

A Peer Revieved Open Access International Journal

www.ijiemr.org

COPY RIGHT

2017 IJIEMR. Personal use of this material is permitted. Permission from IJIEMR must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. No Reprint should be done to this paper, all copy right is authenticated to Paper Authors IJIEMR Transactions, online available on 1st August 2017. Link :

http://www.ijiemr.org/downloads.php?vol=Volume-6&issue=ISSUE-5

Title: Detailed Study and Execution Work in Post Tension Slabs.

Volume 06, Issue 05, Page No: 2264 – 2267.

Paper Authors

- * V.SHIVA PRASAD, KOPPERAPU NIVEDITHA.
- * Dept of Structurul Enginnering, Siddhartha Institute of Technology and Sciences.

USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER

To Secure Your Paper As Per UGC Guidelines We Are Providing A Electronic Bar Code

A Peer Revieved Open Access International Journal

www.ijiemr.org

DETAILED STUDY AND EXECUTION WORK IN POST TENSION SLABS *V.SHIVA PRASAD,**KOPPERAPU NIVEDITHA

*PG Scholar, Dept of Structural Engineering, Siddhartha Institute of Technology and Sciences. **Assistant Professor, Dept of Structural Engineering, Siddhartha Institute of Technology and Sciences.

ABSTRACT

In this project, we have seen and studied thoroughly some works on the site related to post tensioned slabs. The various sizes of tendons available, which are the materials imparting prestress to the structure were studied thoroughly. We have also understood and performed building column line staking on site. We have visited the site and taken part in the execution work under the structural engineer in-charge. The unbonded tendons are typically prefabricated at a plant and delivered to the construction site, ready to install. The tendons are laid out in the forms in accordance with installation drawings that indicate how they are to be spaced, what their profile (height above the form) should be and where they are to be stressed. After the concrete is placed(from the RMC trucks) and has reached its required strength, usually about 75% of its final strength, then the prestressing process begins. The concrete grade that was used was M35 and hence, after 7 days when it achieved the strength of 25 N/mm 2, prestressing was achieved through Prestressing powerpack using a mono strand stressing jack. The principle is that when the tendons are stretched, want to return to their original length but are prevented from doing so by the anchorages. The fact that the tendons are kept in a permanently stressed (elongated) state causes a compressive force to act on the concrete. The compression that results from the post tensioning counteracts the tensile forces created by the prestress applied. This significantly increases the load-carrying capacity of the concrete.

Keywords: Flat Slab, SAFE, Post-Tensioned Flat Slab.

1. INTRODUCTION

Due to rapid increase in demand for space, construction of multi-storied buildings is becoming a necessary part of our living. The limitation of space is forcing us to raise the height of buildings as much as possible to accommodate maximum number of people. Resisting lateral loads like wind and earthquake also comes into picture with increase in height of the building. Flat slab buildings can be broadly divided into RCC and Prestressed buildings. The flat slab or Post Tensioned Slab buildings in which slab is directly rested on columns, have been adopted in many buildings constructed recently due to the advantage of reduced floor to floor heights to meet the economical and architectural demands. But Punching shear failure observed during the transfer of unbalanced moment from slab to column is the main drawback of using flat slab.

Also its behavior during earthquake due to absence of beams is also the matter to study.

2. Flat Slabs

The traditional method of construction that is a common practice is to support slab by beam; and beam supported by column. This is called as a beam slab load transfer construction technique. Due to this traditional technique of construction net height of the room is reduced. Therefore to improve the aesthetical and structural aspect of multi-storey, shopping malls, offices, warehouses etc. are constructed in such a way where slabs are directly on columns. This type of slab which is directly supported on columns is termed as flat slabs.

2.1 Floor System

The slabs are presented in two group's viz. oneway slabs and two-way slabs. When a rectangular slab is supported on all the four

A Peer Revieved Open Access International Journal

www.ijiemr.org

sides and the length-tobreadth ratio is less than two, it is termed as a twoway slab. The slab spans in both the orthogonal directions. Rectangular two-way slabs are divided into the following types:

1) Flat plates: The Flat plate slabs do not have beams between the columns, drop panels or column capitals. Usually, there are spandrel beams at the edges.

2) Flat slabs: These slabs do not have beams but have drop panels or column capitals.

3) Two-way slabs with beams: If the beams are wide and shallow, they are termed as band beams. There are beams between the columns. These slabs can be cast-in-situ (cast-in-place). Else, the slabs can be precast at ground level and lifted to the final height. These types of slabs are called lift slabs. A slab in a framed building can be a two-way slab depending upon its length-to-breadth (L / B) ratio.

1.1 Advantages of Post-tensioned Flat Slabs:1. Reduction in cost:

Stronger structures are made at an affordable price by post-tensioning. There are many structures like parking garages as well as stadiums, as they are required to hold muchmore weight than average buildings; this slab becomes a feasible option.

2. Flexibility in design:

The designs made with this slab are sleek, require lesser space..

3. Lesser usage of materials:

Since the post tension slab is thin, the materials used with it are also lesser. This slab does not need bulky materials.

4. Durability:

Being a very strong substitute of the normal concrete, it lasts longer.

1.2 Disadvantages of Post-Tensioned Flat slabs:

1. Corrosion:

As there are a number of tendons

and wires spread inside the post tension slab, it can result in corrosion. But, this tendency to

corrode depends on the quality of the material used.

2. Complexity of work:

Only skillful professional can manufacture post-tensioned slabs. The local workers may not have the necessary knowledge skills required to make this complex slab.

3. Poor workmanship can lead to accidents:

The main problem with using **post tension slab** is that if sufficient care is not taken while preparing it, it can lead to future fatal accidents.

1.3 Necessity:

While analyzing the post-tensioned slab, there are some secondary moment effects observed. These secondary moment effects when combined with lateral loading become a critical issue in the design of slab. Due to this, there arises an urge to study the behaviour and response of flat slabs and Post tensioned flat slabs during an earthquake. Another arising issue in the present scenario is the scarcity of space which is compelling us to raise the height of

buildings to accommodate the growing population. This increase in the height of building enforces consideration of the factors such as lateral loads like wind and earthquake while design and analysis of the structure.

3. MODELLING AND ANALYSIS

SAFE 2D Post-tensioned flat slab model under consideration are shown in Fig.1

A Peer Revieved Open Access International Journal

www.ijiemr.org

Description of model:

Floor height	3m
Depth of Slab	200mm
Grade of Concrete	M30
Grade of steel	Fe415

Flat plate considered is analyzed using SAFE and maximum bending moments and minimum bending moments are calculated in column strip and middle strip.

Sequence No.1 :(all X cables first and then Y)

For the above slab we tried with stretching sequence as cable no.1 at first stage then cable 2 in second stage cable no 3 in third stage cable no 4 in 4th stage cable no 5 in 5th stage cable no 6 in 6th stage. Cable 1,

2 and 3 are all X- tendons and cable 4,5and 6 are all Y- tendons.

Sequence No.2: (alternate X and Y cables)

For the above slab we tried with stretching sequence as cable no 1 at first stage then cable 4 in second stage, cable no 2 in third stage, cable no 5 in fourth stage, cable no 3 in fifth stage, cable no 6 in 6th stage. Where cables no 1, 2 and 3 are all X- tendons and cables no 4.5 and 6 are all Y- tendons.

cables no 4,5and 6 are all Y - tendons

3.1 RESULTS AND ANALYSIS

	Moments in 1st Column Strip												
		Stage 1		Stage 2		Stage 3		Stage 4		Stage 5		Stage 6	
		MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
SEQUENCE 1	START	14.268	12.841	12.264	15.370	13.688	15.370	-26.080	84.633	-31.118	-79.53	-33.239	79.6946
	MID	24.276	10.151	34.493	8.5451	39.875	8.545	23.646	26.074	24.627	-31.114	24.617	33.235
	END	10.151	13.331	8.545	13.915	\$8.900	13.915	158.332	-92.399	164.863	92.110	168.651	90916
SEQUENCE 2	START	14.268	12.841	10.367	-2.518	7.96	-0.7199	7.555	-5.165	-31.118	-79.530	-33.239	79.694
	MID	24.276	10.151	10.491	-9.715	7.925	-6.254	8.905	10.499	24.627	-31.114	24.617	33.235
	END	10.151	13331	58.295	30.191	55.516	28.392	62.047	28.104	164.863	92.110	168.651	90.916

TABLE II DESCRIPTION OF FLAT SLAB MODEL

	TABLE II DESCRIPTION OF FLAT SLAB MODEL												
	Moments in Middle Strip												
	Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 5											ge Ó	
		MAX	MIN										
anor the second	START	16.063	-2.803	14.873	-1.594	15.277	-1.215	10.854	-2.156	1.176	-1.031	0.725	-5.852
1	MD	22.484	10.806	17.107	3.936	17.986	7.613	13.336	1.061	13.337	18.052	13.576	24.681
	END	11.815	2.312	11.173	2.914	15.281	-2.028	12.503	-2.080	49.469	4.316	50.335	436
CEOUENCE	START	16.063	-2.803	11.066	-3.162	10.449	-2.534	0.797	-1.433	1.176	-1.031	0.725	-5.852
2	MD	22.484	10.806	15.329	6.160	14.742	-2.702	14.742	22.138	13.337	18.052	13.576	24.681
	END	11.818	2.312	10.717	2.234	12.539	2.862	52.193	9.258	49.469	4.316	50.335	4.361

TABLE III DESCRIPTION OF FLAT SLAB MODEL

		Moments in 2nd Column Strip												
		Sta	ge l	Sta	ge 2	Sta	ge 3	Stage 4		Stage 5		Stage 6		
		MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	
TOTAL	START	9.341	-12.265	9.571	12.394	73.596	-13.598	74.238	-8.608	79.228	35.110	95.977	24.537	
SEQUENCE	MID	24.385	10.306	35.142	9.448	37.018	0.019	37.119	1.093	32.057	-0.571	21.505	28.480	
	END	13.559	13.343	13.514	12.869	65.807	110.50	67.776	104.607	68.105	98.109	52.069	33.416	
TOUTNOT	START	9.343	-12.265	7.439	12.394	8.461	-13.598	5.516	-8.608	79.228	35.110	95.977	24.537	
2	MID	24.385	10.306	22.427	10.557	34.156	10.523	27.633	8.376	32.057	-0.571	21.505	28.480	
	END	13.559	13.343	14.169	11.371	15.191	-9.758	14.638	-9.429	68.105	98.109	52.069	33.416	

4. CONCLUSIONS

□ Stretching of cables can be done 1st in xdirection then in y-direction, alternate

stretching can be done to avoid the torsion of slab.

□ Stretching one cable produces secondary moment and hence strip moments in both direction changes drastically.

□ Hyper static moments are affecting during the construction stage. In stage wise construction hyper static moments play important role.

 \Box In the above flat plate varying eccentricity is not very much possible due to small thickness of slab but force can be worked out for new moments.

□ Due to post-tensioning of flat plates slab there is no much effect on axial force but shear and moment on column increases.

REFERENCES

[1] Boskey Vishal Bahoria and Dhananjay K.Parbat, "Analysis And Design Of RCC And Post- Tensioned Flat Slabs Considering Seismic Effects", IACSIT International Journal of Engineering and Technology, Vol. 5, No. 1, February 2013.

A Peer Revieved Open Access International Journal

www.ijiemr.org

[2] U. Prawatwong, C. H. Tandian and P. Warnitchai, "Seismic Performance of Post-

Tensioned Interior Slab- Column Connections with and Without Drop Panel", the 14th World Conference on Earthquake Engineering, Beijing, China, October 12-17, 2008.

[3] A. hufnagel and H. Thomas, K. Kang (2012), "Assessment of secondary effects in post- tensioned flat plates", PTI Journal Engineering and Technology.

[5] Vakas K. Rahman, Prof. A.R. Mundhada (2013), "Comparative study of RCC and

Prestressed concrete flat slabs", International Journal of Modern Engineering Research (IJMER)

[6] A. C. Scordelis, T. Y Lin, and R. Itaya, " Behavior of continuous slab prestressed in both direction," Journal of American Concrete Institute, vol. 40, no.3, December 1959.

V.SHIVA PRASAD. M-Tech, Siddhartha Institute of Technology And Sciences

KOPPERAPU NIVEDITHA Assistant professor, Structurul Engg, Siddhartha institute of technology and sciences, Narapalli.