A Peer Revieved Open Access International Journal www.ijiemr.org # **COPY RIGHT** 2022 IJIEMR. Personal use of this material is permitted. Permission from IJIEMR must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. No Reprint should be done to this paper, all copy right is authenticated to Paper Authors IJIEMR Transactions, online available on 30th Aug 2022. Link :http://www.ijiemr.org/downloads.php?vol=Volume-11&issue=Issue 08 # DOI: 10.48047/IJIEMR/V11/ISSUE 08/20 Title Artificial Intelligence and COVID-19 Deep Learning Approaches for Diagnosis and Treatment Volume 11, ISSUE 08, Pages: 162-168 **Paper Authors** Mr. MD Saif Ullah Khan USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER To Secure Your Paper As Per UGC Guidelines We Are Providing A Electronic Bar Code A Peer Revieved Open Access International Journal www.ijiemr.org # Artificial Intelligence and COVID-19 Deep Learning Approaches for Diagnosis and Treatment Mr. MD Saif Ullah Khan, UG Scholar from dept. of CSE in Muffakham Jah College of Engineering and Technology, TS, India. Email: sfkhn365@gmail.com ### **ABSTRACT:** COVID-19's spread triggered an unparalleled global disaster, impacting millions of people and killing tens of thousands. COVID-19 has spread to 212 nations and territories by May 22, 2020, with a total of 5,212,172 cases and 334,915 fatalities. The use of artificial intelligence to combat infection is proposed in this research (AI). GANs, ELMs, and LSTMs are just a handful of the various Deep Learning (DL) algorithms that have been proved to function for this purpose. It offers a comprehensive bioinformatics technique that brings together structured and unstructured data sources to develop user-friendly platforms for doctors and researchers. The main purpose of these AI-based solutions is to speed up the diagnosis and treatment of COVID-19 disorders. The goal of recent publications and clinical investigations on the topic is to determine the network's inputs and goals in order to build a reliable artificial neural network-based solution to COVID-19-related difficulties. Furthermore, each platform has its own set of inputs, which contain a variety of information: B. Clinical data and medical imaging may aid in the improvement of new pathways' performance in order to attain the greatest outcomes in real-world circumstances. ### 1. INTRODUCTION SARS-CoV-2, a novel coronavirus that caused the COVID-19 respiratory illness pandemic, surfaced in December 2019 and has shown to be a complicated disease with a broad range of symptoms and severity levels. Organ failure is more likely to kill you. Lung illness that ranges from mild to severe, with symptoms ranging from pneumonia to multiple organ failure and death [1] [4]. The impact of this viral infection is of considerable worry, and rightly so, as the pandemic continues and the number of confirmed cases, as well as the number of people suffering from severe respiratory failure and cardiovascular difficulties, rises [5]. The task of identifying appropriate technology to address COVID-19-related issues has gotten a lot of attention. Another significant issue for academics and decision-makers is the rising volume of "big data," which makes the virus's combat even more difficult. It demonstrates how and to what degree Artificial Intelligence (AI) helps to global development and health-care system modernisation [6]. In a variety of domains, including engineering [7] [9], medicine [10] [13], economics [14], and psychology [15], AI has lately scaled up research efforts to handle complicated challenges. As a consequence, in such dire situations, medical, transportation, and human resources must be organised and saved, and AI not only makes this easier, but also saves time, saving an hour. When the corona virus is present, survivors might be rescued or lost. Given AI's expanding popularity in the healthcare sector, it plays an important role in decreasing needless redundancies, enhancing productivity and efficiency in large sample [16] investigations, and improving accuracy and analysis. [17] Estimation Large data may also aid research that simulate viral activity in different countries. Health officials may utilise outcome analysis to help their nation plan for disease A Peer Revieved Open Access International Journal www.ijiemr.org transmission and make educated choices [18]. Improved diagnostic methods, such as treatment planning, crisis management, optimization, and medical imaging and image processing techniques, are well-suited to effectively assist undesirable medical approaches and their struggle against health-care systems. For example, AI's contribution to early and precise detection of Kovid-19 initiating and life-saving image-based medical diagnosis is particularly important in the field of Kovid-19 [19]. The use of AI technology to COVID-19-related issues may be able to bridge the gap between AI and medical methods and therapies. AI platforms can assist AI experts develop links between various aspects and speed up procedures in order to reach best outcomes. Our team will leverage the most recent research on Kovid-19 to generalise and give new techniques for high-risk populations, epidemiology, radiology, and other themes in this project. Expands, investigates, and investigates AI approaches' capacity to address COVID-19 challenges. ## **EXISTING SYSTEM:** The virus's introduction, as well as a spike in the number of confirmed cases and patients with severe respiratory failure and cardiovascular difficulties, raises worries about the virus's influence on the current system. The task of discovering acceptable technology to address COVID-19-related issues has gotten a lot of attention. Another crucial factor that researchers and decision-makers should be aware of is the ever-increasing number of data known as Big Data, which is obstructing the virus's battle. It demonstrates how and to what degree Artificial Intelligence (AI) helps to advance and modernise healthcare globally. ## **DISADVANTAGES OF EXISTING SYSTEM:** As the epidemic progresses and the number of confirmed cases and patients grows, the present approach is no longer viable. - ➤ The ever-increasing volume of so-called Big Data, which is proving to be a barrier in the battle against the virus, is a problem that researchers and decision-makers must address. - ➤ It is not feasible to make a medical diagnosis only on visuals. - A kind of algorithm is the back-propagation (BP) algorithm. ### PROPOSED SYSTEM: The proposed approach will concentrate on implementing certain AI-based tactics that may supplement current COVID-19 procedures in health-care systems across the globe. To show the success of these techniques and approaches, the most recent medical updates on AI, as well as their language based on the most recent updates on COVID-19, have been provided. As a consequence, this component includes instructions for improving and speeding up treatment and health-care management procedures, as well as the ANN-based procurement process for improved detection and diagnosis. During COVID-19 outbreaks, on the other hand, the influence of AI technologies is dependent on human participation and contribution to the multiple roles that people play. ## ADVANTAGES OF PROPOSED SYSTEM: - ➤ The input layer is a database-related layer that is used to access databases. One or more high-speed connections connect this layer to the primary (frontend) computer. - The CT scan picture must be sent to the "user model," which will identify where the virus is located for each individual. - For learning sequences with infinitely long-term patterns, LSTM networks are extremely useful.. A Peer Revieved Open Access International Journal www.ijiemr.org Algorithm: LSTM, ANN 2. LITERATURE SURVEY 1)Clinical Features of Patients Infected With 2019 Novel Coronavirus In Wuhan **AUTHORS:** C. Huang et al Coronaviruses are positive-sense RNA viruses that are circular and non-segmented and found in humans and other animals. They are coronaviruses in the coronavirus family and nidoviruses in the nidovirus order. Although 1 most human coronavirus infections are minor, both betacoronavirus infections produce severe respiratory syndrome. Coronaviruses 2, 3, 4, and the Middle East Respiratory Syndrome Coronavirus (SARS-CoV) (MERS-CoV) 5 and 6 10,000 cases have been documented in the last two decades, with SARS-CoV and MERS-CoV fatality rates of 10% and 7.37 percent, respectively. 8 Because more particular and devastating zoonotic occurrences have been uncovered, coronaviruses may merely be the tip of the iceberg. In December 2019, multiple pneumonia cases of unknown origin were reported in Hubei, Wuhan, China, with clinical signs that were similar to viral pneumonia. 2019-nCoV). More than 800 verified cases, including those of health personnel, have been discovered in Wuhan so far. with further export cases confirmed in Thailand, Japan, South Korea, and the United States. # 2) An Anfis Approach To Modeling A Small Satellite Power Source Of Nasa AUTHORS: M. B. Jamshidi, N. Alibeigi, A. Lalbakhsh, and S. Roshani. Before being put into space, satellites must go through a series of practical and thorough testing on its components. This is because the cost of developing and manufacturing satellites is substantially greater than the study's estimates. The power source is one of these gadgets' distinguishing qualities. The study presents a black-box approach based on neuro-fuzzy theory for simulating a lithium-ion battery used in a tiny NASA spacecraft. NASA scientists gathered information from a series of experiments with 18650 lithium-ion batteries. An Adaptive Neuro-Fuzzy Infection System (ANFIS) model with a dimmer induction system (FIS) created utilising the subtraction clustering approach to estimate and estimate cell capacity over the following few cycles would be the suggested method. The findings demonstrated that the approach computing suggested for battery parameters was both efficient and precise. # 3)A Novel Multiobjective Approach for Detecting Money Laundering With A Neuro-Fuzzy Technique AUTHORS: M. B. Jamshidi, M. Gorjiankhanzad, A. Lalbakhsh, and S. Roshani To limit the diversity of crimes in the area, the practical strategy is to employ computationally inconsistent ways to handle financial data. The new intelligent multi-lens for money laundering detection in banks and exchange offices is described in this article. The suggested method is based on the MATLAB software's Adaptive Neuro-Fuzzy Infection System (ANFIS). The suggested methodology would replace traditional approaches for detecting the possibility of money laundering in dubious financial activities. This technology may also be used to evaluate client account data in banking systems using an online interface. Furthermore, each exchange's risk of money laundering is maintained and monitored. One of its key characteristics is user categorisation for a variety of users. The findings suggest that this A Peer Revieved Open Access International Journal www.ijiemr.org system's accuracy in identifying money laundering infected accounts is satisfactory. # 4)Fault Diagnosis And Remaining Useful Life Estimation Of Aero Engine Using Lstm Neural Network # AUTHORS:M. Yuan, Y. Wu, and L. Lin Aircraft engines are a high-tech, high-priced industrial item. Estimating the precise incorrect position and remaining usable life (RUL) for aircraft engines will help to the adoption of suitable management procedures to avoid catastrophe failures and reduce financial losses. This study proposes that long-term memory neural networks (LSTMs) be utilised to enhance diagnostic and evaluation performance in settings including complicated processes, hybrid mistakes, and loud noise. The suggestion is shown and discussed using tests on the NASA Aircraft Turbophone Engine Health Surveillance Dataset. The LSTM algorithm's performance, as well as certain modifications of it, has been examined and compared. Regular LSTM outperforms the competitors, according experiments. #### 3. SYSTEM DESIGN ### **SYSTEM ARCHITECTURE:** ## **DATA FLOW DIAGRAM:** # UML DIAGRAMS USE CASE DIAGRAM: # **CLASS DIAGRAM:** A Peer Revieved Open Access International Journal www.ijiemr.org # **SEQUENCE DIAGRAM:** ### **ACTIVITY DIAGRAM:** # **Sample Test Cases** | S.no | Test Case | Excepted Result | Result | Remarks(IF
Fails) | | | | |------|--|--|--------|---|--|--|--| | 1. | User Register | If User registration successfully. | Pass | If already user
email exist then
it fails. | | | | | 2. | User Login | If User name and password is correct then it will getting valid page. | Pass | Un Register
Users will not
logged in. | | | | | 3. | Get Current
Covid Data
from USA | The covid Data we are getting from
"http://covidtracking.com/api/states/daily.csv
" if server available then we ill get data | Pass | If server not run
then we are not
able to get the
data | | | | | 4. | Test
Confirmed
plots | Covid NY Confirmed Dataset processed and generated plots | Pass | If csv file not
available the
failed | | | | | 5. | Test Clinical
data | Processing Clinical Data and bar graph
generated | Pass | If dataset not
available then it
failed | | | | | 6. | Train the
models with
ct scan
images | Train the model using a pickle and a pickle | Pass | If pickle file not
avaible then
failed | | | | | 7. | LSTM Model
executed and
processed
results | LSTM Model object defined and executed | Pass | It take more
epoch to
executes | | | | | 8. | Test the CT
Scan image | We can test ct scan image with weather the person get covid or not | Pass | If model not
available the it
failed | | | | | 9. | Admin login | Admin can login with his login credential. If success he get his home page | Pass | Invalid login
details will not
allowed here | | | | | 10. | Admin can
activate the
register users | Admin can activate the register user id | Pass | If user id not
found then it
won't login. | | | | # **RESULTS** # Home page: ## **User Register Form:** # **User Login Form:** ## **User Home Page:** A Peer Revieved Open Access International Journal www.ijiemr.org ## **Current Data:** ## current Status #### **Test Results Current:** ## **Total Test Results:** # **Clinical Data:** | | | | | 019 | | | | | | 33 | |----|------------|-----------------|--------------------|---------|-----------------------------|----------|-------------|-------|--------|-------| | | batch_date | test_name co | vid19_test_results | age hig | th_risk_exposure_occupation | diabetes | temperature | pulse | cough | sats | | 0 | 2020-06-16 | SARS-CoV-2, NAA | Negative | 15 | False | False | 37.00 | 74.0 | False | 99.0 | | 1 | 2020-06-16 | SARS COV2 NAAT | Negative | 20 | False | False | 36,75 | 88.0 | False | 96.0 | | 2 | 2020-06-16 | SARS-CoV-2, NAA | Negative | 14 | False | False | 36.95 | 83.0 | False. | 99.0 | | 3 | 2020-06-16 | SARS-CoV-2, NAA | Negative | 32 | False | False | 36.85 | 88.0 | False | 99.0 | | 4 | 2020-06-16 | SARS-CoV-2, NAA | Negative | 29 | False | False | 37.00 | 82.0 | False | 99.0 | | 5 | 2020-06-16 | SARS COV2 NAAT | Negative | 48 | True | False | 36.35 | 87.0 | False | 97.0 | | 6 | 2020-06-16 | SARS COV2 NAAT | Negative | 43 | False | False | 36.50 | 70.0 | False | 98.0 | | 7 | 2020-06-16 | SARS-CoV-2, NAA | Negative | 61 | False | False | 36.35 | 68.0 | False | 97.0 | | 8 | 2020-06-16 | SARS COV2 NAAT | Negative | 39 | False | False | 36.60 | 61.0 | False | 98.0 | | 9 | 2020-06-16 | SARS COV2 NAAT | Negative | 44 | False | False | 36.75 | 60.0 | True | 100.0 | | 10 | 2020-06-16 | SARS COV2 NAAT | Negative | 31 | False | False | 36.80 | 59.0 | False | 97.0 | | 11 | 2020-06-16 | SARS COV2 NAAT | Negative | 25 | False | False | 37.15 | 87.0 | True | 98.0 | | 12 | 2020-06-16 | SARS COV2 NAAT | Negative | 35 | False | False | 36.45 | 78.0 | True | 98.0 | | 13 | 2020-06-16 | SARS COV2 NAAT | Negative | 21 | False | False | 36.40 | 57.0 | False | NaN | # **Chest Xray image:** Training our COVID-19 detector with Keras and TensorFlow # **Clincal Covid Data:** | | batch_date | test_name | ovid19_test_resu | lts age | high_risk_exposure_occupa | tion diabete: | temperatu | re pulse | cough | sats | |----|------------|-----------------|--|---------|---------------------------|---------------|-----------|----------|-------|-------| | 0 | 2020-06-16 | SARS-CoV-2, NAA | Negative | 15 | False | False | 37.00 | 74.0 | False | 99.0 | | 1 | 2020-06-16 | SARS COV2 NAAT | Negative | 20 | False | False | 36.75 | 88.0 | False | 96.0 | | 2 | 2020-06-16 | SARS-CoV-2, NAA | Negative | 14. | False | False | 36.95 | 83.0 | False | 99.0 | | 3 | 2020-06-16 | SARS-CoV-2, NAA | Negative | 32 | False | False | 36.85 | 88.0 | False | 99.0 | | 4 | 2020-06-16 | SARS-CoV-2, NAA | Negative | 29 | False | False | 37.00 | 82.0 | False | 99.0 | | 5 | 2020-06-16 | SARS COV2 NAAT | Negative | 48 | True | False | 36.35 | 87.0 | False | 97.0 | | 6 | 2020-06-16 | SARS COV2 NAAT | Negative | 43 | False | False | 36.50 | 70.0 | False | 98.0 | | 7 | 2020-06-16 | SARS-CoV-2, NAA | Negative | 61 | False | False | 36.35 | 68.0 | False | 97.0 | | 8 | 2020-06-16 | SARS COV2 NAAT | Negative | 39 | False | False | 36.60 | 61.0 | False | 98.0 | | 9 | 2020-06-16 | SARS COV2 NAAT | Negative | 44 | False | False | 36.75 | 60.0 | True | 100.0 | | 10 | 2020-06-16 | SARS COV2 NAAT | Negative | 31 | False | False | 36.80 | 59.0 | False | 97.0 | | 11 | 2020-06-16 | SARS COV2 NAAT | Negative | 25 | False | False | 37.15 | 87.0 | True | 98.0 | | 12 | 2020-06-16 | SARS COV2 NAAT | Negative | 35 | False | False | 36.45 | 78.0 | True | 98.0 | | 13 | 2020-06-16 | SARS COV2 NAAT | Negative | 21 | False | False | 36.40 | 57.0 | False | NaN | | 14 | 2020-06-16 | SARS-CoV-2, NAA | Negative | 34 | False | False | 36.80 | 102.0 | False | 100.0 | | 15 | 2020-06-16 | SARS COV2 NAAT | Negative | 30 | False | False | 36.85 | 90.0 | False | 98.0 | | 16 | 2020-06-16 | SARS-CoV-2, NAA | Negative | 52 | False | False | 36.85 | 66.0 | False | 97.0 | | | 2000 00 00 | | Address of the Control Contro | 2.0 | W-L- | finles. | 25.05 | 04.0 | P. 12 | 00.0 | ### **CONCLUSION** This study reviews current conceptual frameworks and platforms in the area of COVID-19 issue resolution using AI-based approaches. RNN, LSTM, GAN, and ELM are some of the ways for integrating COVID-19 diagnostic systems. COVID-19 focuses on geographical difficulties, high-risk populations, and important identification and radiological issues. Using a variety of clinical and non-clinical datasets, we also offer technology for choosing relevant models to assess and evaluate the needed parameters. Using these platforms, AI professionals may help analyse big data sets, train computers to treat diseases quicker and more A Peer Revieved Open Access International Journal www.ijiemr.org algorithms, precisely, design and streamline research data. Doctors and other experts may collaborate. Although AI-based techniques for combating COVID-19 have been established, additional study is required to fully understand the benefits and limits of AI-based methods for COVID-19, and novel approaches have yet to be developed. Various tools are required at vital stages of these problems. The ultimate objective of combatting Kovid-19 is to develop a set of platforms. methodologies, approaches, technologies that can all work together to accomplish the desired outcomes and save more lives. #### **Further Enhancement** Contactless Interactions and Interfaces We used to be awestruck by touch displays and all that they could do for us. COVID-19 makes most of us hypersensitive to any disease-transmitting surface. As a result, we anticipate to see fewer touch panels and more speech and computer vision interfaces in the post-Kovid-19 era. We observed the emergence of contactless payment methods via mobile devices prior to the outbreak. However, if the number of individuals who wish to minimise their touch grows, the alternative of paying for products and services that do not involve physical contact may gain popularity. Machine Vision interfaces are already being utilised in certain establishments to apply social media filters and allow self-checkout. To reduce physical interaction, expect to see an increase in speech and image processing interfaces that detect faces and movements across many sectors. ### REFERENCES - [1] C. Huang et al., "Clinical features of patients infected with 2019 novelcoronavirus in Wuhan, China," THE LANCET, vol. 395, no. 10223,pp. 497506, 2020. - [2] N. Chen, M. Zhou, X. Dong, J. Qu, F. Gong, Y. Han, Y. Qiu, J. Wang, Y. Liu, Y. Wei, J. Xia, T. Yu, X. Zhang, and L. Zhang, ``Epidemiological - andclinical characteristics of 99 cases of 2019 novel coronavirus pneumoniain Wuhan, China: A descriptive study," Lancet, vol. 395, no. 10223, pp. 507513, Feb. 2020. - [3] D. Wang, B. Hu, C. Hu, F. Zhu, X. Liu, J. Zhang, B. Wang, H. Xiang, Z. Cheng, Y. Xiong, and Y. Zhao, "Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus infected pneumonia in Wuhan, China," Jama, vol. 323, no. 11, pp. 10611069, 2020. - [4] K. Liu, Y.-Y. Fang, Y. Deng, W. Liu, M.-F. Wang, J.-P. Ma, W. Xiao, Y.-N. Wang, M.-H. Zhong, C.-H. Li, G.-C. Li, and H.-G. Liu, "Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubeiprovince," Chin. Med. J., vol. 133, no. 9, pp. 10251031, May 2020. - [5] T. Guo et al., "Cardiovascular implications of fatal outcomes of patientswith coronavirus disease 2019 (COVID-19)," JAMA Cardiol., early access,Mar. 27, 2020, doi: 10.1001/jamacardio.2020.1017. - [6] P. Hamet and J. Tremblay, ``Articial intelligence in medicine,"Metabolism, vol. 69, pp. S36S40, Apr. 2017. - [7] M. Jamshidi, A. Lalbakhsh, S. Lot, H. Siahkamari, B. Mohamadzade, and J. Jalilian, ``A neuro-based approach to designing a Wilkinson powerdivider," Int. J. RF Microw. Comput.-Aided Eng., vol. 30, no. 3, Mar. 2020, Art. no. e22091. - [8] M. Jamshidi, A. Lalbakhsh, B. Mohamadzade, H. Siahkamari, and S. M. H. Mousavi, ``A novel neural-based approach for design of microstrip lters," AEU-Int. J. Electron. Commun., vol. 110, Oct. 2019, Art. no. 152847. - [9] M. B. Jamshidi, N. Alibeigi, A. Lalbakhsh, and S. Roshani, "An ANFISapproach to modeling a small satellite power source of NASA," inProc. IEEE 16th Int. Conf. Netw., Sens. Control (ICNSC), May 2019,pp. 459464. - [10] Y. Mintz and R. Brodie, "Introduction to articial intelligence inmedicine," Minimally.