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Abstract: 
These are common retinal diseases will damage the retina. Every person needs to take care 
of their eyes based on the conditions. Suppose the retina got damaged and identified in the 
later stages. In that case, the patient may lose eyesight gradually, leading to permanent 
eye loss if the patient does not take any prevention methods. Detecting and diagnosing 

retinal diseases becomes complex for traditional machine learning (ML) algorithms This 
paper discusses the comparative performance of various ML algorithms and analyzes the 
performance in terms of disease detection rate. The ML models applied to two benchmark 
datasets from Kaggle and UCI repositories. 
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Introduction 
The eyes are the main organs in the 
human body. In human life, vision and 
healthy eyes play a significant role in 
daily activities. The retina is one of the 
essential parts of the human eye. If the 
retina gets damaged, immediate 
medication required for the patient. Early 
detection of retinal diseases is a 

challenging task. Diseases like Choroidal 
Neovascularization (CNV), Diabetic 
Macular Edema (DME), DRUSEN, and 
NORMAL class in Optical Coherence 
Tomography (OCT) images.  The eyes are 
a significant part of the human body, 
providing the vision to do daily activities. 
Retinal diseases show a substantial 
impact on human life, which causes 
permanent vision loss if the disorders 
don't detect in the early stages. Based on 
several factors, the causes of retinal 
diseases include age, gender, daily 
activities, job or business, etc. Some 
environmental conditions also affect the 
human retina based on dust, 

temperature, daylight, and various factors 
[1]. Retinal diseases such as CNV, DME, 
DRUSEN, and regular are some illnesses 
that affect people vision [2-6]. Figure 1 
shows the types of retinal diseases that 
can show the abnormalities in the given 
OCT images. 
 

 
Figure 1: Showing Retinal Diseases 

 

 Figure 2 Layers present in the Retinal 
OCT Image (Sample) 
 
There are 9 layers present in OCT retinal 
images. In figure 2 shows the types of 

layers present in OCT retinal images. 
Diabetic Macular Edema (DME) [7] is an 
eye disease that can occur with diabetic 
retinopathy that causes the lack of fluid 
in the retina's center. Several artificial 
intelligence (AL) and Machine Learning 
(ML) algorithms are used to diagnose and 
detect retinal diseases. In the retina, the 
macula is a significant part that shows 
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the nearest objects and helps to identify 

the faces and text. Based on the retinal 
issues, the macula significantly impacts 
vision if mishandled. Sometimes it takes 
work to find or diagnose AMD early 
because of its asymptomatic nature. Over 
the days, this may cause vision loss in 
both eyes. Generally, the loss of central 
vision may not cause complete vision 
loss, but this may impact the daily 
activities of human life. DME mainly 
affects older people more than 60+ years. 
Drusen is an eye disease that forms 
small yellow deposits. These deposits 
may destroy central vision if it is not 
detected in the early stages. This paper 
describes various deep-learning 

algorithms that classify retinal diseases 
using OCT images. 
 
Literature Review 
P. Seebock et al. [1] proposed an 
unsupervised method that finds 
anomalies in the retinal OCT images. The 
dry and wet AMD OCT samples used for 
evaluation results. The auto-encoder is 
applied on typical, dry AMD, and wet 
AMD OCT images to train the OCT 
images. The proposed approach acquired 
an accuracy of 81.4%, and the ROC 
curve is 0.94.  W. A. Al et al. [2] proposed 
a policy-based redesigned model to solve 
various issues in localization based on 

optimal policy. The performance of the 
proposed approach increased by 
combining the reinforcement learning 
that needs to show the optimal behavior.  
 
X. Li et al. [3] proposed an automated 
diagnosis approach that finds retinal 
diseases using fundus images. The 
proposed approach combined with a 
feature-based softmax layer increases the 
disease detection rate. The proposed 
approach has been applied to two 
publicly available OCT images.  
 
Z. Yan et al. [4] proposed the automated 
segmented approach that segments the 

retinal images using eye-based diseases. 
The automated model combined with 
various segmented approaches 
significantly impacts finding the overall 
vessel depth. The automated approach is 
applied to three datasets and gives better 
vessel segmentation.  
 

Gokhan Altan [5] proposed the lightweight 

CNN approach that classifies retinal 
diseases based on macular edema (ME). 
The automated models find the tiny 
pathologies on OCT images using DL 
algorithms. The proposed CNN model 
called DeepOCT uses the feature learning 
and classification phases. 
 
Image Segmentation Models for 
Retinal Diseases 
The proposed model divides the text from 
a background in images. V. 
Badrinarayanan et al. [20] proposed a 
novel and fully developed CNN that can 
be used for semantic pixel-based 
segmentation using SegNet. The 

proposed model contains an encoder and 
decoder combined with a pixel-based 
classification model. The proposed 
network consists of 13 conv_layers in the 
VGG-16 network. Thus, the SegNet 
provides high performance in terms of 
processing time and the most efficiency. 
Y. Yuan et al. [21] proposed the 
automated segmentation model applied 
to dermoscopic images. The automated 
model was developed with a 19-layer 
deep CNN that efficiently processes the 
testing and training data. A loss function 
is developed based on Jaccard distance 
to remove the re-weighting for the 
segmentation of images to remove the 

foreground and background pixels. J. Fu 
et al. [22] proposed the Stacked 
Deconvolutional Network (SDN) 
segmentation approach that processes 
any image. SDN contains several shallow 
deconvolutional networks called SDN 
units, mainly used to recover the 
localization data. Noh et al. [23] proposed 
the typical segmentation approach for 
de-convolution. DeConvNet contains two 
components; an encoder convolutional 
layer obtained from VGG 16 and 
proposed network input the feature 
vector and creates a map of pixel 
accurate class estimations. Thus the 
remaining layers, such as de-convolution 

and unpooling layers used to find the 
pixel-wise class labels and estimate 
segmentation masks. 
 
Convolutional Neural Network (CNN) 
CNN shows the massive performance in 
classifying retinal diseases based on the 
given OCT input samples. CNN focused 
on designing the Multilayer Perceptrons 
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(MLPs) to process the 2D retinal images. 

CNN model mainly combines the retinal 
OCT images as a network and develops 
the deep neural network (DNN) [24]. 
Based on the convolution layer, the 
algorithm processes the dataset. The 
CNN contains various convolutions, 
activation, pooling, and flattening layers. 
Figure 2 shows the layers present in CNN 
and classify the retinal diseases by using 
several layers. 
 

 

 
Figure : CNN Architecture 

 
Dataset Description 

The benchmark dataset-1 is obtained 
freely from Kaggle online source consists 
of 84495 grayscale images labeled with 4 
classes such as NORMAL, CNV, DME, and 
DRUSEN [13]. The dataset consists of 
10000 training images, 2500 images for 
one disease and testing set consists of 
74495 OCT images. Another dataset used 
for experimental analysis is also OCT 
images data contains 110,657 training 
images and 10k testing images. This 
dataset is collected from UCI repository.  
 

Table 1: Dataset Description 

Class Training Set Testing Set 

CNV 21,212 2500 

DME 23,878 2500 

Drusen 13,876 2500 

Normal 15,529 2500 

 
Table 2: Dataset Description 

Class Training Set Testing Set 

CNV 38,987 2500 

DME 31,345 2500 

Drusen 17,967 2500 

Normal 22,358 2500 

 
Experimental Analysis 
This section focused on finding the model 
performance which was applied on two 
benchmark datasets. Confusion matrix is 
applied to analyze the performance of DL 
algorithms.  
 
Accuracy: Accuracy shows the total 
number of prediction that is correct. 
Actual and predicted values are correct. 
It is represented with below formula. 
 

 
Precision (P): Precision or the positive 
predictive value, is the fraction of positive 
values out of the total predicted positive 
instances. In other words, precision is 
the proportion of positive values that 
were correctly identified: 
 

 
Sensitivity (Sn): Sensitivity, recall, or the 
TP rate (TPR) is the fraction of positive 
values out of the total actual positive 

instances (i.e., the proportion of actual 
positive cases that are correctly 
identified): 

 
Specificity (Sp): Specificity gives the 
fraction of negative values out of the total 
actual negative instances. In other 
words, it is the proportion of actual 
negative cases that are correctly 
identified. The FP rate is given by (1 – 
specificity): 
 

 
Conclusion 
This paper mainly focused on 
classification of retinal diseases based on 
the detection and diagnosis of OCT 
images. Retinal Optical Coherence 
Tomography (OCT) images are used to 
find the diseases based on the features of 
every disease. In this paper, several novel 
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approaches are discussed and identified 

the various issues in detecting the retinal 
diseases such as age-related macular 
degeneration (AMD), diabetic macular 
edema (DME), Drusen, choroidal 
neovascularization (CNV) and other types 
of retinal diseases that shows the impact 
on human eyes. Also this paper focused 
on applying several deep learning (DL) 
algorithms on various OCT images and 
retinal datasets gives the performance of 
various algorithms. 
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