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Description of the set of strictly regular quadratic bistochastic operators and examples 

 

Dilfuza Tashpulatova 

Teacher of Shakhrisabz branch of Tashkent State Pedagogical University named after Nizami 

 
 

Abstract: The present paper focuses on the dynamical systems of the quadratic bistochastic 

operators (QBO's) on the standard simplex. We show the character of connection of the dynamical 

systems of a bistochastic operator with the dynamical systems of the extreme bistochastic operators. 

Moreover, we prove that almost all quadratic bistochastic operators is strictly regular and give 

description of the strictly regular quadratic bistochastic operators in the convex polytope of QBO's. 

Furthermore, convexity of the set of strictly regular QBO's and its density in the set of QBO's is proven 

and nontrivial examples to strictly regular bistochastic operators are given. 
Keywords: Affine hull, convex hull, simplex, extreme point, relative interior of a convex set, 

fixed point, periodic point, stochastic operator, bistochastic operator, strictly regular stochastic 

operator. 

Introduction 

A lot of genetic processes in population 

genetics can be associated with some nonlinear 

dynamical systems. Dynamical systems which 

are generated by quadratic stochastic operators 

(QSOs) appear many problems of mathematical 

genetics. Generally, dynamical systems of 

QSOs are very complex and difficult. 

Therefore, dynamical systems of certain type 

QSOs are investigated. Quadratic bistochastic 

operators are one of type of QSOs. An 

interesting property of dynamical systems of 

QBOs is that trajectory of any initial point 

converges some periodic orbit. In other words, 

ω−limit set of any initial point is always finite.  

The present paper is appeared in the 

intersection of several branches of mathematics 

like the theory of convex polytopes, 

majorization theory and theory of QSO’s. In the 

paper, we give algebraic expression of the 

relative interior points of convex polytopes and 

prove a theorem about periodic points of 

bistochastic operators, furthermore, we prove 

strictly regularity of all operators in the relative 

interior of QBOs’ poytope and give non trivial 

examples to strictly regular quadratic 

bistochastic operators. 

2. Preliminaries 

In this section we provide some important 

definitions in the theory of convex polytopes, 

majorization theory, and theory of QSOs in 

order to give theorems in next sections. 

Therefore, we recall some concepts in affine 

geometry and theory of dynamical systems in 

this section. Initially, we define affine structure 

on 
dR . In the meantime, we do not differ the 

concept of point from vector in 
dR and this 

does not bring confusions. 

The combination 

1 1 2 2
...

s s
a a a  + + +  is called affine 

(convex) combination of 
1 2
,  ,  ...,  d

s
a a a R  

when 
1

1
s

j

j


=

=  where 
j

R   (
j

R
+

 ) for

1,j s= . Nonempty subset 
dL R is called 

affine subspace of 
dR  if it is closed w.r.t. affine 

combinations of its elements. Clearly, 

nonempty intersection of affine spaces is also 

an affine space, whence affine hull, ( )Aff M  of 

a subset M  of 
dR is defined as the intersection 

of all affine subspaces which includes M. It can 

be easily proved that 

The points 
1 2
,  ,  ...,  d

r
a a a R is called affine 

dependent if one of them lies in the affine hull 

of the others. Otherwise, 
1 2
,  ,  ...,  

r
a a a is 
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called affine independent. Maximal affine 

independent system of elements of affine space 

L is called affine basis of L. Evidently, number 

of elements in the basis does not depend on its 

choosing. Next small cardinality from the 

cardinality of the affine basis is called affine 

dimension of L and denoted by dim( )L . A 

subset 
dQ R is called convex if it is closed 

w.r.t. convex combinations of its elements and 

empty set is considered as convex set by the 

definition. Intersection of convex sets is also 

convex, whence convex hull, ( )conv M , of a 

given nonempty subset 

dM R is defined as the intersection of all 

convex sets which includes it. Obviously, 

. A point v Q  is called extreme point of Q if 

(1 )x y v + − = , (0;1) , ,x y Q  

implies x y v= =  and the set of all extreme 

points of Q is denoted by ( )Extr Q . Convex 

hull of finite set is called polytope. Simplex is 

defined as the convex hull of affine independent 

vectors of
dR . The following set is called 

standard ( 1)d − −  dimensional simplex; 

 

In the paper we consider 
1
l  norm in 

dR , 

namely 
1 2

|| || | | | ...| | |
d

x x x x= + + for

1 2
( , ,..., ) d

d
x x x x R=  . Then a metrics in 

( )Aff M  can be induced from this norm where 
dM R  nonempty subset. The interior of M  

w.r.t. this induced metric is called relative 

interior of M and it is denoted by ( )ri M . We 

mention that relative interior of a set does not 

depend of choosing norm in 
dR  because of all 

norms in 
dR  are mutually equivalent, so 

theygenerate the same topology.  

For any 
1

1 2
 ,  ,  ..., ) ( m

m
x x x x S −=   

due to [1], we define
     21

 ,  ,  ...  ( ),
m

x x x x

=

, here 
[1] [2] [ ]

...
m

x x x    - non-increasing 

rearrangement of coordinates of x . The point 

x


is called rearrangement of x by non-

increasing. For two elements ,x y  taken from 

the simplex
1mS −
, we say that the element x

majorized by y  ( y majorates x ), and write 

x y  (or y x ) if the following hold: 

[ ] [ ]

1 1

k k

i i

i i

x y
= =

   

for any 1;( 1)k m= − .  

Geometric illustration can be given to 

majorization as follows: we call permutation 

vector of y such vector that generate from 

permutating places of coordinates of y and let 

y
  be the convex hull of all permutation 

vectors of y . Then due to [1] the following hold 

PROPOSITION 2.1. [1]. x y  if and 

only if
y

x . Furthermore, all permutation 

vectors of y are extreme points of
y

 . 

A continuous operator 
1 1: m mV S S− −→ is 

called m −dimensional stochastic operator. We 

call an operator 
1 1: m mV S S− −→  quadratic 

stochastic operator (QSO) if it has the following 

form: 

,

, 1

( )
m

k ij k i j

i j

V x p x x
=

= , for 1;k m=  

where
1

1 2
 ,  ,  ..., ) ( m

m
x x x x S −=  , 

, ,
0

ij k ji k
p p=  , 

,

1

1
m

ij r

r

p
=

=  for 

,  ,  1,2,  ...,{ }
m

i j k m N  = . A quadratic 

stochastic operator is called evolution operator 

in population genetics and the coefficient
,ij k

p is 

called heredity coefficients of this operator. 
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Clearly, any QSO is a stochastic operator. 

By the form of QSO we deduce that any QSO 

associated with unique cubic stochastic matrix 

of certain type 
,

{ }
ij k

p in the space of real cubic 

matrices ( )c

n
M R . Whence, according to this 

correspondence we can define (convex) 

addition between QSOs. 

DEFINITION 2.1. A stochastic operator 

V is called bistochasticif ( )V x x , for 

1mx S −  . A bistochastic QSO is 

calledquadratic bistochastic operator (QBO). 

The set of all m −  dimensional QBOs is 

denoted by
m

B . 

According to the definition of 

majorization, 
m

B is closed set and it is also 

closed w.r.t. convex sum of its elements, 

therefore, it is closed, convex subset of 

( )c

n
M R . Extreme points of 

m
B is called 

extreme QBO and some necessary conditions 

and some sufficient conditions for extremity of 

a QBO was found in the doctoral thesis of 

R.Ganikhodjaev [2], but any criterions did not 

find so far. 

By the definition of majorization we have 

1 1 1 1 1 1
, ,..., , ,...,V

m m m m m m

    
=    

    
 for a 

QBO V , in other words barycenter of the 

simplex is a fixed point of any bistochastic 

operator. The following theorem characterizes 

main properties of bistochastic operators and

m
B . 

THEOREM 2.1. [2] Let 
1 1: m mV S S− −→ be a quadratic bistochastic 

operator then: 

i) 
0

| ( ) |
V

x  , for 
1

0

mx S −  , where 

0
( )

V
x  ( − limit set of

0
x ) is the set of limit 

points of 
0 0

{ ( )}n

n
V x 

=
; 

ii) P ◦ V is quadratic bistochastic 

operator for any coordinate permutation 

operator
1 1: m mP S S− −→ . 

iii) ( )
m

Extr B form N ; 

REMARK 2.1. Coordinate permutation 

operator is such operator that it maps a vector 

to its permutation vector which permutation 

order of places of coordinates does not change 

when vector is changing. 

In the view of theory of dynamical 

systems, the dynamical system of a certain 

operator may have been very strange behavior. 

More simple dynamical system among such 

strange dynamical systems is that every 

trajectory in the dynamical system converge a 

point. In the theory of QSO’s, operators which 

have such simple dynamical system are said 

regular. 

DEFINITION 2.2. A QSO is 

calledregular if its trajectories always 

converge. A regular QSO is calledstrictly 

regular if it has unique fixed point. 

Hence the dynamical system of strictly 

regular QSO is simpler than dynamical system 

of regular ones. Some properties of regular 

QSO’s are studied in ([5]-[8]). In particular, the 

following simple criterion for regularity of a 

bistochastic operator is given in [7] and [8]. 

THEOREM 2.2. ([7], [8]) Let 
1 1: m mV S S− −→  be a bistochastic operator, 

then V is regular if and only if it does not have 

any order periodic points except fixed points. 

Obviously, the unique fixed point of a 

strictly regular bistochastic operator which is 

said in the definition is the barycenter of the 

simplex. Hence by the  

Theorem 2.2 we have quickly the following 

simple criterion for strictly regularity of the 

bistochastic operators. 

PROPOSITION 2.2. Quadratic 

bistochastic operator is strictly regular iff it 
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have not any order periodic points except its 

unique fixed point
1 1 1

, ,...,
m m m

 
 
 

. 

3. Main results 

3.1. On the relative interior of convex 

polytopes. In this subsection we recall some 

affine properties of convex sets and give 

algebraic expression of the points in the relative 

interior of the convex polytopes. 

THEOREM 3.1. Let 
1 2
,  ,  ...,  

s
f f f  be a 

points of 
dR  such that none does not lie convex 

hull of the others and

1 2
,  { },  ...,  

s
Q conv f f f= . Then 

1 1 2 2

1

( ) { ... : 1, 0, 1; }
s

s s j j

j

ri Q f f f j s    
=

= + + + =  =

. 

We use several lemmas in proving the 

theorem. For the sake of brevity we also use the 

following notations: let
dA R , ,  dx y R  

and R  then :{ }:A x a x a A+ = +  , 

:{: }A a a A =  , 

 ;  : 1[ ] { ( : 0;  1) }x y x y  = + −  . 

Similarly, half open [ );x y , ( ];x y  and open 

( );x y  intervals is defined like [ ];x y . 

LEMMA 3.1. Let Q  be a nonempty 

convex subset of 
dR , then ( )ri Q  . 

PROOF. We consider two cases in order 

to prove the lemma. 

Special case: In this case we prove the 

lemma for the simplexes. Let 
dS R  be a 

0
d

− dimensional simplex (clearly
0

d d ). Then 

according to the definition of simplex, there are 

affine independent vectors 

01 2 1
,  ,  ...,  d

d
v v v R

+
  such that 

01 2 1
,  ,  ...,  { }

d
S conv v v v

+
= . Hence 

01 2 1
,  ,  ...,  

d
v v v

+
 is an affine basis for ( )Aff S  

according to (2.0.1), so any element of 

( )x Aff S  can be uniquely expressed as  

0 01 1 2 2 1 1
...

d d
x v v v  

+ +
= + + +  with

01 2
...  1

d
  + + + = . Therefore, the 

mapping 0( ) ( ):
d

Aff S Aff S →  which is 

determined as 

 

is well-defined.  is a bijection and a 

continuous mapping between S and standard 

0
d −dimensional simplex 0d

S  . Obviously, 

01 2
: , ,  ...,  : 0{( ) }

d j
   = G  is open in 

0d
R , hence 0

1
( )

d
Aff S= G G  is open in

0( )
d

Aff S . Since  is bijection and continuous 

we have that  

 

is open set in ( )Aff S . Now, note that 

1

1
( ) S − G , moreover 

1

1
( ) − G is open. 

Therefore, 
1

1
( ) ( )ri S − G by the definition 

of relative interior, thus ( )ri S  . 

General case: Let Q  be a nonempty 

convex subset and
0

))( (d dim Aff Q= . In 

0
0d =  there is nothing to prove. So, we can 

assume
0

0d  . Then there is 

01 2 1
,  ,  ...,  

d
e e e Q

+
  which 

01 2 1
{ ,  ,  ...,  }

d
e e e

+
is a affine basis for ( )Aff Q  

by the expression (2.0.1). Let us consider the 

simplex
01 2 1

: ,  ,  ...,  { }
d

S conv e e e
+

= . Then 

S Q  by the convexity of Q . So we have 

 ( ) ( )Aff S Aff Q=  by the

( ) ( )Aff S Aff Q and 

0
) )( ( )(( )dim Aff S d dim Aff Q= = . 

According to the proved statement in the 

special case we have ( )ri S  . Hence 

0
x S  and open neighborhood 

0x
O of in

dR , 



 

Vol 10 Issue03,March 2021                              ISSN 2456 – 5083 Page 427  

such that
0

( )
x

O Aff Q Q  . Whence 

according to  ( ) ( )Aff S Aff Q= and S Q

we have
0

( )
x

O Aff Q Q  . The last 

inclusion implies that 
0

x is a relative interior 

point ofQ .  

LEMMA 3.2. Let Q be a nonempty 

closed convex subset of
dR . Then for 

( )x ri Q  and / { }y Q x  the relation 

[ ) ( );x y ri Q  holds. 

PROOF. Let ( )    1  x x y


 = + −  

be a point in( );  x y . ( )  x ri Q implies 

existence of such open neighborhood 
x

O  of x  

that : ( ) .
x x

O Aff Q Q= O  . In
dR , the 

continuity of addition and multiplying to scalar 

is followed that (1 )
x

O y + −  is open set. 

Therefore, 

( (1 ) ) ( ) (1 )
x x

O y Aff Q y   + − = + −O  

is open set of ( )Aff Q  and convexity of Q  

implies ( )  1    
x

y Q + − O . Whence 

(1 )
x

x y Q


  + − O  implies

( ) x ri Q

 .  

COROLLARY 3.1. For any nonempty 

closed convex subset Q of 
dR we have 

( )Q ri Q= . 

PROOF. We get y Q  , then 

( )ri Q  by the Lemma 3.1. Hence we can 

get ( )x ri Q  , thus by the Lemma 3.2 we 

have [ ) ( );x y ri Q  (*). We consider an open 

ball 
y

O centered at y . Then [ ; )
y

O x y 

and it is subset of ( )ri Q by the (*) relation. 

Hence, ( )y ri Q .  

LEMMA 3.3. The following two 

conditions are mutually equivalent for any 

convex closed setQ : 

i) ( )x ri Q ; 

ii) For {/ }y Q x  , there is z Q such that

;( )x y z . 

PROOF. ) )i ii : Let ( )x ri Q , then 

there is ( )B x


  open ball with centered at x

which 

( ) ( )B x Aff Q Q


  (3.1.1) 

We get {/ }y Q x  . Since y x , we 

have | || 0| y x − . We consider the vector  

(1 )
2 || || 2 || ||

z y x
y x y x

 
= − + +

− −
 

and show that z is desired vector. Indeed, z

belongs to ( )Aff Q  as an affine combination of

x , y . In the other hand, || ||
2

z x


− =  , so 

( )z B x


 . Then by the (3.1.1) we have z Q

. But the determination of z implies that 

 

 ) ) :ii i We assume that x Q  is a 

point which satisfies the condition of the second 

statement. Since ( )ri Q   by the Lemma 3.1 

we can choose a point y in ( )ri Q . Then there 

exist z Q  that ;( )x y z . According to 

Lemma3.2 ( ) ( );y z ri Q . Hence we have

( )x ri Q .  

With the above three lemmas at hand we 

can now pass to proving Theorem3.1. 

PROOF. (Theorem 3.1) First we show 

that for any point x in ( )ri Q can be represented 

as a convex combinations of 
1 2
,  ,  ...,  

s
f f f  

which the convex representation includes each 

of 
j

f with positive coefficient. Since Lemma 

3.3 we have ( )
j

f ri Q  for 1;j s= . 

Therefore, x ExtrQ . After that we consider 
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sequentially the extreme points
1 2
,  ,  ...,  

s
f f f . 

Then Lemma 3.3 implies existence of such 

distinct points 
1 2
, ,...,

s
z z z in Q  that 

;( )
j j

x f z for 1;j s= . Algebraically, the last 

relations mean ( )1 2
, ,  ..., 0;1

s
     which 

(  1 )
j j j j

x f z = + −  (3.1.2) 

for 1;j s= . Then after averaging these s − 

equations in (3.1.2) we have 

  

 

Since
1 2
,  { },  ...,  

s
Q conv f f f= , each of 

j
z  is 

a convex combination of extreme points

1 2
,  ,  ...,  

s
f f f . Symbolically, there is such row 

stochastic matrix 
, 1;

{ }
ji j i s


=

 that 

1

s

j ji i

i

z f
=

=  for 1;j s= . After replacing 
j

z  

in (3.1.3) by the its representations via extreme 

points we have 

1 1

(1 )
.

s s
j k

kj j

j k

x f
s s

 


= =

 −
= + 

 
   (3.1.4) 

Here 
1

(1 )
0

s
j jk

kj

ks s s

 


=

−
+    , so 

(3.1.4) is the desired convex representation 

for x . 

Now we prove remained part of the 

theorem, namely x is described as a convex 

combination of all extreme points as 

1 1 2 2
...

s s
x f f f  = + + +  with 0

j
   for 

1;j s=  then ( )x ri Q . We do this task using 

Lemma 3.3. Let / { }y Q x , then

 )1
,  ..., 0;  1

s
   with 

1

1
s

s

i


=

=  which

1

s

i i

i

y f
=

= . We get 

1

1

min{ ,..., }
: 0

2 max{ ,..., }

s

s

 


 
= 


 hence 

0
j j j

    −      for 1;j s= . Clearly,

1   hence all :
1

j j

j

  




− 
=

−
 is positive 

and
1

...  1
s

 + + = . Let us consider

1 1
...

s s
z f f = + + . Then z Q by the its 

representation via 
1 2
,  ,  ...,  

s
f f f and we have 

1 1 1

(1 ) ( ) .
s s s

j j j j j j j

j j j

z y f f f x       
= = =

− + = −  +  = =    

Hence we conclude ( )x ri Q  by the second 

assertion of Lemma 3.3.  

3.2. Description of the set of strictly 

regular quadratic bistochastic operators. In 

this subsection we give the main results of the 

paper. The following theoremdescribes the 

nature of the connection of dynamical systems 

of convex combination with dynamical systems 

of the operators which attend in that 

combination and it is the main theorem of the 

paper. 

THEOREM 3.2. Let 
1 2
,  ,  ...,  

t
V V V  be 

m −  dimensional bistochastic operators and 

1 2
, ,  ...,

t
   be positive numbers with

1

1
t

i

i


=

= . Then the following holds: 

i) 
1 1

( ) ( );
tt

i i i

i i

Fix V Fix V
= =

=  

ii) 
1 1

( ) ( )
tt

p i i p i

i i

Per V Per V
= =

 , for 

p N  , where ( )Fix V  and ( )
p

Per V  

denote the set of fixed points of V and p −  

periodic points of V  with prime period p , 

respectively. 
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iii) Generally, reverse of the inclusion relation in 

the second statement does  

not hold. 

PROOF. Without lost of generality we can 

suppose  2t = , because proof of the theorem in 

cases whose value of t  is largercan be easily 

implied (via mathematical induction principle) 

by this simple case. 

)i

1 1 2 2 1 2
( ) ( ) ( )Fix V V Fix V Fix V +  is 

obvious, therefore, showing 

1 1 2 2 1 2
( ) ( ) ( )Fix V V Fix V Fix V  +  is 

sufficient. Let 
1 1 2 2

( )x Fix V V  +  that is 

1 1 2 2
 ( ) ( ) V x V x x + =  (**). Then by the 

bistochasticity of V1 and V2, we have

1 2
,( ) ) (

x
V x V x  . But x is extreme point of 

the convex set 
x

 by the Proposition2.1, then 

from the (**) and definition of extreme point 

we have
1 2

 ) ( ) (V x V x x= = . 

)ii  Let 
0

( )
p

x Per V  and the periodic 

orbit of 
0

x  is denoted with
0

( ): i

i
x V x= , 

herewith
1 1
( )

i i
y V x

−
= , 

2 1
( )

i i
z V x

−
= for

1;i p= , where
1 1 2 2

:V V V = + . 

Bistochasticity ofV , 
1

V , 
2

V   implies 

1
, ,

ii i i x
x y z

−
  and

0 1 0
...

px x x x
    =  (due to 

0p
x x=  ) by the determining of these sets. 

Hence, these sets are equal to each other. 

Proposition 2.1 implies that each of
i

x , 1;i p=  

is extreme point of 
0ix x

 = . By the 

definition of extreme point and according to 

equality
01 2i i i x

y z x + =  , we get

i i i
y z x= = , for 1;i p= . Thence, trajectory of 

0
x   with respect to V  , 

1
V and 

2
V  is the same 

and every of them are p −  periodic, thus 

0 1 2
( ) ( )

p p
x Per V Per V . 

)iii  We get linear bistochastic operators 

on 
2S  which are given by their matrices in the 

standard basis as 

1 2

0 1 0 1 0 0

: 1 0 0 , : 0 0 1

0 0 1 0 1 0

P P

   
   

= =
   
   
   

 

It is easily checked that these operators are an 

example for not holding the reverse relation to 

the inclusion in the second statement.  

REMARK 3.1. It is worth mentioned 

that in the proof of the above theorem we do 

not use from quadraticity of the considered 

operator. Therefore, in the statement of this 

theorem we claim only bistochasticity of the 

operator. 

COROLLARY 3.2. Let 
1

V  be a strictly 

regular QBO and 
2

V  be a QBO, then 

1 2
(1 )V V V


 = + −  is a strictly regular 

QBO for ( )0;  1  . In particular, the set of 

strictly regular QBOs is convex. 

PROOF. According to Proposition 2.2, 

1

1 1 1
( ) , ,...,Fix V

m m m

 
=  
 

 and

1
( )

p
Per V =  for any 2p  . Then by the 

Theorem 3.2 we obtain

1 1 1
( ) , ,...,Fix V

m m m


 
=  
 

 and

( )
p

Per V

= 2p  . Hence we again apply 

Proposition 2.2 and have strictly regularity of

V


.  

As the mentioned above the set of m− 

dimensional quadratic bistochastic operators,

m
B  is convex, compact (closed and bounded) 

set. Hence by the Krein-Milmann theorem we 

have 

( ( ))
m m

conv Extr=B B . (3.2.1) 



 

Vol 10 Issue03,March 2021                              ISSN 2456 – 5083 Page 430  

Similarly, the set of linear bistochastic 

operators (Birkhoff polytope) is also convex, 

compact set and celebrated Birkhoff-von 

Neumann theorem states that extreme points of 

this set are finite and that are coordinate 

permutation operators. Obviously, a linear 

bistochastic operator is also QBO. Now we 

show that coordinate permutation operators are 

also extreme points of larger set
m

B . 

LEMMA 3.4. Let P be a coordinate 

permutation operator, then ( )
m

P Extr B  

PROOF. Firstly, we show that identical 

operator is extreme QBO. Bistochasticity of 

identical operator is obvious and let 

1 2
(1 )V V id + − =  for some ( )0;  1 , 

1 2
,

m
V V B . Then 

1 2
  1( ) ( ) ( ) V x V x x + − =  and

1 2
,( ) ) (

x
V x V x   holds for

1mx S −  . x is a 

extreme point of
x

 , thus 

1 2
 ) ( ) (V x V x x= =  by the definition of 

extreme point. According to arbitrarily 

choosing of x, we have
1 2

V V id= = . 

Let P be a coordinate permutation 

operator, hence it is invertible and its inverse 

also coordinate permutation operator, so both of 

them is QBO. Let 
1 2

1( )V V P + − =  for 

some ( )0;  1 ,
1 2
,

m
V V B . Thence we have 

1 1

1 2
( ) ( )( ) 1  P V P V id − −+ − =  (both 

1

1
P V−

 and 
1

2
P V−

 is QBO according to the 

second assertion of Theorem 2.1) and by the 

extremity of identical operator we obtain
1 1

1 2
P V P V id− −= = . Hence

1 2
V V P= = . 

 

We denote the group of m −dimensional 

coordinate permutation operators by
m

P . 

Clearly, | | !
m

m=P . We number the elements of 

m
P with 

j
P , 1; !j m= . Lemma 3.4 asserts that 

( )
m m

ExtrP B  and the third assertion of 

Theorem 2.1 states that extreme points of 
m

B is 

finite. Let | ( ) \ |
m m

s Extr= B P and

1 2
{ , ,..., } ( ) \

s m m
Extr=V V V B P . Thus 

1 2
( ) { , ,..., }

m m s
Extr =B P V V V and 

according to (3.2.1) relation we have

1 ! 1
( ,..., , ,..., )

m m s
conv P P=B V V . 

THEOREM 3.3. Any operator in ( )
m

ri B  

is strictly regular. 

PROOF. Let ( )
m

V ri B  be an operator 

in the relatively interior of 
m

B then it can be 

expressed as  

!

1 1

s m

j j j s j

j j

V P 
+

= =

= + V  

by the Theorem 3.1 where 

!

1

1
s m

j

j


+

=

=  and 

0
j

   for 1;( !)j s m= + . Then the first 

assertion of Theorem 3.2 implies 

 

and according to the second assertion of 

Theorem 3.2 we obtain 

 

for a natural number 2p  .  

According to the Proposition 2.2, the relations 

(3.2.2) and (3.2.3) implies regularity ofV .  

REMARK 3.2. We note that Theorem 

3.3 is proved via geometrical principles and 

the proof bases on the Theorem 3.2. This 

theorem can be also followed by the main 

theorem of [6] (Theorem 3.1 in that work). 

COROLLARY 3.3. The set of strictly 

regular QBOs is dense in
m

B . 
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PROOF. According to Corollary3.1 we 

have ( )
m m

ri =B B .  

4. Examples 

In this section we give concrete 

examples to the strictly regular QBO’s in any 

dimensions with the following theorem. 

THEOREM 4.1. Let  
, 1

m

ij i j
A a

=
=  be a 

bistochastic matrix, then the following 

assertions hold: 

i) 2

1

( ) (1 )
m

A k ki i k k

i

V x a x x x
=

= + −

1;k m= is a bistochastic operator. 

ii) 2

1

1
( ) (1 )

m

A k i k k

i

V x x x x
m =

= + −

1;k m= is a strictly regular QBO.  

PROOF. i) We make notation

' : ( )
A

x V x= . Then 'x x  is equivalent to

 1,2,  .{ . , }.
m

k N m  =  and 

1 2
,  ,  ...,{ }  

k m
i i i N   (

1 2
,  ,  ...,  | }  { |

k
i i i k= ) 

[ ]

1 1

'
s

k k

i j

l j

x x
= =

  . 

Therefore, we will prove second equivalent 

assertion. Let 
( ) ( )1 ( )2

 ,  ,  ...,  ( )
m

x x x x
 

= , 

namely 
m

S   is suitable to permutation of 

the coordinates of x in non-increasing order, 

where 
m

S  is the permutation group of 
m

N . 

Firstly, we will show 

2 2

[ ]

1 1 1
s

m k k

i j j j

j s j

a x x
= = =

 
 

 
    (*). Indeed, 

bistochasticity of A implies that 
1

1
s

k

i t

s

a
=

  (

m
t N  ) and

( )

1 1 1 1
s s

m k m k

i j i j

j s j s

a a k


= = = =

   
= =   

   
    . The last 

equality implies  

 

Hence and according to 

( )( ) ( 1) 1
...

m m
x x x
  −

   we have 

2 2

( ) ( ) ( ) ( )

1 1 1 1

1
s s

m k k k

i j j i j j

j k s j s

a x a x
   

= + = = =

   
 −   

   
     

(4.0.2). 

(4.0.2) implies

2 2 2

( ) ( ) ( )

1 1 1 1 1
s s

m k m k k

i j j i j j j

j s j s j

a x a x x
  

= = = = =

   
=    

   
    

. We denote with 
1 2[ ] [ ] [ ]

,  ,  ...,  
ki i i

x x x  the non-

increasing rearrangement of
1 2
,  ,  ...,  

ki i i
x x x , 

then 

 

by the 
[ ] [ ]ss i

x x  and
1mx S − . 

ii) Let 
1

(1) (2) ( )
: :  ,  ,  ...,  { ( )}m

m
C x S x x x x

   

−


=  =  

where 
m

S   is a permutation of
m

N . We 

prove each of C


is invariant w.r.t. V . 

Obviously, 

(1) (2) ( ) (1) (2) ( )
,  ,  ...,  ' ,  ' ,  ...,  ( )) ( )'(

m m
V x x x x x x

     
=  

for
m

S  , where 

1 2 1 2
( ' , ' ,..., ' ) (( , ,..., ))

m m
x x x V x x x= . 

Consequently, we can suppose
id

x C , i.e. 

1 2
  ...

m
x x x   . We take ,  

m
i j N 

  i j . Then

' ' (1 ) (1 ) ( )(1 ) 0
i j i i j j i j i j

x x x x x x x x x x− = − − − = − − − 

. Hence
id

x C .Thus we show :V C C
 
→  

for 
m

S   and V are bistochastic. Hence 

any trajectory of V  converges some point in 
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( )Fix V  by the its bistochasticity .Let 

( )p Fix V , then ( ) V p p=  implies that 

2 2

1

1 m

i j

i

p p
m =

=  , 1;i m= . By the last 

equalities, we have
1 1 1

, ,...,p
m m m

 
=  
 

, thus

1 1 1
( ) , ,...,Fix V

m m m

  
=   

  
. Thence any 

trajectory of V  converges to the unique fixed 

point
1 1 1

, ,...,
m m m

 
 
 

.  

REMARK 4.1. We note that strictly 

regularity of the operator in the above theorem 

is proved by using the fact that it is monotonic 

(order-preserving map). It is worth mentioned 

that the second statement of the theorem can be 

also proven via applying the main theorem of 

[6] (Theorem 3.1 in that paper) and this method 

of proving is completely different from ours. 
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