COPY RIGHT

ELSEVIER SSRN

2021 IJIEMR.Personal use of this material is permitted. Permission from IJIEMR must
be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. No Reprint should be done to this paper, all copy right is authenticated to Paper Authors

IJIEMR Transactions, online available on 22th March 2021. Link
https://ijiemr.org/downloads/Volume-10/ISSUE-3
DOI: 10.48047/IJIEMR/V10/I03/89
Title: Description of the set of strictly regular quadratic bistochastic operators and examples
Volume 10, Issue 03, Pages: 423-432.
Paper Authors
Dilfuza Tashpulatova

USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER
To Secure Your Paper As Per UGC Guidelines We Are Providing A Electronic Bar Code

International Journal for Innovative Engineering and Management Research
 A Peer Revieved Open Access International Journal

Description of the set of strictly regular quadratic bistochastic operators and examples

Dilfuza Tashpulatova

Teacher of Shakhrisabz branch of Tashkent State Pedagogical University named after Nizami

Abstract

The present paper focuses on the dynamical systems of the quadratic bistochastic operators (QBO 's) on the standard simplex. We show the character of connection of the dynamical systems of a bistochastic operator with the dynamical systems of the extreme bistochastic operators. Moreover, we prove that almost all quadratic bistochastic operators is strictly regular and give description of the strictly regular quadratic bistochastic operators in the convex polytope of QBO's. Furthermore, convexity of the set of strictly regular QBO's and its density in the set of QBO's is proven and nontrivial examples to strictly regular bistochastic operators are given.

Keywords: Affine hull, convex hull, simplex, extreme point, relative interior of a convex set, fixed point, periodic point, stochastic operator, bistochastic operator, strictly regular stochastic

 operator.
Introduction

A lot of genetic processes in population genetics can be associated with some nonlinear dynamical systems. Dynamical systems which are generated by quadratic stochastic operators (QSOs) appear many problems of mathematical genetics. Generally, dynamical systems of QSOs are very complex and difficult. Therefore, dynamical systems of certain type QSOs are investigated. Quadratic bistochastic operators are one of type of QSOs. An interesting property of dynamical systems of QBOs is that trajectory of any initial point converges some periodic orbit. In other words, ω-limit set of any initial point is always finite.

The present paper is appeared in the intersection of several branches of mathematics like the theory of convex polytopes, majorization theory and theory of QSO's. In the paper, we give algebraic expression of the relative interior points of convex polytopes and prove a theorem about periodic points of bistochastic operators, furthermore, we prove strictly regularity of all operators in the relative interior of QBOs' poytope and give non trivial examples to strictly regular quadratic bistochastic operators.

2. Preliminaries

In this section we provide some important definitions in the theory of convex polytopes,
majorization theory, and theory of QSOs in order to give theorems in next sections. Therefore, we recall some concepts in affine geometry and theory of dynamical systems in this section. Initially, we define affine structure on R^{d}. In the meantime, we do not differ the concept of point from vector in R^{d} and this does not bring confusions.

The combination $\lambda_{1} a_{1}+\lambda_{2} a_{2}+\ldots+\lambda_{s} a_{s} \quad$ is called affine (convex) combination of $a_{1}, a_{2}, \ldots, a_{s} \in R^{d}$ when $\sum_{j=1}^{s} \lambda_{j}=1$ where $\lambda_{j} \in R\left(\lambda_{j} \in R_{+}\right)$for $j=\overline{1, s}$. Nonempty subset $L \subset R^{d}$ is called affine subspace of R^{d} if it is closed w.r.t. affine combinations of its elements. Clearly, nonempty intersection of affine spaces is also an affine space, whence affine hull, $\operatorname{Aff}(M)$ of a subset M of R^{d} is defined as the intersection of all affine subspaces which includes M. It can be easily proved that
$\operatorname{Aff}(M)=\left\{\sum_{i=1}^{t} \mu_{i} z_{i} \cdot \mu_{i} \in R, t \in N, \sum_{i=1}^{t} \mu_{i}=1, z_{i} \in M, i=\overline{1 ; t}\right\}(2.0 .1)$
The points $a_{1}, a_{2}, \ldots, a_{r} \in R^{d}$ is called affine dependent if one of them lies in the affine hull of the others. Otherwise, $a_{1}, a_{2}, \ldots, a_{r}$ is

International Journal for Innovative Engineering and Management Research
 A Peer Revieved Open Access International Journal

called affine independent. Maximal affine independent system of elements of affine space L is called affine basis of L. Evidently, number of elements in the basis does not depend on its choosing. Next small cardinality from the cardinality of the affine basis is called affine dimension of L and denoted by $\operatorname{dim}(L)$. A subset $Q \subset R^{d}$ is called convex if it is closed w.r.t. convex combinations of its elements and empty set is considered as convex set by the definition. Intersection of convex sets is also convex, whence convex hull, $\operatorname{conv}(M)$, of a given nonempty subset
$M \subset R^{d}$ is defined as the intersection of all convex sets which includes it. Obviously,
$\operatorname{conv}(M)=\left\{\sum_{i=1}^{t} \mu_{i} z_{i}: \mu_{i} \in R_{+}, t \in N, \sum_{i=1}^{t} \mu_{i}=1, z_{i} \in M, i=\overline{1 ; t}\right\}$.
. A point $v \in Q$ is called extreme point of Q if $\lambda x+(1-\lambda) y=v, \lambda \in(0 ; 1), \quad x, y \in Q$ implies $x=y=v$ and the set of all extreme points of Q is denoted by $\operatorname{Extr}(Q)$. Convex hull of finite set is called polytope. Simplex is defined as the convex hull of affine independent vectors of R^{d}. The following set is called standard ($d-1$) - dimensional simplex;

$$
S^{d-1}=\left\{x=\left(x_{1}, x_{2}, \ldots, x_{d}\right) \in R^{d}: \sum_{i=1}^{d} x_{i}=1, x_{i} \geq 0, i=\overline{1 ; d}\right\} .
$$

In the paper we consider l_{1} norm in R^{d}, namely $\quad\|x\|=\left|x_{1}\right|+\left|x_{2}\right| \ldots+\left|x_{d}\right|$ for $x=\left(x_{1}, x_{2}, \ldots, x_{d}\right) \in R^{d}$. Then a metrics in Aff (M) can be induced from this norm where $M \subset R^{d}$ nonempty subset. The interior of M w.r.t. this induced metric is called relative interior of M and it is denoted by $r i(M)$. We mention that relative interior of a set does not depend of choosing norm in R^{d} because of all norms in R^{d} are mutually equivalent, so theygenerate the same topology.

For any $x=\left(x_{1}, x_{2}, \ldots, x_{m}\right) \in S^{m-1}$ due to [1], we define $x_{\downarrow}=\left(x_{[1]}, x_{[2]}, \ldots, x_{[m]}\right)$, here $x_{[1]} \geq x_{[2]} \geq \ldots \geq x_{[m]}$ - non-increasing rearrangement of coordinates of x. The point x_{\downarrow} is called rearrangement of x by nonincreasing. For two elements x, y taken from the simplex S^{m-1}, we say that the element x majorized by y (y majorates x), and write $x \prec y$ (or $y \succ x$) if the following hold:

$$
\sum_{i=1}^{k} x_{[i]} \leq \sum_{i=1}^{k} y_{[i]}
$$

for any $k=\overline{1 ;(m-1)}$.
Geometric illustration can be given to majorization as follows: we call permutation vector of y such vector that generate from permutating places of coordinates of y and let Π_{y} be the convex hull of all permutation vectors of y. Then due to [1] the following hold

PROPOSITION 2.1. [1]. $x \prec y$ if and only if $x \in \Pi_{y}$. Furthermore, all permutation vectors of y are extreme points of Π_{y}.

A continuous operator $V: S^{m-1} \rightarrow S^{m-1}$ is called m-dimensional stochastic operator. We call an operator $V: S^{m-1} \rightarrow S^{m-1}$ quadratic stochastic operator (QSO) if it has the following form:

$$
V(x)_{k}=\sum_{i, j=1}^{m} p_{i j, k} x_{i} x_{j}, \text { for } k=\overline{1 ; m}
$$

where $x=\left(x_{1}, x_{2}, \ldots, x_{m}\right) \in S^{m-1}$,

$$
\begin{aligned}
& p_{i j, k}=p_{j i, k} \geq 0, \quad \sum_{r=1}^{m} p_{i j, r}=1 \quad \text { for } \\
& \forall i, j, k \in\{1,2, \ldots, m\}=N_{m} . \quad \text { A quadratic }
\end{aligned}
$$ stochastic operator is called evolution operator in population genetics and the coefficient $p_{i j, k}$ is called heredity coefficients of this operator.

Clearly, any QSO is a stochastic operator. By the form of QSO we deduce that any QSO associated with unique cubic stochastic matrix of certain type $\left\{p_{i j, k}\right\}$ in the space of real cubic matrices $M_{n}^{c}(R)$. Whence, according to this correspondence we can define (convex) addition between QSOs.

DEFINITION 2.1. A stochastic operator V is called bistochasticif $V(x) \prec x$, for
$\forall x \in S^{m-1}$. A bistochastic QSO is calledquadratic bistochastic operator (QBO). The set of all m - dimensional QBOs is denoted by B_{m}.

According to the definition of majorization, B_{m} is closed set and it is also closed w.r.t. convex sum of its elements, therefore, it is closed, convex subset of $M_{n}^{c}(R)$. Extreme points of B_{m} is called extreme QBO and some necessary conditions and some sufficient conditions for extremity of a QBO was found in the doctoral thesis of R.Ganikhodjaev [2], but any criterions did not find so far.

By the definition of majorization we have $V\left(\left(\frac{1}{m}, \frac{1}{m}, \ldots, \frac{1}{m}\right)\right)=\left(\frac{1}{m}, \frac{1}{m}, \ldots, \frac{1}{m}\right)$ for a QBO V, in other words barycenter of the simplex is a fixed point of any bistochastic operator. The following theorem characterizes main properties of bistochastic operators and B_{m}.

THEOREM 2.1. [2] Let
$V: S^{m-1} \rightarrow S^{m-1}$ be a quadratic bistochastic operator then:
i) $\left|\omega_{V}\left(x_{0}\right)\right|<\infty$, for $\forall x_{0} \in S^{m-1}$, where $\omega_{V}\left(x_{0}\right)\left(\omega\right.$-limit set of $\left.x_{0}\right)$ is the set of limit points of $\left\{V^{n}\left(x_{0}\right)\right\}_{n=0}^{\infty}$;
ii) $P \circ V$ is quadratic bistochastic operator for any coordinate permutation operator $P: S^{m-1} \rightarrow S^{m-1}$.
iii) $\operatorname{Extr}\left(\mathrm{B}_{m}\right)<\infty$ for $m \in N$;

REMARK 2.1. Coordinate permutation operator is such operator that it maps a vector to its permutation vector which permutation order of places of coordinates does not change when vector is changing.

In the view of theory of dynamical systems, the dynamical system of a certain operator may have been very strange behavior. More simple dynamical system among such strange dynamical systems is that every trajectory in the dynamical system converge a point. In the theory of QSO's, operators which have such simple dynamical system are said regular.

DEFINITION 2.2. A QSO is calledregular if its trajectories always converge. A regular QSO is calledstrictly regular if it has unique fixed point.

Hence the dynamical system of strictly regular QSO is simpler than dynamical system of regular ones. Some properties of regular QSO's are studied in ([5]-[8]). In particular, the following simple criterion for regularity of a bistochastic operator is given in [7] and [8].

THEOREM 2.2. ([7], [8]) Let $V: S^{m-1} \rightarrow S^{m-1}$ be a bistochastic operator, then V is regular if and only if it does not have any order periodic points except fixed points.

Obviously, the unique fixed point of a strictly regular bistochastic operator which is said in the definition is the barycenter of the simplex. Hence by the Theorem 2.2 we have quickly the following simple criterion for strictly regularity of the bistochastic operators.

PROPOSITION 2.2. Quadratic bistochastic operator is strictly regular iff it

International Journal for Innovative Engineering and Management Research

A Peer Revieved Open Access International Journal
have not any order periodic points except its
unique fixed point $\left(\frac{1}{m}, \frac{1}{m}, \ldots, \frac{1}{m}\right)$.

3. Main results

3.1. On the relative interior of convex

polytopes. In this subsection we recall some affine properties of convex sets and give algebraic expression of the points in the relative interior of the convex polytopes.

THEOREM 3.1. Let $f_{1}, f_{2}, \ldots, f_{s}$ be a points of R^{d} such that none does not lie convex hull of the others and $Q=\operatorname{conv}\left\{f_{1}, f_{2}, \ldots, f_{s}\right\} . \quad$ Then

We use several lemmas in proving the theorem. For the sake of brevity we also use the following notations: let $A \subset R^{d}, x, y \in R^{d}$ and $\quad \lambda \in R \quad$ then $A+x:=\{a+x: a \in A\}$, $\lambda A:=\{\lambda a: a \in A\}$,
$[x ; y]:=\{\mu x+(1-\mu) y: \mu \in[0 ; 1]\}$.
Similarly, half open $[x ; y),(x ; y]$ and open $(x ; y)$ intervals is defined like $[x ; y]$.

LEMMA 3.1. Let Q be a nonempty convex subset of R^{d}, then $r i(Q) \neq \varnothing$.

PROOF. We consider two cases in order to prove the lemma.

Special case: In this case we prove the lemma for the simplexes. Let $S \subset R^{d}$ be a d_{0} - dimensional simplex (clearly $d_{0} \leq d$). Then according to the definition of simplex, there are affine independent $v_{1}, v_{2}, \ldots, v_{d_{0}+1} \in R^{d}$ such that $S=\operatorname{conv}\left\{v_{1}, v_{2}, \ldots, v_{d_{0}+1}\right\} . \quad$ Hence $v_{1}, v_{2}, \ldots, v_{d_{0}+1}$ is an affine basis for $\operatorname{Aff}(S)$ according to (2.0.1), so any element of
$\varphi^{-1}(\mathrm{G})=\left\{\sum_{j=1}^{d_{0}} \mu_{j} v_{j}:\left(\mu_{1}, \mu_{2}, \ldots, \mu_{d_{0}}\right) \in \mathrm{G}, \sum_{j=1}^{d_{0}} \mu_{j}=1\right\}$
is open set in $\operatorname{Aff}(S)$. Now, note that $\varphi^{-1}(\mathrm{G}) \subset S, \quad$ moreover $\varphi^{-1}(\mathrm{G})$ is open. Therefore, $\varphi^{-1}(\mathrm{G}) \subset r i(S)$ by the definition of relative interior, thus $r i(S) \neq \varnothing$.

General case: Let Q be a nonempty convex subset and $d_{0}=\operatorname{dim}(A f f(Q))$. In $d_{0}=0$ there is nothing to prove. So, we can assume $d_{0}>0$. Then there is $e_{1}, e_{2}, \ldots, e_{d_{0}+1} \in Q$ which $\left\{e_{1}, e_{2}, \ldots, e_{d_{0}+1}\right\}$ is a affine basis for $\operatorname{Aff}(Q)$ by the expression (2.0.1). Let us consider the simplex $S:=\operatorname{conv}\left\{e_{1}, e_{2}, \ldots, e_{d_{0}+1}\right\}$. Then $S \subset Q$ by the convexity of Q. So we have $\operatorname{Aff}(S)=\operatorname{Aff}(Q) \quad$ by the Aff $(S) \subset A f f(Q)$ and $\operatorname{dim}(\operatorname{Aff}(S))=d_{0}=\operatorname{dim}(A f f(Q))$.
According to the proved statement in the special case we have $r i(S) \neq \varnothing$. Hence $\exists x_{0} \in S$ and open neighborhood $O_{x_{0}}$ of in R^{d},

International Journal for Innovative Gngineering and Management Research
 A Peer Revieved Open Access International Journal

such that $O_{x_{0}} \cap \operatorname{Aff}(Q) \subset Q$. Whence i) $\quad x \in \operatorname{ri}(Q)$;
according to $\operatorname{Aff}(S)=\operatorname{Aff}(Q)$ and $S \subset Q$ ii) For $\forall y \in Q /\{x\}$, there is $z \in Q$ such that
we have $O_{x_{0}} \cap A f f(Q) \subset Q$. The last inclusion implies that x_{0} is a relative interior point of Q.

LEMMA 3.2. Let Q be a nonempty

closed convex subset of R^{d}. Then for $x \in \operatorname{ri}(Q)$ and $y \in Q /\{x\}$ the relation $[x ; y) \subset r i(Q)$ holds.

$$
\text { PROOF. Let } x_{\lambda}=\lambda x+(1-\lambda) y
$$ be a point in $(x ; y) . \quad x \in \operatorname{ri}(Q)$ implies existence of such open neighborhood O_{x} of x that $\mathrm{O}_{x}:=O_{x} \bigcap A f f(Q) \subset Q$. . In R^{d}, the continuity of addition and multiplying to scalar is followed that $\lambda O_{x}+(1-\lambda) y$ is open set. Therefore,

$$
\left(\lambda O_{x}+(1-\lambda) y\right) \bigcap \operatorname{Aff}(Q)=\lambda O_{x}+(1-\lambda) y
$$

is open set of $\operatorname{Aff}(Q)$ and convexity of Q implies $\lambda O_{x}+(1-\lambda) y \subset Q$. Whence $x_{\lambda} \in \lambda O_{x}+(1-\lambda) y \subset Q$ implies $x_{\lambda} \in \operatorname{ri}(Q)$.

COROLLARY 3.1. For any nonempty closed convex subset Q of R^{d} we have $Q=r i(Q)$.

PROOF. We get $\forall y \in Q$, then $r i(Q) \neq \varnothing$ by the Lemma 3.1. Hence we can get $\exists x \in \operatorname{ri}(Q)$, thus by the Lemma 3.2 we have $[x ; y) \subset r i(Q)\left(^{*}\right)$. We consider an open ball O_{y} centered at y. Then $O_{y} \cap[x ; y) \neq \varnothing$ and it is subset of $r i(Q)$ by the $\left(^{*}\right)$ relation. Hence, $y \in r i(Q)$. \sqcup

LEMMA 3.3. The following two

 conditions are mutually equivalent for any convex closed set Q :$x \in(y ; z)$.

PROOF. $i) \Rightarrow i i)$: Let $x \in r i(Q)$, then there is $\exists B_{\delta}(x)$ open ball with centered at x which

$$
\begin{equation*}
B_{\delta}(x) \bigcap A f f(Q) \subset Q \tag{3.1.1}
\end{equation*}
$$

We get $\forall y \in Q /\{x\}$. Since $y \neq x$, we have $\|y-x\| \neq 0$. We consider the vector

$$
z=-\frac{\delta}{2\|y-x\|} y+\left(1+\frac{\delta}{2\|y-x\|}\right) x
$$

and show that z is desired vector. Indeed, z belongs to $\operatorname{Aff}(Q)$ as an affine combination of x, y. In the other hand, $\|z-x\|=\frac{\delta}{2}<\delta$, so $z \in B_{\delta}(x)$. Then by the (3.1.1) we have $z \in Q$. But the determination of z implies that

$$
x=\frac{2\|y-x\|}{\delta+2\|y-x\|} z+\frac{\delta}{\delta+2\|y-x\|} y \in(y ; z) .
$$

ii) $\Rightarrow i):$ We assume that $x \in Q$ is a point which satisfies the condition of the second statement. Since $r i(Q) \neq \varnothing$ by the Lemma 3.1 we can choose a point y in $r i(Q)$. Then there exist $\exists z \in Q$ that $x \in(y ; z)$. According to Lemma3.2 $(y ; z) \subset r i(Q)$. Hence we have $x \in r i(Q)$.

With the above three lemmas at hand we can now pass to proving Theorem3.1.

PROOF. (Theorem 3.1) First we show that for any point x in $r i(Q)$ can be represented as a convex combinations of $f_{1}, f_{2}, \ldots, f_{s}$ which the convex representation includes each of f_{j} with positive coefficient. Since Lemma
3.3 we have $f_{j} \notin r i(Q) \quad$ for $j=\overline{1 ; s}$. Therefore, $x \notin \operatorname{Extr} Q$. After that we consider

International Journal for Innovative Engineering and Management Research

A Peer Revieved Open Access International Journal
sequentially the extreme points $f_{1}, f_{2}, \ldots, f_{s}$. Then Lemma 3.3 implies existence of such distinct points $z_{1}, z_{2}, \ldots, z_{s}$ in Q that $x \in\left(f_{j} ; z_{j}\right)$ for $j=\overline{1 ; s}$. Algebraically, the last relations mean $\exists \mu_{1}, \mu_{2}, \ldots, \mu_{s} \in(0 ; 1)$ which

$$
\begin{equation*}
x=\mu_{j} f_{j}+\left(1-\mu_{j}\right) z_{j} \tag{3.1.2}
\end{equation*}
$$

for $j=\overline{1 ; s}$. Then after averaging these $s-$ equations in (3.1.2) we have

$$
\begin{equation*}
x=\frac{1}{s} \sum_{j=1}^{s}\left(\mu_{j} f_{j}+\left(1-\mu_{j}\right) z_{j}\right)=\sum_{j=1}^{s} \frac{\mu_{j}}{s} f_{j}+\sum_{j=1}^{s} \frac{\left(1-\mu_{j}\right)}{s} z_{j} \tag{3.1.3}
\end{equation*}
$$

Since $Q=\operatorname{conv}\left\{f_{1}, f_{2}, \ldots, f_{s}\right\}$, each of z_{j} is a convex combination of extreme points $f_{1}, f_{2}, \ldots, f_{s}$. Symbolically, there is such row stochastic matrix $\left\{v_{j i}\right\}_{j, i=\overline{i j ;}}$ that $z_{j}=\sum_{i=1}^{s} v_{j i} f_{i}$ for $j=\overline{1 ; s}$. After replacing z_{j} in (3.1.3) by the its representations via extreme points we have

$$
\begin{equation*}
x=\sum_{j=1}^{s}\left(\frac{\mu_{j}}{s}+\sum_{k=1}^{s} \frac{\left(1-\mu_{k}\right)}{s} v_{k j}\right) f_{j} \tag{3.1.4}
\end{equation*}
$$

Here $\frac{\mu_{j}}{s}+\sum_{k=1}^{s} \frac{\left(1-\mu_{k}\right)}{s} v_{k j} \geq \frac{\mu_{j}}{s}>0$
(3.1.4) is the desired convex representation for x.

Now we prove remained part of the theorem, namely x is described as a convex combination of all extreme points as $x=\lambda_{1} f_{1}+\lambda_{2} f_{2}+\ldots+\lambda_{s} f_{s}$ with $\lambda_{j}>0$ for $j=\overline{1 ; s}$ then $x \in \operatorname{ri}(Q)$. We do this task using Lemma 3.3. Let $y \in Q /\{x\}$, then $\exists \sigma_{1}, \ldots, \sigma_{s} \in[0 ; 1)$ with $\sum_{i=1}^{s} \sigma_{s}=1$ which
$y=\sum_{i=1}^{s} \sigma_{i} f_{i}$.
We
get
$\varepsilon:=\frac{\min \left\{\lambda_{1}, \ldots, \lambda_{s}\right\}}{2 \cdot \max \left\{\sigma_{1}, \ldots, \sigma_{s}\right\}}>0$
hence $\lambda_{j}-\sigma_{j} \cdot \varepsilon \geq \sigma_{j} \cdot \varepsilon>0$ for $j=\overline{1 ; s}$. Clearly, $\varepsilon<1$ hence all $\delta_{j}:=\frac{\lambda_{j}-\sigma_{j} \cdot \varepsilon}{1-\varepsilon}$ is positive and $\delta_{1}+\ldots+\delta_{s}=1$. Let us consider $z=\delta_{1} f_{1}+\ldots+\delta_{s} f_{s}$. Then $z \in Q$ by the its representation via $f_{1}, f_{2}, \ldots, f_{s}$ and we have

$$
(1-\varepsilon) z+\varepsilon y=\sum_{j=1}^{s}\left(\lambda_{j}-\sigma_{j} \cdot \varepsilon\right) f_{j}+\varepsilon \cdot \sum_{j=1}^{s} \sigma_{j} f_{j}=
$$

Hence we conclude $x \in r i(Q)$ by the second assertion of Lemma 3.3.

3.2. Description of the set of strictly

 regular quadratic bistochastic operators. In this subsection we give the main results of the paper. The following theoremdescribes the nature of the connection of dynamical systems of convex combination with dynamical systems of the operators which attend in that combination and it is the main theorem of the paper.THEOREM 3.2. Let $V_{1}, V_{2}, \ldots, V_{t}$ be m - dimensional bistochastic operators and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{t}$ be positive numbers with $\sum_{i=1}^{t} \lambda_{i}=1$. Then the following holds:
i) $\quad \operatorname{Fix}\left(\sum_{i=1}^{t} \lambda_{i} V_{i}\right)=\bigcap_{i=1}^{t} \operatorname{Fix}\left(V_{i}\right)$;
ii) $\quad \operatorname{Per}_{p}\left(\sum_{i=1}^{t} \lambda_{i} V_{i}\right) \subset \bigcap_{i=1}^{t} \operatorname{Per}_{p}\left(V_{i}\right), \quad$ for $\forall p \in N$, where Fix (V) and $\operatorname{Per}_{p}(V)$ denote the set of fixed points of V and $p-$ periodic points of V with prime period p, respectively.

International Journal for Innovative Engineering and Management Research

A Peer Revieved Open Access International Journal
www.ijiemr.org
iii) Generally, reverse of the inclusion relation in the second statement does
not hold.
PROOF. Without lost of generality we can suppose $t=2$, because proof of the theorem in cases whose value of t is largercan be easily implied (via mathematical induction principle) by this simple case.
i)
$\operatorname{Fix}\left(\lambda_{1} V_{1}+\lambda_{2} V_{2}\right) \supset \operatorname{Fix}\left(V_{1}\right) \bigcap \operatorname{Fix}\left(V_{2}\right)$ is obvious, therefore, showing $\operatorname{Fix}\left(\lambda_{1} V_{1}+\lambda_{2} V_{2}\right) \subset \operatorname{Fix}\left(V_{1}\right) \cap \operatorname{Fix}\left(V_{2}\right) \quad$ is sufficient. Let $x \in \operatorname{Fix}\left(\lambda_{1} V_{1}+\lambda_{2} V_{2}\right)$ that is $\lambda_{1} V_{1}(x)+\lambda_{2} V_{2}(x)=x(* *)$. Then by the bistochasticity of V 1 and V 2 , we have $V_{1}(x), V_{2}(x) \in \Pi_{x}$. But x is extreme point of the convex set Π_{x} by the Proposition2.1, then from the $\left({ }^{* *}\right)$ and definition of extreme point we have $V_{1}(x)=V_{2}(x)=x$.
ii) Let $x_{0} \in \operatorname{Per}_{p}(V)$ and the periodic orbit of x_{0} is denoted with $x_{i}:=V^{i}\left(x_{0}\right)$, herewith $y_{i}=V_{1}\left(x_{i-1}\right), \quad z_{i}=V_{2}\left(x_{i-1}\right)$ for $i=\overline{1 ; p}$, where $V:=\lambda_{1} V_{1}+\lambda_{2} V_{2}$. Bistochasticity of $V, \quad V_{1}, \quad V_{2} \quad$ implies $x_{i}, y_{i}, z_{i} \in \Pi_{x_{i-1}}$ and $\Pi_{x_{0}} \subset \Pi_{x_{1}} \subset \ldots \subset \Pi_{x_{p}}=\Pi_{x_{0}} \quad$ (due to $x_{p}=x_{0}$) by the determining of these sets. Hence, these sets are equal to each other. Proposition 2.1 implies that each of $x_{i}, i=\overline{1 ; p}$ is extreme point of $\Pi_{x_{i}}=\Pi_{x_{0}}$. By the definition of extreme point and according to equality $\lambda_{1} y_{i}+\lambda_{2} z_{i}=x_{i} \in \Pi_{x_{0}}$, we get $y_{i}=z_{i}=x_{i}$, for $i=\overline{1 ; p}$. Thence, trajectory of x_{0} with respect to V, V_{1} and V_{2} is the same and every of them are p - periodic, thus $x_{0} \in \operatorname{Per}_{p}\left(V_{1}\right) \cap \operatorname{Per}_{p}\left(V_{2}\right)$.
iii) We get linear bistochastic operators on S^{2} which are given by their matrices in the standard basis as

$$
P_{1}:=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), P_{2}:=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

It is easily checked that these operators are an example for not holding the reverse relation to the inclusion in the second statement.

REMARK 3.1. It is worth mentioned that in the proof of the above theorem we do not use from quadraticity of the considered operator. Therefore, in the statement of this theorem we claim only bistochasticity of the operator.

COROLLARY 3.2. Let V_{1} be a strictly regular $Q B O$ and V_{2} be a $Q B O$, then $V_{\lambda}=\lambda V_{1}+(1-\lambda) V_{2}$ is a strictly regular $Q B O$ for $\forall \lambda \in(0 ; 1)$. In particular, the set of strictly regular QBOs is convex.

PROOF. According to Proposition 2.2, $\operatorname{Fix}\left(V_{1}\right)=\left(\frac{1}{m}, \frac{1}{m}, \ldots, \frac{1}{m}\right)$ and
$\operatorname{Per}_{p}\left(V_{1}\right)=\varnothing$ for any $p \geq 2$. Then by the Theorem 3.2 we obtain $\operatorname{Fix}\left(V_{\lambda}\right)=\left(\frac{1}{m}, \frac{1}{m}, \ldots, \frac{1}{m}\right)$ and $\operatorname{Per}_{p}\left(V_{\lambda}\right)=\varnothing p \geq 2$. Hence we again apply Proposition 2.2 and have strictly regularity of $V_{\lambda} . \square$

As the mentioned above the set of m dimensional quadratic bistochastic operators, B_{m} is convex, compact (closed and bounded) set. Hence by the Krein-Milmann theorem we have

$$
\mathrm{B}_{m}=\operatorname{conv}\left(\operatorname{Extr}\left(\mathrm{B}_{m}\right)\right)
$$

Similarly, the set of linear bistochastic operators (Birkhoff polytope) is also convex, compact set and celebrated Birkhoff-von Neumann theorem states that extreme points of this set are finite and that are coordinate permutation operators. Obviously, a linear bistochastic operator is also QBO. Now we show that coordinate permutation operators are also extreme points of larger set B_{m}.

LEMMA 3.4. Let Pbe a coordinate permutation operator, then $P \in \operatorname{Extr}\left(\mathrm{~B}_{m}\right)$

PROOF. Firstly, we show that identical operator is extreme QBO. Bistochasticity of identical operator is obvious and let $\lambda V_{1}+(1-\lambda) V_{2}=i d$ for some $\lambda \in(0 ; 1)$, $V_{1}, V_{2} \in \mathrm{~B}_{m}$.
$\lambda V_{1}(x)+(1-\lambda) V_{2}(x)=x \quad$ and $V_{1}(x), V_{2}(x) \in \Pi_{x}$ holds for $\forall x \in S^{m-1}$. x is a extreme point of Π_{x}, thus $V_{1}(x)=V_{2}(x)=x$ by the definition of extreme point. According to arbitrarily choosing of x , we have $V_{1}=V_{2}=i d$.

Let P be a coordinate permutation operator, hence it is invertible and its inverse also coordinate permutation operator, so both of them is QBO . Let $\lambda V_{1}+(1-\lambda) V_{2}=P$ for some $\lambda \in(0 ; 1), V_{1}, V_{2} \in \mathrm{~B}_{m}$. Thence we have $\lambda\left(P^{-1} \circ V_{1}\right)+(1-\lambda)\left(P^{-1} \circ V_{2}\right)=i d$ (both $P^{-1} \circ V_{1}$ and $P^{-1} \circ V_{2}$ is QBO according to the second assertion of Theorem 2.1) and by the extremity of identical operator we obtain $P^{-1} \circ V_{1}=P^{-1} \circ V_{2}=i d$. Hence $V_{1}=V_{2}=P$. \sqcup

We denote the group of m-dimensional coordinate permutation operators by P_{m}. Clearly, $\left|\mathrm{P}_{m}\right|=m!$. We number the elements of P_{m} with $P_{j}, j=\overline{1 ; m!}$. Lemma 3.4 asserts that $\mathrm{P}_{m} \subset \operatorname{Extr}\left(\mathrm{~B}_{m}\right)$ and the third assertion of

Theorem 2.1 states that extreme points of B_{m} is finite. Let $\quad s=\left|\operatorname{Extr}\left(\mathrm{B}_{m}\right) \backslash \mathrm{P}_{m}\right|$ and $\left\{\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{s}\right\}=\operatorname{Extr}\left(\mathrm{B}_{m}\right) \backslash \mathrm{P}_{m}$. Thus $\operatorname{Extr}\left(\mathrm{B}_{m}\right)=\mathrm{P}_{m} \cup\left\{\mathrm{~V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{s}\right\}$ and according to (3.2.1) relation we have $\mathrm{B}_{m}=\operatorname{conv}\left(P_{1}, \ldots, P_{m!}, \mathrm{V}_{1}, \ldots, \mathrm{~V}_{s}\right)$.

THEOREM 3.3. Any operator in $r i\left(\mathrm{~B}_{m}\right)$ is strictly regular.

PROOF. Let $V \in \operatorname{ri}\left(\mathrm{~B}_{m}\right)$ be an operator in the relatively interior of B_{m} then it can be expressed as

$$
V=\sum_{j=1}^{s} \lambda_{j} V_{j}+\sum_{j=1}^{m!} \lambda_{j+s} P_{j}
$$

by the Theorem 3.1 where $\sum_{j=1}^{s+m!} \lambda_{j}=1$ and $\lambda_{j}>0$ for $j=\overline{1 ;(s+m!)}$. Then the first assertion of Theorem 3.2 implies
$F i x(V)=\bigcap_{j=1}^{\dot{b}} F i x\left(V_{j}\right) \bigcap_{j=1}^{m \mid} F i x\left(P_{j}\right) \subset \bigcap_{j=1}^{m} F i x\left(P_{j}\right)=\left(\frac{1}{m}, \frac{1}{m}, \ldots, \frac{1}{m}\right)(3.2 .2)$
and according to the second assertion of Theorem 3.2 we obtain
$\operatorname{Per}_{p}(V) \subset \bigcap_{j-1}^{\dot{S}} \operatorname{Per}_{p}\left(V_{j}\right) \cap \bigcap_{j-1}^{m!} \operatorname{Per}_{p}\left(P_{j}\right) \subset \bigcap_{j-1}^{m{ }^{m}} \operatorname{Per}_{p}\left(P_{j}\right)=\varnothing(3.2 .3)$
for a natural number $p \geq 2$.
According to the Proposition 2.2, the relations (3.2.2) and (3.2.3) implies regularity of V.

REMARK 3.2. We note that Theorem 3.3 is proved via geometrical principles and the proof bases on the Theorem 3.2. This theorem can be also followed by the main theorem of [6] (Theorem 3.1 in that work).

COROLLARY 3.3. The set of strictly regular QBOs is dense in B_{m}.

International Journal for Innovative Engineering and Management Research

A Peer Revieved Open Access International Journal

PROOF. According to Corollary3.1 we have $\overline{r i\left(\mathrm{~B}_{m}\right)}=\mathrm{B}_{m} . \sqcup$

4. Examples

In this section we give concrete examples to the strictly regular QBO's in any dimensions with the following theorem.

THEOREM 4.1. Let $A=\left\{a_{i j}\right\}_{i, j=1}^{m}$ be a bistochastic matrix, then the following assertions hold:
i)

$$
V_{A}(x)_{k}=\sum_{i=1}^{m} a_{k i} x_{i}^{2}+x_{k}\left(1-x_{k}\right)
$$

$k=\overline{1 ; m}$ is a bistochastic operator.
ii) $\quad V_{A}(x)_{k}=\frac{1}{m} \sum_{i=1}^{m} x_{i}^{2}+x_{k}\left(1-x_{k}\right)$
$k=\overline{1 ; m}$ is a strictly regular $Q B O$.
PROOF. i) We make notation $x^{\prime}:=V_{A}(x)$. Then $x^{\prime} \prec x$ is equivalent to $\forall k \in N_{m}=\{1,2, \ldots, m\}$ and
$\forall\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \subset N_{m}$
$\left.\left|\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}\right|=k\right) \quad \sum_{l=1}^{k} x_{i_{s}}^{\prime} \leq \sum_{j=1}^{k} x_{[j]}$.
Therefore, we will prove second equivalent assertion. Let $x_{\downarrow}=\left(x_{\pi(1)}, x_{\pi(2)}, \ldots, x_{\pi(m)}\right)$, namely $\pi \in S_{m}$ is suitable to permutation of the coordinates of x in non-increasing order, where S_{m} is the permutation group of N_{m}. Firstly, we will show $\sum_{j=1}^{m}\left(\sum_{s=1}^{k} a_{i_{s j}}\right) x_{j}^{2} \leq \sum_{j=1}^{k} x_{[j]}^{2} \quad(*) . \quad$ Indeed, bistochasticity of Aimplies that $\sum_{s=1}^{k} a_{i_{s}} \leq 1$ $\forall t \in N_{m}$) and $\sum_{j=1}^{m}\left(\sum_{s=1}^{k} a_{i_{s} j}\right)=\sum_{j=1}^{m}\left(\sum_{s=1}^{k} a_{i_{s} \pi(j)}\right)=k$. The last equality implies
$\sum_{j=k=1}^{m} \sum_{j=1}^{k} a_{i \pi(i)}=k-\sum_{j=1}^{k} \sum_{j=1}^{k} a_{i \pi(U)}=\sum_{j=1}^{k}\left(1-\sum_{j=1}^{k} a_{i \pi())}\right)(4.0 .1)$.
Hence and according to $x_{\pi(m)} \leq x_{\pi(m-1)} \leq \ldots \leq x_{\pi(1)}$ we have
$\sum_{j=k+1}^{m}\left(\sum_{s=1}^{k} a_{i_{s} \pi(j)}\right) x_{\pi(j)}^{2} \leq \sum_{j=1}^{k}\left(1-\sum_{s=1}^{k} a_{i_{s} \pi(j)}\right) x_{\pi(j)}^{2}$ (4.0.2).
(4.0.2)
implies
$\sum_{j=1}^{m}\left(\sum_{s=1}^{k} a_{i_{s} j}\right) x_{j}^{2}=\sum_{j=1}^{m}\left(\sum_{s=1}^{k} a_{i_{s} \pi(j)}\right) x_{\pi(j)}^{2} \leq \sum_{j=1}^{k} x_{\pi(j)}^{2}$
. We denote with $x_{\left[i_{1}\right]}, x_{\left[i_{2}\right]}, \ldots, x_{\left[i_{k}\right]}$ the nonincreasing rearrangement of $x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{k}}$, then
$\sum_{i=1}^{k} x_{i j}^{\prime}=\sum_{j=1}^{m}\left(\sum_{j=1}^{k} a_{i j}\right) x_{j}^{2}+\sum_{i=1}^{k} x_{i j}\left(1-x_{i j}\right)=\sum_{j=1}^{m}\left(\sum_{j=1}^{k} a_{i j}\right) x_{j}^{2}+$ $+\sum_{i=1}^{k}\left(x_{[j]}-x_{[i]}^{2}\right) \leq \sum_{i=1}^{k} x_{[1]}^{2}+\sum_{i=1}^{k} x_{[j]}\left(1-x_{[i] S}\right)=\sum_{i=1}^{k}\left(x_{[i]}^{2}+x_{[i] 3}\left(1-x_{[i] 1}\right)\right)=$ by $=\sum_{i=1}^{k}\left(x_{[1]}+\left(x_{[1]}-x_{[i] 1}\right)\left(x_{i[1]}+x_{[i] 1}-1\right)\right) \leq \sum_{i=1}^{k} x_{[1]}$
by the $x_{[s]} \geq x_{\left[i_{s}\right]}$ and $x \in S^{m-1}$.
ii)

Let
$C_{\sigma}:=\left\{x \in S^{m-1}: x_{\downarrow}=\left(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(m)}\right)\right\}$ where $\sigma \in S_{m}$ is a permutation of N_{m}. We prove each of C_{σ} is invariant w.r.t. V. Obviously,
$V\left(\left(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(m)}\right)\right)=\left(x_{\sigma(1)}^{\prime}, x_{\sigma(2)}^{\prime}, \ldots, x_{\sigma(m)}^{\prime}\right)$ for $\forall \sigma \in S_{m}$,
where
$\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{m}^{\prime}\right)=V\left(\left(x_{1}, x_{2}, \ldots, x_{m}\right)\right)$.
Consequently, we can suppose $x \in C_{i d}$, i.e. $x_{1} \geq x_{2} \geq \ldots \geq x_{m}$. We take $\forall i, j \in N_{m}$ $i<j$.

Then
$x_{i}^{\prime}-x_{j}^{\prime}=x_{i}\left(1-x_{i}\right)-x_{j}\left(1-x_{j}\right)=\left(x_{i}-x_{j}\right)\left(1-x_{i}-x_{j}\right) \geq 0$
. Hence $x^{\prime} \in C_{i d}$. Thus we show $V: C_{\sigma} \rightarrow C_{\sigma}$ for $\forall \sigma \in S_{m}$ and V are bistochastic. Hence any trajectory of V converges some point in

Fix (V) by the its bistochasticity .Let $p \in \operatorname{Fix}(V)$, then $V(p)=p$ implies that $p_{i}^{2}=\frac{1}{m} \sum_{i=1}^{m} p_{j}^{2}, \quad i=\overline{1 ; m} . \quad$ By the last equalities, we have $p=\left(\frac{1}{m}, \frac{1}{m}, \ldots, \frac{1}{m}\right)$, thus $\operatorname{Fix}(V)=\left\{\left(\frac{1}{m}, \frac{1}{m}, \ldots, \frac{1}{m}\right)\right\}$. Thence any trajectory of V converges to the unique fixed $\operatorname{point}\left(\frac{1}{m}, \frac{1}{m}, \ldots, \frac{1}{m}\right) . \sqcup$

REMARK 4.1. We note that strictly regularity of the operator in the above theorem is proved by using the fact that it is monotonic (order-preserving map). It is worth mentioned that the second statement of the theorem can be also proven via applying the main theorem of [6] (Theorem 3.1 in that paper) and this method of proving is completely different from ours.
Acknowledgments. I would like to express deep gratitude to professors U.Rozikov, R.Ghanikhodjaev and U.Jamilov for many helpful discussions, M.Saburov for an attentive reading of the text and for making many useful comments.

Literature

1. A.W. Marshall, I. Olkin, B.C. Arnold Inequalities:Theory of Majorization and Its Applications, $2^{\text {nd }}$ edition, Springer, 2010.
2. R. Ganikhodjaev, Doctoral thesis, 1993.
3. Arne BrØndsted An Introduction to Convex Polytopes, Springer-Verlag, 1983.
4. R. Ganikhodzhaev, F. Mukhamedov, U. Rozikov Quadratic stochastic operators and processes: results and open problems, Inf. Dim. Anal. Quan. Probl. Rel. Top. 14, No. 2 (2011), 279-335.
5. M.Saburov On Regularity of Positive Quadratic Doubly Stochastic Operators, Mat. Notes 103, No. 2 (2018), 328-333. DOI:10.1134/S0001434618010376
6. M.Saburov On Regularity of Diagonally Positive Quadratic Doubly Stochastic

Operators, Results Math 72, (2017), 19071918. DOI:10.1007/s00025-017-0723-3
7. M.Saburov Dynamics of Double Stochastic Operators, J.Phys.:Conf. Ser. 697, (2016) DOI:10.1088/1742-6596/697/1/012014
8. R. Abdulghafor, F. Shahidi, A. Zeki, S. Turaev Dynamics of Double Stochastic Operators on a finite-dimensional simplex, Open Math. 14, (2016), 509-519 DOI:10.1515/math-2016-0045

