical processes.-M.: 

Mashinostroenie, 1982 .-- 240 p. 

8. Kartvelishvili N. A. Dynamics of 

pressure pipelines. - M.: Energiya, 

1979 .-224 p. 

9. Melkonyan G.I. Calculation by 

means of an electronic computer of a 

hydraulic shock in the case of 

movement of gas-liquid mixtures. - 

Tr. LIVT, 1969, at. 124, p. 112 ... 

122. 

10. Fox D.A. Hydraulic analysis of 

unsteady motion in pipelines. - M.: 

Energoizdat, 1981 .-247 p. 



 

Vol 09 Issue11, Nov 2020                           ISSN 2456 – 5083 Page 100 
 

 

 

 

11. Dijkman H.K.M., Vreugdenhill C.B. 

The effect of Dissolved Gas on 

Cavitation in Horizontal Pipelines. – 

Journal of Hydraulic Research, 

IAHR, 1969, Vol. 7, N 3, pp. 

301…314. 
12. Kalkwijk J.P.Th., Kranenburg C. 

Cavitation in Horizontal Pipelines 

Due to Water Hammer. – Journal of 

Hydraulic Division, ASCE, 1971, 

Vol.97, N HYIO, pp. 1585…1605. 
13. Bojan Ivljanin, Vladimir D. 

Stevanovic, Aleksandar Gajic.  

Water hammer with non-equilibrium 

gas release. - International Journal of 

Pressure Vessels and Piping, 165 

(2018) 229 – 240. 

14. Pierluigi Cesana, Neal Bitter. 

Modeling and analysis of water-

hammer in coaxial pipes. - Journal of 

Fluids and Structures, 51 (2014) 225 

– 239. 

15. Tehuan Chen, Zhigang Ren, Chao 

Xu, Ryan Loxton.  Optimal boundary 

control for water hammer 

suppression in fluid transmission 

pipelines. - Computers and 

Mathematics with Applications, 69 

(2015) 275 – 290. 

16. Provoost G.A. Investigation into 

Cavitation in a Prototype Pipeline 

Caused by Water-Hammer. – in: 

Proc. of Second Int. Conf. on 

Pressure Surges, BHRA, London, 

1976, Sept. 22…24. 
17. Daude, A.S. Tijsseling P. Galon. 

Numerical investigations of water-

hammer with one-dimensional 

Finite-Volume approach. - Journal of 

Fluids and Structures, 83 (2018) 91 – 

118. 

18.  Djvarsheishvili A.G., Kirmelashvili 

G.I. Non-stationary modes of  

 

 

 

systems supplying a two-phase 

liquid. - Tbilisi: Metsniereba, 1965.-

163 p. 

19. Dikarevsky V.S. Water 

conduits. Monograph. Proceedings of 

RAASN. Construction sciences, vol. 

3, Moscow: RAASN, 1997, 200 p. 

20. Liberov V.G., Usakovskiy V.M. On 

the theory of unsteady motion of 

liquid in a pipeline. Reports of 

VASKhNIL, No. 8, 1968, p. 120-

123. 


