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Abstract:  

In this paper, we give in section (1) compact description of the algorithm for solving general 

quadratic programming problems (that is, obtaining a local minimum of a quadratic function 

subject to inequality constraints) is presented. In section (2), we give practical application of 

the algorithm, we also discuss the computation work and performing by the algorithm and 

try to achieve efficiency and stability as possible as we can. In section (3), we show how to 

update the QR-factors of A1 (K), when the tableau is complementary ,we give updating to 

the LDLT-Factors of (K ) A G . In section (4) we are not going to describe a fully detailed 

method of obtaining an initial feasible point, since linear programming literature is full of 

such techniques. 

 

Introduction 

In this section we give the detailed 

outlines of the algorithm of indefinite 

quadratic programming problems. It 

references to the numbers of some 

equations and conditions appeared in the 

following equations [1-8]: 
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Practical Application of the Algorithm 

The algorithm presented above 

represents a general outline of a method 

for solving indefinite quadratic 

programming problems rather than an 

exact definition of a computer 

implementation. In this section we discuss 

the computational work performed by the 

algorithm, and try to achieve efficiency 

and stability as possible as we can. In 

doing so we follow, with slight 

modifications, the work of Gill and 

Murray which has been applied to active 

set methods since mid-seventies until now 

[7-10]. The slight modifications are made 

to cope with the new forms of the matrices 

used in the method when G is indefinite. In 

the case when G is positive (semi definite) 

the active set methods are considered to be 

equivalent, [20], pointed out. There he 

gave a detailed description of that 

equivalence. He also re-mentioned this 

equivalence [6]. The major computational 

work of the algorithm is in the solution of 

 
We do not solve them directly; instead, we 

make use of the special structure of the 

matrices involved. We use the matrices H, 

T and U defined in eqn. (5). Thus, 

accordingly the solution in eqn. (3) is 

given by: 

 
H, U, T define the inverse of the upper left 

partition of the basis matrix when the 

tableau is complementary. This calls for 

making them available at every 

complementary tableau. In other words 

they are to be updated from a 

complementary tableau to another [12]. 

 

 

The choice of S(K) and Z(K) to satisfy in 

eqns. (13) and (14), respectively is 

generally open. Here we take the choice 

given in S=Q1R-T, Z=Q2 which is, 

according to K(ZTGZ)≤K(G), is 
advantageous as far as stability is 

concerned. For the sake of making this 

section selfcontained we show how S(K) 

and Z(K) are obtained in away suitable to 

this section. Let: 



 

Vol 09 Issue11, Nov 2020                              ISSN 2456 – 5083 Page 225 

 

 

Where I the identity matrix is whose 

columns are reversed. Thus we conclude 

by saying that the computation is focused 

on using the QR factorization of  A K , 

(when the kth iteration is complementary).  

So updating these factors is required at 

each iteration when the tableau is 

complementary [25]. 

Updating the QR-Factors of 1 A(K ) 

In this section we show how to update the 

QR-factors of ( )1 A K , when the tableau 

is complementary, also we give updating 

to the LDLTFactors of (K ) A G . 

Following the stream of our discussions, 

two cases are to be considered separately. 

The case when the (k+1)th iteration results 

in a complementary tableau, and the case 

when complementarity is restored at the 

(k+r+1)th iteration after r successive non-

complementary tableaux. In the first case 

the factors of A1 (k) are updated to give 

those of ( 1) 1A K + , and this is the case 

when a column, q a say, is deleted from 

A1 (k). In the second case the factors of 

A1 (k) are used to give those of A1 

(k+r+1), and this is the case when one 

column, q a say, is deleted from A1 (k) 

and then r other columns are added to A1 

(k). We follow the same steps carried [9], 

with the appropriate modification in the 

second case. In the first case, let A1 (k) be 

the n×(Lk-1) matrix obtained by deleting 

the qth column, q a , from A1 (k). Suppose 

the QR-factorization of A12 (k) is given. 
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Updating The LDLT-Factors of (K ) 

A G 

The factors L(K )D(K )L(K )T of (K ) A G 

are updated at each iteration when the 

tableau is complementary. Near the end of 

this section we show that (1) A G is always 

positive definite (on the assumption that 

(K ) 

A G is positive semi-definite). Updating 

these factors is very stable when (K ) A G 

is positive definite as we shall see. This 

fact is counted as one of the good 

numerical features of the method. We 

consider the case when the (k+1)th 

iteration results in a complementary 

tableau. Unfortunately, in the other case 

when complementarity is restored at the 

(k+r+1)th iteration, we are unable till now 

to explore a way of using the factors of (K 

) A G in obtaining those of (K r 1) A G + + 

. However n-Lk-r, the dimension of (K r 1) 

A G + + , decreases with r, in which case 

the effort of re-factorizing (K r 1) A G + + 

might not be so much, especially when n-

Lk is itself small. This calls for choosing 

the starting L1 so that n-L1 is small. In the 

case when the number of constraints is 

greater than n, L1 is chosen to be equal to 

n; that is the initial guess x(1) is a vertex. 

With this choice (1) 0 A G = , and in the 

second iteration we might expect a 

constraint to be deleted from the active set 

(which is the case when the second 

iteration is complementary). Otherwise the 

third iteration will definitely restore 

complementarity at another vertex leaving 

(3) 0 A G = . In the former case the 

dimension of (2) A G is 1. In general the 

dimension of (K ) A G keeps on increasing 

when constraints are deleted, and updating 

the factors is straight forward as will be 

shown. On the other hand the dimension of 

(K ) A G keeps on decreasing when 

constraints are added to the active set, and 

in this case we are faced with re-

factorizing the factors. We return to the 

case when the (k+1)th iteration is 

complementary. Here we are almost 

copying the work of in eqn. (9). In this 

case, as in eqn. (25). 
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The numerical stability of this scheme is 

based on the fact that, if (K 1) A G + is 

positive definite, the element n LK 1 d − + 

must be positive. In this event in eqn. (34) 

ensures that arbitrary growth in magnitude 

cannot occur in the elements of L . Before 

ending this section we show that when the 

kth iteration and the (k+1)th iteration are 

complementary then (K 1) A G + must be 

positive definite. Let the tableau be 

complementary at the kth iteration. Let ( ) 

1 A K be the matrix whose columns 

correspond to the active constraints, and 

(K ) 0 q λ < . The increase of vq changes f 

according to 

 

 
Finding an Initial Feasible Point 

In this section we are not going to describe 

a fully detailed method of obtaining an 

initial feasible point, since linear 

programming literature is full of such 

techniques. The method of finding a 

feasible point has been resolved in linear 

programming by a technique known as 

phase 1 simplex [27]. The basis of the 

technique is to define an artificial 

objective function, namely:  set of indices 
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of constraints which are violated at the 

point x , and to minimize this function with 

respect to x , subject to the constraints 

T 0 j j a x − b ≥ , j∉v(x) . The function F

(x) is linear and is known as the sum of 

infeasibilities. If a feasible point exists the 

solution x* of the artificial problem is such 

that F (x* ) = 0 . In the case when m 

exceeds n, a non-feasible vertex is 

available as an initial feasible point to 

phase 1 and the simplex method is applied 

to minimize F (x) . This process will 

ultimately lead to a feasible vertex [28]. 

Direct application of this method to 

finding a feasible point in the case when m 

is less than n is not feasible since, although 

a feasible point may exist a feasible vertex 

will not. Under these circumstances 

artificial vertices can be defined by adding 

simple bounds to the variables, but this 

could lead to either a poor initial point, 

since some of these artificial constraints 

must be active, or exclusion of the feasible 

region. A way out of this dilemma is 

described [6-9] a number of methods 

including the above one have been 

described. Gill and Murray is 

advantageous in that it makes available the 

QR-factorization of the initial matrix of 

active constraints which is then directly 

used in our algorithm. 
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