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ABSTRACT 

Transfer learning techniques leverage pre-trained models on large-scale protein datasets to 

initialize neural network architectures for PPI prediction tasks, improving performance and 

generalization capabilities. Graph neural networks are tailored for modeling complex 

interactions in PPI networks, capturing topological properties and structural characteristics for 

more accurate predictions.  

Furthermore, the integration of multi-omics data, including genomics, transcriptomics, and 

proteomics, provides a holistic view of cellular processes, augmenting the predictive accuracy 

of models. Efforts to improve interpretability and explainability enable researchers to 

understand the underlying biological mechanisms driving predicted interactions, facilitating 

the translation of computational predictions into actionable insights.  

Standardized benchmarks and evaluation protocols ensure consistent assessment of PPI 

prediction methods, driving innovation and facilitating comparisons across different 

approaches. By integrating unsupervised and supervised machine learning frameworks, 

researchers can develop more robust and accurate models for predicting protein-protein 

interactions, contributing to a deeper understanding of cellular processes and disease 

mechanisms. 

KEYWORDS: Supervised Machine, Learning Frameworks, Protein-Protein Interaction 

Prediction 
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INTRODUCTION  

Protein-protein interaction (PPI) prediction 

serves as a cornerstone in bioinformatics 

and computational biology, offering a 

plethora of applications across various 

domains. One of the primary uses of PPI 

prediction lies in advancing our 

understanding of biological systems by 

elucidating the intricate networks of 

interactions between proteins. These 

interactions govern numerous cellular 

processes, including signal transduction, 

gene regulation, metabolic pathways, and 

immune responses. By predicting protein 

interactions, researchers can unravel the 

underlying mechanisms driving these 

biological processes, identify key players in 

cellular pathways, and gain insights into the 

dynamics and regulation of protein 

complexes. Moreover, PPI prediction 

facilitates the exploration of protein 

interaction networks at a genome-wide 

scale, enabling the systematic analysis of 

protein function, evolution, and disease 

mechanisms. 

In addition to advancing our understanding 

of biological systems, PPI prediction plays 

a pivotal role in drug discovery and 

development by identifying novel drug 

targets and therapeutic candidates. Proteins 

involved in disease pathways often interact 

with each other to regulate cellular 

functions or mediate pathogenic processes. 

By predicting protein interactions 

associated with disease-related pathways or 

complexes, researchers can pinpoint 

potential drug targets for intervention. 

Furthermore, PPI prediction enables the 

identification of protein-protein interfaces 

and binding sites, facilitating the design and 

optimization of small-molecule inhibitors, 

peptides, or biologics that disrupt or 

modulate protein interactions. These 

computational approaches complement 

experimental screening efforts and 

accelerate the discovery of candidate drugs 

for treating various diseases, including 

cancer, infectious diseases, 

neurodegenerative disorders, and 

autoimmune conditions. 

Moreover, PPI prediction serves as a 

valuable tool in systems biology and 

network medicine for modeling and 

simulating complex biological systems. 

Protein interaction networks represent the 

structural and functional organization of 

cellular processes, enabling the integration 

of diverse data types, such as gene 

expression, protein localization, and 

phenotype data, into unified network 

representations. By incorporating predicted 

protein interactions into network models, 

researchers can simulate the behavior of 

biological systems, predict cellular 
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responses to perturbations, and uncover 

emergent properties of complex networks. 

Furthermore, PPI prediction facilitates the 

identification of functional modules, 

pathways, and regulatory circuits within 

protein interaction networks, providing 

insights into the modular organization and 

hierarchical structure of biological systems. 

These network-based approaches offer a 

holistic view of cellular processes and 

enable the elucidation of genotype-

phenotype relationships, disease 

mechanisms, and drug responses in 

complex biological systems. 

Furthermore, PPI prediction plays a crucial 

role in personalized medicine and precision 

oncology by identifying patient-specific 

biomarkers and therapeutic targets. Cancer 

is characterized by aberrant signaling 

pathways and dysregulated protein 

interactions that drive tumor initiation, 

progression, and metastasis. By analyzing 

protein interaction networks in cancer cells 

or patient samples, researchers can identify 

key driver genes, oncogenic signaling 

pathways, and vulnerabilities associated 

with specific cancer subtypes or patient 

populations. Moreover, PPI prediction 

facilitates the identification of biomarkers 

predictive of disease progression, treatment 

response, and patient outcomes, enabling 

personalized treatment strategies tailored to 

individual patients' molecular profiles. 

Additionally, PPI prediction aids in the 

discovery of synthetic lethal interactions, 

where the simultaneous inhibition of two 

interacting proteins selectively kills cancer 

cells with specific genetic mutations while 

sparing normal cells, offering promising 

opportunities for developing targeted 

cancer therapies. 

Furthermore, PPI prediction serves as a 

valuable resource for functional annotation 

and prioritization of genes and proteins in 

genomic and proteomic studies. With the 

exponential growth of genomic and 

proteomic data, computational methods are 

indispensable for interpreting the functional 

significance of genes and proteins and 

prioritizing candidates for further 

experimental validation. By predicting 

protein interactions and functional 

associations, researchers can annotate the 

biological roles and functions of 

uncharacterized genes and proteins, infer 

functional modules and pathways, and 

prioritize candidate genes or proteins for 

functional studies. Additionally, PPI 

prediction aids in the interpretation of 

genome-wide association studies (GWAS) 

and identification of disease-associated 

genes and variants by integrating PPI 

networks with genetic and phenotypic data. 

These integrative approaches provide 
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insights into the molecular mechanisms 

underlying complex traits and diseases and 

facilitate the discovery of potential 

therapeutic targets and biomarkers for 

precision medicine. 

Moreover, PPI prediction has applications 

beyond biology and healthcare, spanning 

fields such as biotechnology, agriculture, 

and environmental science. In 

biotechnology, PPI prediction facilitates the 

design and engineering of protein 

complexes and molecular machines for 

biocatalysis, biofuel production, and 

pharmaceutical manufacturing. By 

predicting protein interactions and 

interfaces, researchers can engineer protein 

complexes with desired functions, optimize 

enzyme-substrate interactions, and enhance 

the efficiency and specificity of 

biotechnological processes. In agriculture, 

PPI prediction aids in the characterization 

of plant-pathogen interactions, symbiotic 

relationships, and stress responses, 

enabling the development of crops with 

improved yield, resilience, and nutritional 

value. Additionally, PPI prediction 

contributes to environmental science by 

elucidating microbial interactions, 

biogeochemical cycles, and ecosystem 

dynamics, facilitating the design of 

bioremediation strategies, microbial 

consortia, and synthetic ecosystems for 

environmental remediation and 

sustainability. 

FEATURE ENGINEERING AND 

REPRESENTATION LEARNING: 

Effective feature engineering is crucial for 

developing accurate PPI prediction models. 

Integrating unsupervised techniques for 

feature extraction contributes to a more 

comprehensive representation of protein 

characteristics. Moreover, recent advances 

in representation learning, such as word 

embeddings and graph embeddings, have 

demonstrated significant improvements in 

capturing the inherent relationships within 

biological data. These embeddings can be 

leveraged to enhance the feature space used 

by supervised models, thereby improving 

their ability to discern complex patterns in 

PPI networks. 

Feature engineering and representation 

learning are two fundamental aspects of 

machine learning that play a critical role in 

extracting meaningful information from 

raw data, enabling the development of 

robust and accurate predictive models 

across various domains. Feature 

engineering involves the process of 

selecting, transforming, and creating new 

features from the raw data to improve the 

performance of machine learning 

algorithms. On the other hand, 
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representation learning focuses on 

automatically learning feature 

representations directly from the data, often 

through deep learning architectures, 

without the need for manual feature 

engineering. Both feature engineering and 

representation learning techniques are 

essential for effectively capturing the 

underlying patterns and structures within 

data, enabling the development of models 

that can make accurate predictions or 

decisions. 

Feature engineering encompasses a wide 

range of techniques aimed at transforming 

raw data into a format that is more suitable 

for machine learning algorithms. One 

common approach in feature engineering 

involves selecting relevant features that are 

most informative for the task at hand while 

discarding irrelevant or redundant features 

that may introduce noise or increase 

computational complexity. This process 

often involves domain knowledge and 

expertise to identify features that capture 

the essential characteristics of the data and 

are predictive of the target variable. For 

example, in natural language processing 

tasks, features such as word frequency, 

syntactic structure, and semantic similarity 

are commonly used to represent text data, 

while in image recognition tasks, features 

such as pixel intensity, color histograms, 

and texture descriptors may be used to 

represent image data. 

In addition to feature selection, feature 

engineering also involves transforming raw 

features into a more meaningful 

representation through techniques such as 

scaling, normalization, and encoding. 

Scaling and normalization techniques 

ensure that features are on a similar scale, 

preventing features with larger magnitudes 

from dominating the learning process and 

improving the convergence of optimization 

algorithms. Encoding techniques, such as 

one-hot encoding and label encoding, are 

used to represent categorical variables as 

numerical values that can be processed by 

machine learning algorithms. Furthermore, 

feature engineering may also involve 

creating new features through mathematical 

transformations, interactions, or 

aggregations of existing features to capture 

higher-order relationships or patterns 

within the data. 

While traditional feature engineering 

techniques have been widely used and 

effective in many applications, they often 

rely on manual intervention and domain 

expertise, which can be time-consuming 

and may not always capture the full 

complexity of the data. Representation 

learning, on the other hand, offers a more 

automated and data-driven approach to 
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feature extraction by learning feature 

representations directly from the data. 

Representation learning algorithms, 

particularly deep learning architectures 

such as convolutional neural networks 

(CNNs) and recurrent neural networks 

(RNNs), can automatically learn 

hierarchical representations of the input 

data through multiple layers of nonlinear 

transformations. 

One of the key advantages of representation 

learning is its ability to capture complex 

and abstract features from raw data, 

enabling the development of models that 

can effectively generalize to unseen data 

and tasks. For example, in image 

recognition tasks, CNNs can learn 

hierarchical representations of image 

features, starting from low-level features 

such as edges and textures and progressing 

to higher-level features such as object 

shapes and structures. Similarly, in natural 

language processing tasks, RNNs can learn 

distributed representations of word 

sequences, capturing syntactic and 

semantic relationships between words in a 

sentence. 

Furthermore, representation learning 

techniques such as word embeddings and 

autoencoders have been widely used to 

learn dense, low-dimensional 

representations of high-dimensional data, 

facilitating more efficient and effective 

processing by machine learning algorithms. 

Word embeddings, for example, represent 

words as dense vectors in a continuous 

vector space, capturing semantic 

similarities and relationships between 

words. Autoencoders, on the other hand, 

learn to reconstruct the input data from a 

compressed representation, effectively 

capturing the most salient features of the 

data while discarding noise and irrelevant 

information. 

Despite the advantages of representation 

learning, it is not without its challenges. 

One of the main challenges is the need for 

large amounts of labeled data to train deep 

learning models effectively. Deep learning 

architectures, particularly deep neural 

networks, typically require large datasets to 

learn complex feature representations and 

avoid overfitting. However, labeled data is 

often scarce or expensive to obtain, 

particularly in domains where manual 

annotation is required. As a result, 

representation learning techniques may not 

always be feasible or practical for all 

applications, especially in domains with 

limited labeled data. 

Another challenge of representation 

learning is the interpretability of learned 

representations. While deep learning 

models are capable of learning highly 
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discriminative features from raw data, 

understanding and interpreting these 

learned representations can be challenging. 

Unlike traditional feature engineering 

techniques, which often result in 

interpretable and human-readable features, 

deep learning models learn complex and 

abstract representations that may be 

difficult to interpret or understand. As a 

result, the black-box nature of deep learning 

models can hinder their adoption in 

domains where interpretability and 

transparency are essential, such as 

healthcare and finance. 

Despite these challenges, representation 

learning techniques continue to advance 

rapidly, driven by innovations in deep 

learning architectures, optimization 

algorithms, and computational resources. 

Recent developments such as self-

supervised learning, generative adversarial 

networks (GANs), and transformer 

architectures have demonstrated significant 

improvements in feature learning and 

representation capabilities, enabling the 

development of more powerful and 

generalizable models across a wide range of 

domains. Furthermore, techniques such as 

transfer learning and domain adaptation 

have been proposed to address the 

challenges of labeled data scarcity and 

domain shift, enabling the transfer of 

knowledge learned from one task or domain 

to another. 

NETWORK-BASED APPROACHES: 

Network-based methods have gained 

prominence in PPI prediction, leveraging 

graph theory to represent and analyze 

protein interactions. Unsupervised network 

clustering identifies densely connected 

subgraphs, suggesting potential protein 

complexes or pathways. Supervised 

approaches, on the other hand, can utilize 

graph-based features to predict interactions 

between proteins. Integrating both 

unsupervised and supervised network-

based techniques allows for a more 

comprehensive understanding of the 

underlying biological systems, capturing 

both local and global interactions within 

protein networks. 

Network-based approaches represent a 

powerful paradigm in various fields, 

including biology, social science, computer 

science, and beyond. These approaches 

leverage the representation of entities and 

their interactions as networks or graphs, 

where nodes represent entities, and edges 

represent relationships or interactions 

between them. Network-based approaches 

provide a versatile framework for analyzing 

complex systems, enabling the extraction of 

valuable insights into the structure, 



 

Vol 11 Issue 12, DEC 2022                              ISSN 2456 – 5083                                                     Page 2366 

function, and dynamics of interconnected 

entities. By leveraging network 

representations, researchers can uncover 

hidden patterns, identify influential nodes, 

detect communities, and predict 

interactions, facilitating advancements in 

diverse domains. 

In the realm of biology, network-based 

approaches have revolutionized our 

understanding of complex biological 

systems, including cellular processes, 

protein-protein interactions (PPIs), gene 

regulatory networks, and disease 

mechanisms. Biological systems are 

inherently networked, with molecules such 

as proteins, genes, and metabolites 

interacting with each other to carry out 

essential functions. Network-based 

approaches enable the integration of 

heterogeneous biological data sources, 

including genomic, transcriptomic, 

proteomic, and metabolomic data, into 

unified network representations, facilitating 

the exploration of complex relationships 

and interactions within biological systems. 

For example, protein interaction networks 

capture physical interactions between 

proteins, providing insights into the 

functional organization of cellular 

processes and the mechanisms underlying 

diseases. By analyzing the topology of 

protein interaction networks, researchers 

can identify critical proteins, pathways, and 

modules that play key roles in cellular 

functions and disease pathways, paving the 

way for the discovery of novel drug targets 

and therapeutic interventions. 

Furthermore, network-based approaches 

have been instrumental in elucidating the 

genetic basis of complex diseases and 

understanding the interplay between genes, 

proteins, and phenotypes. Genome-wide 

association studies (GWAS) have identified 

thousands of genetic variants associated 

with various diseases and traits, but 

interpreting the functional implications of 

these variants remains challenging. 

Network-based approaches offer a 

powerful framework for prioritizing 

candidate disease genes and variants by 

integrating GWAS data with protein 

interaction networks, gene expression data, 

and functional annotations. By mapping 

disease-associated genes onto protein 

interaction networks, researchers can 

identify disease modules and pathways 

enriched for genetic variants, providing 

insights into the molecular mechanisms 

underlying diseases and suggesting 

potential therapeutic targets. Moreover, 

network-based approaches enable the 

prediction of novel disease-associated 

genes and interactions through guilt-by-

association principles, where genes with 
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similar network properties or functional 

annotations to known disease genes are 

prioritized as candidate disease genes. 

CHALLENGES AND FUTURE 

DIRECTIONS: 

Despite the progress made in integrating 

unsupervised and supervised machine 

learning frameworks for PPI prediction, 

challenges persist. The inherent complexity 

and dynamic nature of biological systems 

pose difficulties in accurately modeling 

protein interactions. Additionally, the 

scarcity of high-quality labeled datasets 

limits the training of robust supervised 

models. Future research should focus on 

addressing these challenges, exploring 

advanced machine learning techniques, and 

leveraging emerging technologies like deep 

learning to further enhance the predictive 

capabilities of PPI models. 

The integration of unsupervised and 

supervised machine learning frameworks 

represents a promising avenue for 

advancing protein-protein interaction 

prediction. By combining the strengths of 

unsupervised methods in extracting 

meaningful patterns from biological data 

with the precision of supervised approaches 

in learning from labeled datasets, 

researchers can develop more accurate and 

reliable models. As technology continues to 

evolve and biological data becomes more 

abundant, the synergy between 

unsupervised and supervised machine 

learning is poised to play a pivotal role in 

unraveling the intricacies of protein 

interactions and contributing to our broader 

understanding of cellular processes. 

 

Challenges and future directions in various 

fields, including but not limited to 

technology, science, healthcare, and 

society, present intricate problems that 

demand innovative solutions to navigate a 

rapidly evolving landscape. In the realm of 

technology, the relentless pursuit of 

advancements has led to a plethora of 

challenges, including cybersecurity threats, 

data privacy concerns, and ethical 

dilemmas surrounding artificial 

intelligence (AI) and automation. As 

technology becomes increasingly 

integrated into every aspect of our lives, 

ensuring the security and privacy of data, 

mitigating the risks associated with 

emerging technologies, and addressing the 

ethical implications of AI and automation 

remain paramount. Moreover, the rapid 

pace of technological innovation 

necessitates continuous adaptation and 

upskilling of the workforce to remain 

competitive in the digital economy, 
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highlighting the importance of lifelong 

learning and education. 

In the field of science, challenges abound in 

addressing pressing global issues such as 

climate change, biodiversity loss, and 

infectious diseases. Climate change poses 

existential threats to ecosystems, 

economies, and societies worldwide, 

necessitating urgent action to mitigate 

greenhouse gas emissions, transition to 

renewable energy sources, and build 

resilience to climate impacts. Biodiversity 

loss, driven by habitat destruction, 

pollution, and climate change, jeopardizes 

ecosystem services essential for human 

well-being, necessitating conservation 

efforts, sustainable land management 

practices, and global cooperation to protect 

and restore biodiversity. Furthermore, 

infectious diseases, such as the COVID-19 

pandemic, highlight the interconnectedness 

of global health security and the need for 

robust healthcare systems, pandemic 

preparedness, and equitable access to 

vaccines and treatments to address 

emerging infectious threats effectively. 

In the realm of healthcare, challenges 

abound in providing accessible, affordable, 

and high-quality healthcare to all, 

particularly in the face of demographic 

changes, rising healthcare costs, and 

disparities in healthcare access and 

outcomes. Aging populations and the 

burden of chronic diseases pose significant 

challenges to healthcare systems 

worldwide, necessitating innovative 

approaches to promote healthy aging, 

prevent disease, and manage chronic 

conditions effectively. Moreover, the 

COVID-19 pandemic has exposed 

weaknesses in healthcare infrastructure, 

supply chains, and response capabilities, 

highlighting the need for resilient 

healthcare systems, pandemic 

preparedness, and investments in public 

health infrastructure and workforce 

capacity. Addressing healthcare disparities, 

improving access to healthcare services, 

and advancing health equity are critical to 

ensuring that all individuals have the 

opportunity to lead healthy and fulfilling 

lives. 

TYPE OF PROTEIN-PROTEIN 

INTERACTION PREDICTION 

Protein-protein interaction (PPI) prediction 

encompasses various computational 

methodologies aimed at elucidating the 

interactions between proteins within 

biological systems. These predictions serve 

as invaluable tools in understanding cellular 

processes, identifying novel drug targets, 

and unraveling disease mechanisms. 

Among the diverse range of methods 

employed for PPI prediction, several key 
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types stand out, each with distinct 

approaches and applications. Sequence-

based prediction methods constitute one 

significant category, leveraging 

information encoded in amino acid 

sequences to infer potential interactions 

between proteins. These methods typically 

involve the extraction of features from 

protein sequences, such as amino acid 

composition, physicochemical properties, 

and evolutionary conservation, followed by 

the training of machine learning models, 

such as support vector machines (SVMs) or 

neural networks, to classify interacting and 

non-interacting protein pairs. Sequence-

based prediction approaches are 

advantageous due to their simplicity, 

scalability, and applicability to a wide range 

of proteins, making them suitable for large-

scale PPI prediction tasks. However, they 

may struggle to capture complex interaction 

patterns or structural information that 

influence protein interactions, limiting their 

predictive accuracy in certain cases. 

In contrast, structure-based prediction 

methods exploit information derived from 

protein structures to predict protein-protein 

interactions. These methods typically 

involve the modeling of protein structures 

using techniques such as homology 

modeling, molecular docking, or protein 

threading, followed by the analysis of 

intermolecular contacts, binding interfaces, 

and energy calculations to predict potential 

protein complexes and interactions. 

Structure-based prediction approaches 

offer the advantage of capturing detailed 

structural information and spatial 

constraints that govern protein interactions, 

enabling the prediction of binding 

affinities, interface residues, and complex 

stoichiometry. However, they often require 

accurate protein structure predictions, 

which may be challenging for proteins with 

no experimentally determined structures or 

those exhibiting conformational flexibility 

or disorder. 

Furthermore, network-based prediction 

methods leverage information from protein 

interaction networks to predict protein-

protein interactions. These methods exploit 

the topology, connectivity, and community 

structure of protein interaction networks to 

infer potential interactions between 

proteins based on their network properties 

and local neighborhood. Network-based 

prediction approaches often involve graph-

based algorithms, such as random walk, 

label propagation, or network embedding 

techniques, to predict missing edges or 

interactions in protein interaction networks. 

Additionally, machine learning models, 

such as graph neural networks or deep 

learning architectures, can be trained on 
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network-based features to predict protein 

interactions and identify functionally 

related protein modules or complexes. 

Network-based prediction methods offer 

the advantage of capturing global network 

properties and context-dependent 

relationships between proteins, enabling the 

prediction of indirect or context-specific 

interactions that may not be apparent from 

sequence or structure alone. However, they 

may suffer from limitations in data 

availability, network incompleteness, and 

biases in network construction, which can 

affect the reliability and generalization 

performance of prediction models. 

Moreover, integrative prediction methods 

combine multiple data modalities, 

including sequence, structure, expression, 

and functional annotations, to improve the 

accuracy and coverage of PPI predictions. 

These methods leverage complementary 

information from diverse data sources to 

generate consensus predictions that are 

more robust and reliable than individual 

predictions from single data types. 

Integrative prediction approaches often 

involve the integration of heterogeneous 

data sources using machine learning 

algorithms, statistical models, or network-

based approaches to generate integrated 

feature representations or consensus scores 

for predicting protein-protein interactions. 

Additionally, meta-learning techniques, 

such as ensemble methods or transfer 

learning, can be employed to combine 

predictions from multiple models or data 

sources to improve prediction performance 

further. Integrative prediction methods 

offer the advantage of leveraging 

complementary information from diverse 

data sources, enhancing the accuracy and 

reliability of PPI predictions. However, 

they may require sophisticated data 

integration and model fusion techniques, as 

well as comprehensive benchmarking and 

validation, to ensure the robustness and 

generalization performance of integrated 

prediction models. 

CONCLUSION 

The discovery of PPIs plays a vital role in 

Bioinformatics and Biomedical Science. 

Through PPIs, researchers infer the cellular 

mechanisms of proteins. Exploration of 

novel PPIs facilitates the drug discovery to 

identify therapeutic agents for various 

human ailments. Only a tiny fraction of the 

expected number of PPI concerning the 

entire protein corpus of a species is 

experimentally validated, that hinders the 

ad- vancement of respective downstream 

applications in Bioinformatics. Therefore, 

com- putational approaches complement 

biological experiments for alleviating 

deficiencies in the PPI prediction. These 
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methodologies require different kinds of 

features, that play an indispensable role in 

deploying a machine learning framework 

for PPI pre- diction. Due to the increasing 

richness of information, GO is one of the 

most favored feature sources for various 

bioinformatic analyses, including PPI 

prediction. 
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