

A Peer Revieved Open Access International Journal

www.ijiemr.org

COPY RIGHT

2023 IJIEMR. Personal use of this material is permitted. Permission from IJIEMR must

be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. No Reprint should be done to this paper, all copy right is authenticated to Paper Authors

IJIEMR Transactions, online available on 18th Feb 2022. Link

:http://www.ijiemr.org/downloads.php?vol=Volume-12&issue=Issue 02

DOI: 10.48047/IJIEMR/V12/ISSUE 02/71

Title Molecular Interaction and Thermodynamic Parameters in Certain Binary Liquid Mixtures with Variation of Temperature

Volume 12, ISSUE 02, Pages: 444-454 Paper Authors K.L.V.Nagasree, Prof.K.Samatha

USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER

To Secure Your Paper As Per UGC Guidelines We Are Providing A Electronic Bar Code

A Peer Revieved Open Access International Journal

www.ijiemr.org

Molecular Interaction and Thermodynamic Parameters in Certain Binary Liquid Mixtures with Variation of Temperature

K.L.V.Nagasree, Prof.K.Samatha, Department of Physics, Andhra University <u>nagasreekarri@gmail.com</u>

Abstract

The study of molecular interactions and the variations in these interactions due to structural changes has been carried out by numerous experimental techniques such as Infrared, Nuclear Magnetic Resonance and Raman Spectra and Dielectric property measurement. The three binary mixtures chosen for the investigation of molecular interactions of are 1,2 Dichloroethane as a basic solvent which was mixed with cresols such as o-cresol, m-cresol and p-cresol .Ultrasonic sound velocity(u), density(ρ) and viscosity(η) were measured experimentally at four different temperatures namely 303k,308k,313k,318k and at different compositions of 1,2-dichloroethane. The physical properties such as molar volume adiabatic compressibility, mean free length, acoustic impedance Rao's constant and free volume are calculated using these experimental values. The results obtained are utilised to analyse the interactions between the component molecules.

Key Words: Binary Mixtures, adiabatic compressibility, impedance, density, viscosity

Introduction Introduction

The study of molecular interactions and the variations in these interactions due to structural changes has been carried out by numerous experimental techniques such as Infrared [1], Nuclear Magnetic Resonance [2] and Raman Spectra [3] and Dielectric property measurement[4].The thorough understanding of the nature of intermolecular method. The successful use of acoustical methods to the physicochemical investigation of solutions become possible has after the development of adequate theoretical approaches and methods for precise ultrasonic velocity measurements. Lagemann and Dunbar [5] pointed out the approach sound velocity for the qualitative estimation of interaction in liquids. A parallel measurement of sound velocity and density of solution agree one to obtain information about their volume, elastic properties and changes in their properties. Composite formation in liquid mixtures has been extensively studied by ultrasonic methods by many workers. The formation of hydrogen bond in liquid mixtures and its effect on physical

properties of the mixtures have received much attention.

Experimental Details

By using jobs method of continuous variation, we have to prepare the mixture of required portion with the help of two separate burettes. The mixed proportions of the liquids are stored in the conical flasks and kept aside for nearly 24 hours. They are allowed to attain the thermal equilibrium.

The author has used antonpaar to measure the velocities and viscosity of the liquid and liquid mixtures. Comparing the relative merits of various techniques, the antonpaar viscometer is a simple and direct device to determine the ultrasonic velocity in pure liquids and liquid mixtures with high degree of accuracy. It is known for its easy operation and reliability

Pulse excitation method (PEM): To determine the density and sound velocity using Antonpaar. The U-

A Peer Revieved Open Access International Journal

www.ijiemr.org

shaped glass tube is made to oscillate to its stable state and gets excited. After the excitations the oscillations fades out freely. This sequence of excitation and fade out repeats continuously creating the pulsing oscillation pattern

• Rolling ball principle: To determine the viscosity of the liquid and liquid mixtures using micro capillary tube in which the gold coated ball is inserted for free flow of liquid within the tube.

Specification of Sound Velocity & Density Meter (DSA 5000 M):

Density range is : 0 - 3 gm./cm³ Sound Velocity : 1000 m/s to 2000 m/s Measuring range of temperature : 0-100°C Pressure range : 0-8 bar Measuring time per sample : 1 to 4 min Sample volume : approx. 3.5 ml

Before starting measurement with the instrument, make it sure of primary connections and settings as given in the manual. The measuring cell and syringe must be clean and dry. Then prepare the instrument for measurement, following the instructions on the screen. Following the instruction on the touch screen make the instrument necessary measurements. After measuring the process is completed we will get the display message 'Finish' on the screen and shows "Master Condition" output is "Valid".

After recording data measuring cells must be cleaned as directed in the manual and make them dry for the next measurement. We have taken the data of density, kinetic viscosity and the speed of sound parameters of pure, binary and ternary mixtures of liquid of study.

From the measured values of ultrasonic velocity (U), density (ρ) and viscosity (η). The Adiabatic Compressibility (β ad), Internal Molecular Free Length (Lf), Acoustical Impedance (Z), Molar Volume (Vm), Rao's Constant (R), Wada's constant (W), Viscosity (η), internal pressure (π)

and free volume(Vf) were calculated by using the following standard relations.

Theoretical Parameters: Number Of Gram Molecules of The Two Components:

If " v_1 " of a liquid of density(ρ_1) and molecular weight(M_1) is mixed with " v_2 " of liquid of density(ρ_2) and molecular weight (M_2) then the number of gram molecules of the first liquid(N_1) present in this mixture will be

$$N_{1} = \frac{\rho_{1}v_{1}}{M_{1}}$$

and for the second liquid it will be
$$N_{2} = \frac{\rho_{2}v_{2}}{M_{2}}$$

MOLE FRACTION OF THE TWO LIQUIDS (X_1, X_2) :

The mole fraction of first liquid is given by

$$X_1 = \frac{N_1}{N_1 + N_2}$$

Mole fraction of second liquid is given by

$$X_2 = \frac{N_2}{N_1 + N_2}$$

Adiabatic Compressibility (β_{ad}):

$$\beta_{ad} = \frac{1}{\rho u^2} N^{-1} M^2$$

INTERMOLECULAR FREE LENGTH (L_f) :

$$L_f = K \beta_{ad}^{\overline{2}}$$

Where "K" is the temperature dependent constant known as Jacobson Constant. The value of "K" calculated for working temperatures of the experiment are given as

Temperat	303.1	308.1	313.1	318.1
ure (K)	5	5	5	5
Value of K	627	631.5	636	640.5

Molar Volume (V):

$$\mathbf{V} = \frac{M}{\rho} \mathbf{m}^3 \mathbf{mol}^{-1}$$

Impedance (Z):

The acoustic impedance (\mathbf{Z}) of a material is defined as the product of its density (\mathbf{p}) and acoustic velocity (\mathbf{u}) .

$$\mathbf{Z} = \mathbf{u} \ \boldsymbol{\rho} \ \mathbf{Kgm}^{-2} \ \mathbf{s}^{-1}$$

A Peer Revieved Open Access International Journal

Free Volume:

$$V_f = \left[\frac{\overline{M} \times u}{K\eta}\right]^{\frac{3}{2}}$$

Where "K" is constant and its value is 4.28 X 10⁹ for all liquids.

Rao's Constant or Molar Sound Velocity(R):

Rao's constant is calculated by using the formula

$\mathbf{R}=\mathbf{V}_{\mathbf{m}}u^{\frac{1}{3}}$

Wada's Constant (W):

Wada derived a relation between adiabatic compressibility (β_{ad}) and molar volume (V) of liquids.Wada's constant of the solution is calculated by using the formula

Where 'b' is the packing factor (b = 2), "k" is a constant, and its value is 4.28×10^9 for all liquids, "R" is Universal Gas Constant and "T" is absolute temperature **Enthalpy (H):**

www.ijiemr.org

Enthalpy is determined by using the relation

 $\mathbf{H} = \mathbf{\pi}_{i} \mathbf{V}_{m} \qquad \mathbf{Jmol}^{-1}$

Where π_i is the internal pressure and V_m is the molar volume of the liquid solution.

Gibbs Free Energy for Activation Flow(Δ G)

The relaxation time is related to the activation free energy for a given transition. The variation of relaxation time with temperature can be expressed in the form of Eyring salt process theory and the equation is given as

$\Delta \mathbf{G} = \mathbf{RT} \ln[\eta V_m]$

Where "R" is universal Gas constant 8.31432 X $10^7 \ JK^{\text{-1}},$ and "T" is Absolute Temperature

Table 1 (a)

Binary Liquid Mixture – I: 1,2-Dichloroethane +M- Cresol at Temperature 303 K, 308 K,313K 318 K and Density, UltrasonicVelocity, Viscosity and some related acoustic parameters

Molefract	ion	Density	Velocity	Visc	osity	βx	Ym.	х	R x 10 ⁻	W x10 ⁻⁶	L _f X	V _£ x 10 [.]
of		Ρ	U	្រា :	x 10 ⁻	10-10	10-5		8	m ³ .mol ⁻¹	10-11	7
1,2-DCE		Kgm-s	ms ⁻¹	, s	-	kg.1	m ^s /m	ol-	m ^{10/s} s	(N/m ²) ^{1/3}	/ m	
				NS/1	m²	m s²	1		1/8.mol			m ^s /mol ⁻
									-			
303 K			1				1			1	1	
0.0000	102	28.24 1	467.80	9.378	4.51	.41	104.8712	5	5.5477	8.4797	4.4086	0.0806
0.2081	106	52.84 1	396.51	7.423	4.82	44	99.6845	5	5.1853	7.9823	4.5576	0.1405
0.3965	109	96.18 1	335.60	5.712	5.11	.40	95.1412	4	1.8727	7.5502	4.6924	0.2261
0.5679	113	31.24 1	284.84	4.225	5.35	42	90.9804	4	1.5909	7.1588	4.8016	0.3440
0.7244	116	53.93 1	241.63	2.947	5.57	29	87.1895	4	4.3497	6.8215	4.8984	0.5247
0.8679	119	99.83 1	207.61	1.785	5.71	.51	83.4815	4	4.1263	6.5079	4.9605	0.7474
1.0000	123	36.67 1	175.05	0.830	5.85	64	80.0132	3	3.9190	6.2158	5.0215	0.9912
308 K												
0.0000	102	22.10 1	454.20	8.443	4.62	265	105.4725	5	5.5637	8.5007	4.5062	0.1506
0.2081	105	57.15 1	380.54	6.488	4.96	32	100.2871	5	5.1933	7.9928	4.6673	0.2317
0.3965	109	91.19 1	319.80	4.799	5.26	63	95.6785	4	1.8748	7.5530	4.8077	0.3376
0.5679	112	26.03 1	267.94	3.421	5.52	39	91.4010	4	4.5918	7.1600	4.9239	0.4925
0.7244	115	57.85 1	224.24	2.347	5.76	525	87.6470	4	4.3520	6.8246	5.0291	0.7052
0.8679	119	93.52 1	189.16	1.425	5.92	250	83.9227	4	4.1269	6.5087	5.0995	0.9512
1.0000	122	29.51 1	157.24	0.772	6.07	32	80.6712	3	3.9218	6.2196	5.1629	1.2032

313K

A Peer Revieved Open Access International Journal

www.ijiemr.org

318 K									
0.0000	1014.12	1420.92	6.582	4.8839	106.6343	5.5644	8.5016	4.7182	0.3136
0.2081	1048.16	1348.47	4.627	5.2467	101.3520	5.1973	7.9981	4.8903	0.4232
0.3965	1081.18	1286.46	3.158	5.5886	96.6578	4.8794	7.5592	5.0472	0.5856
0.5679	1114.89	1232.74	1.984	5.9023	92.3230	4.5948	7.1641	5.1869	0.8054
0.7244	1145.90	1189.32	1.224	6.1695	88.5679	4.3555	6.8294	5.3030	1.0712
0.8679	1180.04	1152.97	0.723	6.3748	84.8852	4.1314	6.5149	5.3905	1.3556
1.0000	1214.70	1117.47	0.698	6.5926	81.4604	3.9236	6.2221	5.4818	1.6312

Table 1(b)

Binary Liquid Mixture – I: 1,2-Dichloroethane + M - Cresol at Temperature 303K, 308 K,313 K,318 K Some related acoustic parameter

Mole fraction 1,2-DCE	of	πį x 10 ⁶ N.m ⁻ 2		H x J.mo	10 ³ ol ⁻¹	∆G 20 KJ.	x 10 ⁻ mol ⁻¹	Z K 1	x 10 ⁶ g.m ² s ⁻	τ X 12 sec	: 10 ⁻ :	α Np.m	ı ⁻¹	(α/f ²) x10 ⁻¹⁴ Np.m ⁻¹	s-	<u>xu x</u> 10 ⁻³
													2			
303 K														1		
0.0000	9	96.6741	119	.6683	0.1	145	1.50	92	5.644	44	312.	2144	8	0.3199	0	0000.
0.2081	9	21.3874	108	.2744	0.1	139	1.48	42	4.774	48	270.	1826	5	6.5975	_	0.0099
0.3965	8	47.3256	96.3	9013	0.1	130	1.46	40	3.894	48	230.	4385	3	9.2931	_	0.0163
0.5679	7	72.6246	83.8	507	0.1	120	1.45	07	3.010	65 185		5251	2	6.7021	_	0.0195
0.7244	6	89.2654	70.7	305	0.1	110	1.43	86	2.189	98	139.	3653	1	7.2942	_	0.0157
0.8679	5	97.3214	55.3	755	0.1	096	1.42	85	1.360	02	89.0	0541	9	.9347	_	0.0084
1.0000	4	74.5863	37.9	732	0.1	080	1.41	97	0.648	81	43.5	8461	4	.3865	0	0000.
308 K				·												
0.0000	9	27.6542	106	.5214	0.1	158	1.48	63	5.208	82	287.	6451		69.9003	0	0000.
0.2081	8	45.6402	95.3	244	0.1	151	1.45	94	4.293	35	245.	7566		47.5348	-	0.0089
0.3965	7	68.2147	84.5	122	0.1	142	1.43	94	3.369	97	201.	8579		31.6629	_	0.0152
0.5679	6	92.2145	72.5	402	0.1	133	1.42	57	2.519	96	157.	0308		20.6831	-	0.0186
0.7244	6	19.3571	60.6	782	0.1	122	1.41	26	1.803	32	116.	3962		13.1335	-	0.0146
0.8679	5	47.5471	49.6	712	0.1	109	1.40	27	1.125	57	74.8	070		7.5332	-	0.0074
1.0000	4	67.0084	37.5	844	0.1	094	1.39	44	0.625	51	42.6	867		3.8746	0	0000.
313 K																
0.0000	8	356.2410	93.3	3215	0.1	170	1.46	25	4.75	21	262	2148	6	0.0154	(0.0000
0.2081	7	66.5721	82.0	5215	0.1	164	1.43	76	3.79	41	219	5344	3	9.4594	-	0.0079
0.3965	6	83.2014	71.3	3214	0.1	155	1.41	50	2.86	27	173	.6459	2	5.0370	.	0.0141
0.5679	6	511.1521	60.2	2145	0.1	146	1.39	93	2.06	89	130	9009	1	5.5931	-	0.0176
0.7244	5	47.2456	51.2	2445	0.1	135	1.38	67	1.41	74	92.809		9	.5168	-	0.0135
0.8679	4	98.1457	43.3	3141	0.1	123	1.37	54	0.90	03	60.7	60.7504 5		.5174		0.0066
1.0000	4	72.2104	37.4	4102	0.1	108	1.36	54	0.62	67	43.5	760	3	.5063	(0.0000

318K

A Peer Revieved Open Access International Journal

www.ijiemr.org

0.0000	788.3695	78.4245	0.1185	1.4409	4.2861	238.3623	50.4398	0.0000
0.2081	692.3154	68.1871	0.1178	1.4134	3.2368	189.6819	31.3234	-0.0069
0.3965	610.6702	58.4021	0.1170	1.3908	2.3532	144.5450	19.1477	-0.0129
0.5679	535.3820	49.0251	0.1160	1.3743	1.5613	100.0859	10.9145	-0.0166
0.7244	477.6712	41.0244	0.1149	1.3601	1.0068	66.8985	6.2150	-0.0124
0.8679	442.6841	36.4612	0.1137	1.3481	0.6145	42.1177	3.4443	-0.0058
1.0000	460.3523	37.2572	0.1122	1.3382	0.6135	43.3867	3.1163	0.0000

Table 2(a)

Binary Liquid Mixture – I: 1,2-Dichloroethene + O - Cresol at Temperature 303 and 308 K and Density, UltrasonicVelocity, Viscosity and some related acoustic parameters

Molefract	tion	Densit	y Veloci	ity Vis	cosity	β	x	V _m × 1	.0-	R x 10 ⁻	3	W x10 ⁻⁶	j	L _f X	Vf	x 10 ⁻⁷
of		ρ	U	η	x 10 ⁻	10-10		5		m ^{10/3}	s"	m³.mol	⁻¹	10-11		
1,2-DCE		Kgm ⁻³	ms ⁻¹	3		kg-	1	m³/m	oľ	1/3.mo	r	(N/m²)	1/7	m	m ³	/mol ⁻
	Ns/m		/m²	m s ²	2	1		1					1			
303 K																
0.0000	10	36.93	1490.06	6.522	4.34	35	10	04.2886	- 5	.5288		8.4550	4.	3245	0.	0806
0.2067	10	69.05	1418.03	5.123	4.65	519	99	9.3776	- 5	.1822		7.9783	4.	4754	0.	1405
0.3945	11	01.95	1355.95	3.912	4.93	357	94	4.8445	4	.8725		7.5502	4.	6099	0.	2261
0.5658	11	36.27	1298.92	2.914	5.21	61	90	0.5944	4	.5880		7.1552	4.	7390	0.	3440
0.7227	11	69.10	1252.46	2.067	5.45	528	86	5.8171	4	.3437	(6.8135	4.	8453	0.	5247
0.8669	12	01.50	1213.13	1.345	5.65	553	83	3.3729	4	.1272	(6.5092	4.	9345	0.	7474
1.0000	12	36.67	1175.05	0.830	5.85	64	80	0.0132	3	.9190	(6.2158	5.	0215	0.	9912
308 K																
0.0000	10	32.56	1472.86	5.357	4.42	265	10	04.7299	5	.5308	1	8.4597	4	4.4265	0.	1506
0.2067	10	64.27	1400.89	4.158	4.58	340	99	9.8262	5	.1845	1	7.9854	4	4.5840	0.	2317
0.3945	10	96.72	1338.80	3.129	4.72	252	95	5.34556	4	.8752	1	7.5572	4	4.7252	0.	3376
0.5658	11	30.55	1281.24	2.310	4.86	530	91	1.0559	4	.5904	1	7.1603	4	4.8630	0.	4925
0.7227	11	63.06	1234.32	1.597	4.97	68	87	7.2705	4	.3452	(6.8187	4	4.9768	0.	7052
0.8669	11	94.98	1194.28	1.085	5.07	45	83	3.8292	4	.1282	(6.5125	:	5.0745	0.	9512
1.0000	12	29.51	1155.56	0.772	5.17	704	80	0.6712	3	.9199	(6.2196	:	5.1704	1.	2032
0.0000	10	28 16	1455.61	4.462	4.53	314	10	05.3875	5	5324	8	3.4597	4	5314	0.2	265
0.2067	10	59.46	1383.70	3.254	4.69	959	10	0.3571	5	1868	1	7.9854	4	6959	0.3	3275
0.3945	10	01 48	1321.47	2.314	4.84	144	96	5.0125	4	.8767	1	7.5572	4.	8444	0.4	529
0.5658	11	24.81	1263.53	1.680	4.99	909	91	6713	4	5925	-	7 1603	4	9909	0.6	5404
0.7227	11	56.81	1216.32	1.185	5.11	247	87	7 9742	4	3468	6	5.8187	5	1124	0.5	806
0.8669	11	88 21	1175.60	0.862	5,21	92	84	4.3824	4	1303	6 5125		5	2192	11	400
1 0000	12	22 12	1136.51	0 742	5 32	232	81	1 3458	3	9218	6	62196 5		3232	1.4	162
	1 14	22.12		·····	1	~~				5.5210		0.2190		3.3232		

A Peer Revieved Open Access International Journal

www.ijiemr.org

Table 2 (b) Binary Liquid Mixture - I: 1 2-Dichloroethene + O - Cresol at Temperature 203 K - 208 K																
313 K,318 K Some related acoustic parameter																
Mole		πį x 106		Нx	10 ³	ΔG	x 10 ⁻	Z	c 10 ⁶	τx	10-	α		(a/f ²)		XU X
fraction 1.2-DCH	of E	N.m ⁻ 2		J.m	ol-1	20 KJ.1	mol ⁻¹	Kg 1	.m²s⁻	sec		Np.m	-1	x10 ⁻¹⁴ Np.m ⁻¹ s	-	10-3
-,														2		
202 K																
303 K														+	•	
0.0000	9	96.6741	98.7	729	0.1	144	1.54	50	3.77	73	200.	3171	- 58	8.9358	0.	0000
0.2067	9	21.3874	89.0	893	0.1	137	1.51	59	3.17	75	177.	0712	41	1.1335	-0	.0099
0.3945	8	47.3256	79.0	280	0.1	129	1.49	41	2.574	44	150.	0320	28	8.3080	-0	.0163
0.5658	7	63.3337	69.1	538	0.1	121	1.47	59	2.02	66	123.	2932	19	9.1133	-0	.0195
0.7227	6	78.3326	58.8	3909	0.1	109	1.46	42	1.50	27	94.8	146	12	2.5055	-0	.0157
0.8669	5	74.9586	47.9	359	0.1	096	1.45	75	1.014	41	66.0	624	7.	5995	-0	.0084
1.0000	4	74.5863	37.9	0732	0.1	080	1.45	31	0.64	81	43.5	846	4.	3865	0.	0000
308 K	308 K															
0.0000	9	19.6741	91.6	506	0.1	157	1.52	08	3.1	887	171.	0802	4	46.5521	0.	0000
0.2067	8	45.6402	82.2	2050	0.1	150	1.49	09	2.6	543	149.	7264	3	32.0454	-0	.0089
0.3945	7	69.6716	72.4	168	0.1	142	1.46	82	2.12	223	125.	2681	- 2	21.6903	-0	.0152
0.5658	6	93.2301	63.1	227	0.1	133	1.44	85	1.6	595	102.	3549	1	14.4680	-0	.0186
0.7227	6	08.3917	53.0	946	0.1	122	1.43	55	1.20	016 76.9		9303		9.2004		.0146
0.8669	5	27.1225	44.1	882	0.1	109	1.42	71 0.3		487	56.1	601	1	5.8173	-0	.0074
1.0000	4	67.3477	37.6	5117	0.1	094	1.42	07	0.6	269	42.8	731	3	3.8578	0.	0000
313 K																
0.0000	:	850.7017	85.	1671	0.	1170	1.49	965	2.73	309	148	3.2558	3	37.2686	0	0.0000.
0.2067	1	769.1025	74.	8471	0.	1164	1.46	559	2.13	388	122	2.1476	2	24.0572	-	0.0079
0.3945		689.6741	65.	1421	0.	1155	1.44	23	1.61	187	96.	7951	1	15.3521	-	0.0141
0.5658		614.6679	56.	0282	0.	1146	1.42	212	1.24	473	78.	0102	1	0.0406	-	0.0176
0.7227	:	541.2203	46.	9877	0.	1135	1.40	070	0.92	232	59.	9778	6	5.4974	-	0.0135
0.8669	4	482.2801	40.	4529	0.	1123	1.39	68	0.69	998	47.	0449	4	4.3832	-	0.0066
1.0000	4	467.6144	37.	4102	0.	1108	1.38	89	0.62	267	43.	5760	3	3.5063	0	0000.
318K																
0.0000	Ţ -	788.3695	78.	4245	0	.1185	5 1.	472	2.19	925	120	.4552	2	27.9497	(0.0000
0.2067		692.3154	68.	1871	0	.1178	3 1.	441	1.57	754	91.	1027	1	6.4951	-	0.0069
0.3945		610.6702	58.	4021	0	.1170) 1.	416	1.13	318	68.	5888	9	9.94797	-	0.0129
0.5658	:	535.3820	49.	0251	0	.1160) 1.	394	0.83	322	52.	7916	6	5.17716	-	0.0166
0.7227	4	477.6712	41.	0244	0	.1149	1.	378	0.63	332	41.	7754	4	4.08325	-	0.0124
0.8669	4	442.6841	36.	4612	0	.1137	1.	366	0.56	574	38.	7568	3	3.24322	-	0.0058
1.0000	4	460.3523	37.	2572	0	.1122	2 1.	357	0.61	135	43.	3867	3	3.11637	0	0.0000
L			1		I	 1	 Coble	3(2)		I		1		L	

Binary Liquid Mixture – I: 1,2-Dichloroethene + P - Cresol at Temperature 303 and 308 K and Density, Ultrasonic Velocity, Viscosity and some related acoustic parameters

A Peer Revieved Open Access International Journal

www.ijiemr.org

Molefrac	tion	Densit	y Veloci	y Vis	cosity	βx	<u>V</u> _m x 10	0 ⁻ R x 10 ⁻³	W x10 ⁻⁶	L _f X	V _f x 10⁻7
of		ρ	U	ļη	x 10 ⁻	10-10	5	m ^{10/3} s	⁻ m ³ .mol ⁻¹	1 10-11	
1,2-DCE		Kgm ⁻⁹	ms ⁻¹	2		kg-1	m²/mc	of 1/3.mol	(N/m²)*	" m	m²/mol ⁻
				Ns/	m-	m s ²	1	1			1
303 K											
0.0000	10	26.42	1473.56	7.275	4.48	3682	105.3467	5.5642	8.5013	4.3952	0.0957
0.2084	10	62.63	1397.53	6.096	4.81	183	99.9562	5.1871	7.9846	4.5547	0.1158
0.3969	10	97.05	1335.36	4.912	5.11	18	95.2424	4.8681	7.5440	4.6914	0.1592
0.5683	11	32.80	1281.75	3.841	5.37	732	90.8480	4.5805	7.1448	4.8099	0.2224
0.7247	11	66 94	1239.62	2.827	5.57	766	86.9596	4.3359	6.8028	4.9001	0.3090
0.8681	12	01.68	1205.76	1.826	5.72	2386	83.3504	4.1177	6.4963	4.9643	0.4112
1.0000	12	36.67	1175.05	0.830	5.85	64	80.0132	3.9190	6.2158	5.0215	0.5302
308 K			I					I	I	I	
0.0000	10	22.54	1457.81	6.289	4.60	016	105.7464	5.5654	8.5028	4.4941	0.1352
0.2084	10	58.22	1381.49	5.124	4.95	514	100.3757	5.1889	7.9869	4.6617	0.1703
0.3969	10	92.11	1322.56	4.097	5.26	536	95.6773	4.8702	7.5469	4.8064	0.2282
0.5683	11	27.27	1264.91	3.121	5.54	437	91.2977	4.5829	7.1481	4.9329	0.3041
0.7247	11	60.82	1222.36	2.328	5.76	5549	87.4212	4.3386	6.8065	5.0303	0.4045
0.8681	11	95.16	1187.25	1.538	5.93	359	83.8069	4.1190	6.4980	5.1042	0.5271
1.0000	12	29.51	1155.56	0.772	6.09	909	80.4792	3.9199	6.21707	5.1704	0.6582
313K		I	·				I	ľ	ľ		
0.0000	10	018.64	1442.12	5.259	9 4.7	203 1	06.1513	5.5666	8.5043	4.5951	0.1822
0.2084	10	053.78	1365.5	4.181	l 5.0	894 1	00.8018	5.1907	7.9894	4.7713	0.2306
0.3969	10	087.14	1302.61	3.278	3 5.4	210 9	96.1192	4.8724	7.5498	4.9243	0.3046
0.5683	11	121.73	1248.1	2.47	5 5.7	228	91.7530	4.5853	7.1513	5.0596	0.4022
0.7247	11	154.70	1204.66	1.825	5 5.9	676	37.8881	4.3406	6.8092	5.1666	0.5189
0.8681	11	188.40	1169.25	1.222	2 6.1	549 8	34.2856	4.1215	6.5014	5.2471	0.6456
1.0000	12	222.12	1136.51	0.742	2: 6.3	348 8	30.9658	3.9218	6.2196	5.3232	0.7856
		I			_	I		1			
318 K			1426.54	4.2.2			005014	5.5.670	0.50(1	4 (000)	0.0016
0.0000		014.72	1420.04	4.23	4.8	420	01.2244	5.1027	8.5061	4.0983	0.2315
0.2084		049.31	1349.04	3.30	2 5.5	2191	06 5670	0.192/ 1 0740	7.5520	4.8834	0.2945
0.3969		16 15	1200.41	2.460	5 50	003	0.0078	4.0740	7 1546	5 1900	0.5855
0.3683		110.15	1187.4	1 34	61	747	88 3553	4 3427	6 8121	5 3052	0.6341
0.7247		181.63	1151.21	0.944	63	857	34.7705	4.1237	6.5045	5 3951	0 7752
1 0000	11	214 70	1117.47	0.69	6.5	926	31.4604	3,9236	6,2221	5,4818	0.9202
1.0000	1 1										

Table 3 (b)

Binary Liquid Mixture – I: 1,2-Dichloroethene + P - Cresol at Temperature 303 K, 308 K, 313 K,318 K Some related acoustic parameter

A Peer Revieved Open Access International Journal

www.ijiemr.org

Mole	πįx 10 ⁶ of Nm ⁻			H x 10 ³ ΔG x 1 J mol ⁻¹ 20		x 10 ⁻	Z	10 ⁶	τx	10-	a	-1	(α/f^2)		20 X	
1.2-DCE	01	2 1 N.m ⁻		J.mo	01-1	KJ.r	nol-1	Кg 1	.m²s⁻	sec	.	Np.m	•	x10 ⁻¹⁴ Np.m ⁻¹	s-	10-5
1,2-002						110.1				3.00	, 			2		
303 K																
000 11																
0.0000	1	008.4782	106	.3211	0.1	149	1.51	24	4.352	22	233.	3900	6	2.9331	0	.0000
0.2084	9	81.3546	98.0	925	0.1	145	1.48	50	3.91	53	221.	4407	40	6.5723	-(0.0197
0.3969	9	38.3565	89.3	714	0.1	139	1.46	49	3.34	79	198.	1138	33	3.7985	-(0.0314
0.5683	8	76.8701	79.3	104	0.1	132	1.45	19	2.73	52	169.	3844	2	3.6022	-(0.0347
0.7247	7	96.6066	69.2	726	0.1	123	1.44	55	2.102	20	133.	9952	10	6.5522	-(0.0278
0.8681	6	72.1296	56.0	223	0.1	112	1.44	89	1.393	35	91.3	287	10	0.1318	-(0.0148
1.0000	4	74.5863	37.9	732	0.1	101	1.45	31	0.64	81	43.5	846	4.	3865	0	.0000
308 K																
0.0000	9	46.9960	100	.1414	0.1	164	1.49	06	3.85	86	209.	1589	52	2.4786	0	.0000
0.2084	9	17.2774	92.0	723	0.1	159	1.46	19	3.382	28	193.	4941	31	7.6570	-(0.0188
0.3969	8	73.8456	83.6	072	0.1	153	1.44	04	2.87	53	172.	2671	2	7.0411	-(0.0305
0.5683	8	09.6384	73.0	191	0.1	145	1.42	58	2.30	72	145.	1395	1	8.7550	-(0.0339
0.7247	7	37.3623		101	0.1	135	1.41	89	1.789	96	115.	6907	13	3.0005	-(0.0271
0.8681	6	29.5915	64.4	011	0.1	123	1.41	89	1.21	72	81.0	180	8.	1026	-(0.0138
1.0000	4	67.3477	37.6	041 117	0.1	112	1.42	07	0.62	59	42.8	731	3.	8578	0	.0000
														I		
313 K																
0.0000	—	002 5565	02	69.45	0	1170	1.4/	500	2.20	000	101	2661		2 2 2 0 0		0000
0.0000		844 5410	85	1212		1170	1.40	200	2.50	271	164	1949		0 5476	`	0.0170
0.2004		706 0152	76	5002		1165	1.4	161	2.02	502	142	7225		0 7470	·	0.0207
0.5683		735 1506	67	4522		1156	1.4	000	1.00	205	145	5694		1 2177	·	0.0297
0.7247		665 0287	58	5272	0	1145	1.40	210	1.00	521	05.0	2520		7038		0.0262
0.8681		572 4926	48	2529	0	1133	1.3	205	1.00	21	67.1	7742	6	1146		0.0134
1.0000		467.6144	37	8608	0.	1121	1.38	389	0.62	267	43.5	5760	3	.5063	(0.0000
318K																
SIGK																
0.0000		806.5557	85.	.9477	0.	1190	1.	447	2.73	319	151	.3292	3	2.8291	(0.0000
0.2084		764.6689	77.	4108	0.	1183	1.	416	2.30	027	134	.8235	2	2.4295	-	0.0168
0.3969		707.4845	68	3202	0.	1174	1.	392	1.85	524	113	.7906	1	5.0969	.	0.0287
0.5683		650.5489	59	9912	0.	11658	1.	374	1.46	594	94.3	3044	1	0.2357	-	0.0320
0.7247		583.3771	51	5445	0.	1154	1.	363	1.10	89	73.8	8024	6	5.8227	.	0.0250
0.8681		513.2278	43	5065	0.	1142	1.	360	0.80)37	55.1	1702	4	.4826	.	0.0124
1.0000		462.8056	37.	7003	0.	1131	1.	357	0.61	35	43.3	3867	3	.1163	(0.0000
L													1			

A Peer Revieved Open Access International Journal

www.ijiemr.org

A Peer Revieved Open Access International Journal

www.ijiemr.org

Results and Discussions

Ultrasonic velocity(u), viscosity(η) and density(ρ) were measured at a fixed frequency of 2MHz for the whole composition of 1,2 Dichloroethane at four different temperatures, 303.15k,308.15k,303.15k and 318.15k, are given in tables (3.1(a).3.2(a),3.3(a)) .The other physical properties such as molar volume, adiabatic compressibility, mean free length, free volume, acoustic impedance, Rao's constant are calculated with the experimental data.

The variation of sound velocity with mole fraction of 1,2Dichloroethane at four different temperatures is shown in Fig(3.1.1,3.2.1,3.3.1). The sound velocity decreases as the mole fraction of 1,2Dichloroethane increases. The similar trends are observed for the system at all the four temperature Density (ρ) is the measure of solvent- solvent interactions. Density increases with concentration indicates the increase in solvent- solvent and solvent- solute interactions whereas decrease in density indicates the lesser magnitude of interactions. The decrease in viscosity values of mixture could be explained by the strong electrostatic interactions between the molecules[6].For all the three mixtures the same trend is observed.

The adiabatic compressibility increased with increase in temperature. This leads to structural reorientation of particles which increases the compressibility[7].It is observed that in all the mixtures the molar volume decreases with increasing 0.6 0.8 1 Molefraction of 1,2-Dichloroethane

the temperature and also with increase in the temperature[8]. It is clear that the interaction become weaker at higher temperatures . The Rao's constant (R) and Wada's constant (W) for the three systems at different temperatures are tables presented in (3.1(a),3.2(a),3.3(a)).The corresponding plots of Rao's constant vs. molefraction and Wada's constant vs. mole fraction are respectively given in figures (3.1.23, 3.2.23, 3.3.23, 3.1.24, 3.2.24, 3.3.24)) for all the three mixtures. The space between the molecules is decreasing with increase temperature. This the of behaviour of W and R, supports the possibility of weak interactions between molecules of liquid mixture the components[9]. In the present study the intermolecular free length (Lf) follows the trend as that of Adiabatic same Compressibility (βadThe free volume values are calculated and presented in tables(3.1(a), 3.2(a), 3.3(a)) for the three binary mixtures and the corresponding plots of free volume vs. mole fraction are given in fig(3.1.17,3.2.17,3.3.17). Thus increase in the value of free volume (Vf) decreases the intermolecular distance, making relatively less gap between the molecules[10]

In the present study the internal pressure values are decreased with an increase in the temperature for all the three binary mixtures and are presented in the tables (3.1(b), 3.2(b), 3.3(b)). It can be concluded that the decreasing trend suggests the strong interactions among the molecules of components of the system[11]. Gibb's free energy decreases with increase in

A Peer Revieved Open Access International Journal

concentration which confirms the hydrogen bonding formation in binary liquid mixtures [12].

The decreasing values of acoustic impedance (Z), decreases the intermolecular distance, making relatively less gap between the molecules.[13]

The relaxation time (τ) values decrease with increase of mole fraction of 1,2Dichloroethane. This may be account for the decrease of dielectric constant of the medium and change of intermolecular and intramolecular interactions between the molecules [14]. In the present study ,the absorption coefficient values decrease with increase in the mole fraction of first component in the three mixtures[15]. The corresponding plots of molecular interaction vs. mole fraction of the first component 1,2 Dichloroethane are given in fig(3.1.27,3.2.27,3.3.27). The trend is negative and negative values are increased up to 0.6 molefraction of 1,2dichloroethane and then increases.

Conclusion

The ultrasonic velocity, density, viscosity and other related parameters were calculated. The existence of type of molecular interactions in solute-solvent is confirmed from the U, ρ , β ad, Lf, Z, Vm, R, W, η , π and Vf data. All the experimental determinations of acoustic parameters are strongly correlated between1,2 Dichloroethane and o cresol p cresol and m cresol.

References

1. Hammaker, Robert M., Robert M. Clegg, Larry K. Patterson, Paul E. Rider, and Steven L. Rock. "Hydrogen-bonded dimers and the 2.86-. mu. band in alcohols." The Journal of Physical Chemistry 72, no. 5 (1968): 1837-1839.

2. W. Lin and S. J. Tasy, J. Phys. Chem 74, 1037 (1970).

3. Pimentel, George C., and Aubrey L. McClellan. "The hydrogen bond." (1960).

4. Hobbs, M. E., and W. W. Bates. "Intermolecular Interaction in Liquid Dimethylformamide and its Manifestation in Raman Spectra." J. Am. Chem. Soc 74 (1952): 746.

5. Lagemann, R. T., and W. S. Dunbar. "Relationships between the velocity of sound and other physical properties of liquids." The Journal of Physical Chemistry 49, no. 5 (1945): 428-436. M.V.Kaugud and 6. K.J.Patil,Austica,vol.28,p.130,1973 Vijayalakshmi, V. Lalitha 7. and R.Gandhimathi, Journal of Pure and Applied Ultrasonics,vol.28,pp.154-156,2006. 8. Bamanga, Diikko AbdulAziz, Eyube Edwin Samson, Pascal Timtere, and Oriolowo Niyi Zara. (2015). 9. Rao, G. Ganapathi, M. V. K. Mehar, K. V. Prasad, and K. Samatha. Int J Innov Res SciEngTechnol 4 (2015): 5512-20. 10. Saxena, C.M., Saxena, A. and Shukla, N.K. Chemical Science, 4(4), pp.955-960. 11. Aguila-Hernandez, J., A. Trejo, B. E. Garcia-Flores, and R. Molnar. "Fluid Phase Equil." (2008): 172. 12. P.B. Sandyasri. Thesis, anu. 39(16), July 2014. 13.Narendra, Κ., ChSrinivasu, ChKalpana, and P. Naravanamurthy. of thermal Journal analysis and calorimetry 107, no. 1 (2012): 25-30. 14. Pawar, N. R., O. P. Chimankar, V. D. Bhandakkar, and N. N. Padole. : Materials Science and Engineering, vol. 42, no. 1, p.

www.ijiemr.org

012030. IOP Publishing, 2012.