

Vol 09 Issue12, Dec2020 ISSN 2456 – 5083 www.ijiemr.org

COPY RIGHT

2020IJIEMR.Personal use of this material is permitted. Permission from IJIEMR must

be obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted

component of this work in other works. No Reprint should be done to this paper, all copy

right is authenticated to Paper Authors

IJIEMR Transactions, online available on 27th Dec2020. Link

:http://www.ijiemr.org/downloads.php?vol=Volume-09&issue=ISSUE-12

DOI: 10.48047/IJIEMR/V09/I12/113

Title: Soft Computing Impacts in Resolving Deadlock Issues.

Volume 09, Issue 12, Pages: 684-690

Paper Authors

Mr. Mohammed Bakhtawar Ahmed, Mr. Debojit Das

USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER

To Secure Your Paper As Per UGC Guidelines We Are Providing A Electronic

Bar Code

Vol 09 Issue12, Dec2020 ISSN 2456 – 5083 Page 684

Soft Computing Impacts in Resolving Deadlock Issues

Mr. Mohammed Bakhtawar Ahmed
Assistant Professor, Amity University Chhattisgarh, Raipur

bakhtawar229@gmail.com

Mr. Debojit Das
Assistant Professor, Vivekanand Mahavidyalaya, Raipur

debojit.das2707@gmail.com

Abstract—Distributed nature of transactions arising at different sites and needing resources from

diverse locations pose various operational problems, such as deadlocks, concurrency and data

recovery. A deadlock may occur when a transaction enters into wait state that request resource from

other blocked transactions. Deadlock detection and resolving is very difficult in a distributed

database system because no controller has complete and current information about the system and

data dependencies. In this paper, an enhanced technique for deadlock resolution is presented, which

minimizes the abortion or waiting of the selected victim transactions.

I. INTRODUCTION
Deadlock is one of the most serious difficulties

in multitasking concurrent programming

systems. The deadlock problem becomes further

complicated when the underlying system is

distributed and when tasks have timing

limitations. Deadlock is a system state in which

every process in some group requests resources

from other processes in the group, and then

waits indefinitely for these requests to be

satisfied [1]. Deadlock is an undesirable

situation; some of the consequences of deadlock

are: throughput of the system is affected;

utilization of the involved resources decreases

to

zero; deadlock increases with deadlock

persistence time; and deadlock cycles do not

terminate by themselves until properly detected

and resolved [2], [3]. The deadlock problem is

intrinsic to distributed database system which

employs locking as its concurrency control

algorithm. Concurrency control and deadlock

handling are the most important problems that

must have a powerful attention when sharing

information in distributed systems [1].

Deadlock resolution requires at least one of the

transactions causing the deadlock to release

locks. This involves a partial rollback, lock de-

escalation, or most commonly a transaction

termination [3]. The throughput of the entire

database system depends on the efficiency and

accuracy of the deadlock detection and

resolution algorithms. The correctness of a

deadlock algorithm depends on two conditions.

First, every deadlock must be detected

eventually. This constitutes the basic progress

property in which any solution must have.

Second, if a deadlock is detected, it must indeed

exist (safety property) [4]. Incorrectly detected

deadlocks due to message delays and out-of-

date wait-for-graphs (WFGs) have been termed

phantom deadlocks. The main disadvantage of

deadlock detection schemes is the additional

overhead incurred due to detection of cycles in

the graph and abortion and restart of

transactions upon detection of deadlocks. The

distributed detection strategies may have

additional overhead due to the inter site message

transfers. Selection of the transaction to be

aborted adds to the complexity of the scheme.

 There are four techniques regularly

engaged to deal with deadlocks in database

systems: ignore the problem, deadlock

mailto:debojit.das2707@gmail.com

Vol 09 Issue12, Dec2020 ISSN 2456 – 5083 Page 685

detection, deadlock prevention and deadlock

avoidance. Ignoring deadlocks is the easiest

scheme to implement. Deadlock detection

attempts to locate and resolve deadlocks.

Deadlock avoidance describes techniques that

attempt to determine if a deadlock will occur at

the time a resource is requested and reacts to the

request in a manner that avoids the deadlock.

Deadlock prevention is the structuring of a

system in such a manner that one of the

necessary conditions for deadlock cannot occur.

Each solution category is suited to a specific

type of environment and has advantages and

disadvantages, see [4], [5] for more details.

 In general, database deadlock resolution

involves the following nontrivial steps [6]-[9]:

1) Select a victim (the transaction to be aborted)

for the optimal resolution of a deadlock (this

step may be computationally tedious).

2) Abort the victim, release all the resources

held by it, restore all the released resources to

their previous states, and grant the released

resources to deadlocked processes.

3) Delete all the deadlock detection information

concerning the victim at all sites. Execution of

the second step is complicated in environment

where a process can simultaneously wait for

multiple resources because the allocation of a

released resource to another process can cause a

deadlock. The third step is even more critical

because if the information about the victim is

not deleted quickly and properly, it may be

counted in several other (false) cycles, causing

detection of false deadlocks. To be safe, during

the execution of the second and third steps, the

deadlock detection process (atleast in potential

deadlocks that include the victim) must be

halted to avoid detection of false deadlocks.

Built on top of the work suggested in [12], a

similar type of approach is adopted here to

resolve deadlocks based on fuzzification of the

transaction's attributes to build a new rules-

based priority for conflict resolution between

transactions. Design of fuzzy logic or rule based

non-linear controller is easier since its control

function is described by using fuzzy sets and if-

then predefined rules rather than cumbersome

mathematical equations or larger look-up tables;

it will greatly reduce the development cost and

time and needs less data storage in the form of

membership functions and rules. The properties

of this solution are locality of transactions, and

asynchronous operation. We elaborate our

simulation results and justify performance gain

of the proposed scheme for achieving deadlock

management in database environments by

Vol 09 Issue12, Dec2020 ISSN 2456 – 5083 Page 686

eliminating limi tations of the existing schemes,

increasing commit rate and decrease in re-

execution rate of the transactions.

III. DEADLOCK RESOLUTION WITH

FUZZY LOGIC

In order to overcome shortcomings of the

deadlock resolution methods discussed above to

certain contain, by using transaction's features, a

robust resolving scheme using both transaction's

features-based and fuzzy logic is proposed as

shown in Fig. 1. The suggested system utilizes

fuzzy logic technique by creating a set of fuzzy

rules that will form the fuzzy logic engine in

order to deal with the criticalness and the

similarity attributes of transactions. By using

these rules, fuzzy logic will try to provide an

easy conflict resolution method between

transactions. The algorithm attempts to

outperform the previous methods by reducing

 the number of transaction waiting and

increasing the concurrency level while

maintaining the data valid as much as possible.

Table I shows the different terms and parameters

applied in the proposed system.

A. Resolution by using Timestamp

One of the most commonly used technique for

deadlock resolution is timestamp based

approach for selecting the victim. In this

approach, a timestamp is allocated to each

process as soon as it enters the system. The

timestamp of the younger process is greater than

the timestamp of older process. According to

this approach, the victim is selected on this

timestamps, the process with the higher

timestamp is aborted, that is the youngest

process is selected as the victim and is aborted

in order to break the deadlock cycle. The goal

behind choosing the youngest process as victim

is that the youngest process would have used

less resources and less CPU time as compared

to older process. One problem with this

technique is that it can cause starvation problem

because every time a younger process is aborted

which can starve the younger process from

completion.

B.Resolution by using Burst time

Another approach for selecting a victim to break

deadlock cycle is considering the burst time of

each process. Burst time means the CPU time

needed by any process for its execution. This

can also be considered as one parameter for

selecting a victim. The process with maximum

burst time can be aborted in order to break

cycle. The problem with this technique is that it

can abort the process with high burst time which

has been in the system for very longi.e. an older

process with high burst time can be aborted

which is inefficient approach.

C.Resolution by Degree

In a wait-for-graph for any system, the degree of

any vertex denoting a process determines how

many resources a process is holding and how

many resources a process is requesting. There

are two types of degrees in a directed WFG.

1.In-degree: In-degree means the number of

edges coming to any node of WFG and it

denotes number of request for resources held by

a process.

Vol 09 Issue12, Dec2020 ISSN 2456 – 5083 Page 687

2.Out-degree: Out-degree means the number of

edges going out of a node in WFG denoting

number of request for resources done by the

node.In resolution by degree, degree of each

process is calculated and process having highest

degree is aborted. Degree of any process can be

calculated by taking sum of in-degree and out-

degree.

D.Resolution by combination of Timestamp and

Burst time

Another approach for selecting victim for

deadlock is using both timestamp and burst time

in combination. Select a process as victim

which is younger and has high burst time for

resolving deadlock. The advantage with this

approach is younger process which will take

maximum execution time will be aborted to

allow processes with less execution time to

complete first.

E.Resolution by combination of Burst time and

Degree

Another combination for resolving deadlock is

considering Burst time and Degree both for

selecting a victim. Process with high burst time

and high degree should be aborted that means a

process which is having more resource request

and will take high time to complete will be

aborted. Although, there is still the problem of

older process to be aborted but the advantage

with this approach is aborting process with high

burst time and high degree will release

maximum resources needed for completion of

other process with less execution time needed.

F.Resolution by combination of Degree and

Timestamp

Taking degree and timestamp both in

combination for resolving deadlock can prove to

be another technique for deadlock resolution. A

younger transaction with high degree will be

aborted.The problem of starvation in

considering only timestamp will be avoided in

this case as degree of the node is also

considered along with timestamp in order to

select victim for resolving deadlock in the

system.

G.Time Efficient Deadlock Resolution

Algorithm

Deadlock is a major concern in a distributed

system, since resources are shared among

processes at sites distributed across a network.

One of the most accepted methods of deadlock

handling is detection and resolution. Both

deadlock prevention and avoidance strategies

are conservative solutions, whereas deadlock

detection is optimistic [15]. In deadlock

detection and resolution, deadlocks are allowed

to occur [3][15]. Periodically, or on certain

conditions, a detection algorithm is executed; if

any deadlock state is found, resolution is

undertaken. To resolve a detected deadlock, the

system must abort one or more processes

involved in the deadlock and release the

resources allocated to the aborted processes.

Here deadlock resolution with reusable

resources is considered. In resolving a deadlock

state, it is desirable to minimize the number of

processes to abort to make the system deadlock-

free. Concept of release set is introduced here. A

release set is a set of one or more processes that

can be reduced if a process is aborted and its

resources are released[15]. The release set is

represented by R(pi). For example release set of

process P7 and P5 in figure 4 is R(P7)= {P8}

and R(P5)= {P6,P7, P8}.

Vol 09 Issue12, Dec2020 ISSN 2456 – 5083 Page 688

In general, there are three phases for database's

transaction: (1) Read phase: The transaction

reads the values of all data items it needs from

the database and stores them in local variables.

In some methods updates are applied to a local

copy of the data and announced to the database

system by an operation named pre-write.

(2) Validation phase: The validation phase

ensures that all the committed transactions have

executed in a serializable fashion. For a read-

only transaction, this consists of checking that

the data values read are still the current values

for the corresponding data items. For a

transaction that has updates, the validation

consists of determining whether the current

transaction leaves the database in a consistent

state, with serializability maintained.

(3) Write phase: This follows the successful

validation phase for update transactions. During

the write phase, all changes made by the

transaction are permanently stored into the

database [14]. the same objects Di both

Tvinvalidating and active Tatransactions and at

least one of the operations is a write operation,

then we have a conflict (deadlock is detected).

In practice, deadlock detection often assumes a

simplified resource model; the system contains

only reusable resources and there is only a

single unit of every resource. This model makes

deadlock detection simple to implement, but at

the cost of detecting fewer types of deadlock.

 The proposed system follows Single

Request Model for static deadlock detection in

which a process can have at most one

outstanding request for only one unit of a

resource. Since the maximum out-degree of a

node in a WFG for the single resource model

can be 1, the presence of a cycle in the WFG

shall indicate that there is a deadlock. The

rationale of choosing this request model is that

it simplifies the problem of detecting the

deadlock and easy to implement.

Formally, conflict can occur when

[12]: φ≠∩∈))()((TvWSTaRSDi (read-write

conflict)

(1) φ≠∩∈))()((TvRSTaWSDi(write-read

conflict) (2) φ≠∩∈))()((TvWSTaWSDi (write-

write conflict)

(3) Here, to reflect the new developments, the

attempt is to use transactions' features to solve

the conflict between them through employing

fuzzy controller to handle uncertainty associated

with these features that affecting to the

transactions' priority . temporal data items that

takes into account transaction's operations such

as read, write, and shared resources and

criticalness that takes into account the estimated

completion time of T as transaction's attribute

which uses information about the importance of

the transactions that will be fed into fuzzy logic

engine for conflict handing. These two features

were selected for ease of application and ease of

calculations inside fuzzy logic engine. Suppose

tmand tnare a pair of concurrent transactions,

tmOpi∈ , tnOpi∈ , OpiandOpjoperate on the

same non-critical data object D (conflicting

operations). If the following condition is

satisfied [12]: ≤∝−),(), (DOpjTDOpiT (4) ∝is

the threshold value whose value depends on the

application semantics, then Opi and Opjare said

to be operation similarity, notated byOpjOpi≈.
Furthermore D is critical trueDTCt=), (if:

),(),(TdDTCt≤)(), (TEttDTCt+= (5) Criticalness

measures how criticalit is that a transaction

meets its timing constraints. Different

transactions have different criticalness.

Furthermore, criticalness is a different concept

from deadline because a transaction may have a

very tight deadline but missing it may not cause

great harm to the system. Here, expected

execution time is very hard to predict but can be

based on estimate or experimentally measured

value of worst case execution time. adaptive in

nature and can also exhibit increased reliability,

robustness in the face of changing transaction's

features. The first step in the design of a fuzzy

logic controller is to define membership

functions for the inputs; three fuzzy levels or

sets are chosen and defined by the following

library of fuzzy-set values for the similarity

(non-similar, similar, very similar) and critical

attributes (very critical, critical, non-critical) of

Vol 09 Issue12, Dec2020 ISSN 2456 – 5083 Page 689

transaction as shown in Fig. 2a,2b. For a given

crisp input, fuzzifier finds the degree of

membership in every linguistic variable. The

number of fuzzy levels is not fixed and depends

on the input resolution needed in an application.

The larger the number of fuzzy levels, the

higher is the input resolution. The fuzzy

controller utilizes trapezoidal membership

functions on the controller input [13].

Membership functions allow us to graphically

represent a fuzzy set. The x axis represents the

universe of discourse, whereas the y axis

represents the degrees of membership in the

[0,1] interval [19]. Simple functions are used to

build membership functions. Because we are

defining fuzzy concepts, using more complex

functions does not add more precision. The

trapezoidal membership function is chosen due

to its simplicity. All of membership' parameters

are numerically specified based on the

experiences to handle transactions. In our case,

all fuzzy levels have the same space on the

number line. The trapezoidal curve is a function

of a vector, x, and depends on four scalar

parameters a, b, c, and d, 18International

Journal of Modeling and Optimization, Vol. 5,

No. 1, February 2015Step 2. Deadlock

detection: When access has been made Step 3.

Transaction' attributes extraction: The proposed

method employs the concept of similarity for

non-operations to obtain a better real-time

performance, and the transaction criticalness

criterion in order to favor transactions with

higher importance in data conflict resolution.

Furthermore, the system exploits fuzzy critical.

 IV. SIMULATION RESULTS

 In this section, we conducted an

extensive set of simulation experiments using

the above mentioned parameters in Table I

through MATLAB and PHP languages. Wait

percentage (Wait %) and Commit percentage

(Commit %) were used as measures for the

performance metrics in our simulation results.

Wait % (how many transactions wait due to

violation of serializability before final commit

from the total number of transactions taken for

concurrent execution) is the percentage of input

transactions that have non critical attribute and

have less than 0.6 in the similarity scale and

Commit % (how many transactions successfully

committed execution from the total number of

transactions taken for concurrent execution) is

the percentage of input transactions that have

very critical attribute and have greater than 0.6

in the similarity scale (according to fuzzy

system rules). We conducted simulation under

normal and heavy loads with various settings of

workload parameters such as number of

transactions, transaction workload (simple or

complex transaction) and with other

corresponding parameter values.

 V.CONCLUSION

Deadlock can occur in any concurrent system

and is often difficult to debug. Existing

deadlock resolution techniques are either

impractical for large software database systems

or over-simplified in their assumptions about

deadlock-sensitive resources. In this paper, we

propose fuzzy-based deadlock resolution, a

novel database system mechanism that

Vol 09 Issue12, Dec2020 ISSN 2456 – 5083 Page 690

dynamically handles deadlock in database

applications with the capability of predicting the

correctness of the transactions history in case it

is rescheduled. The proposed system improves

the drawbacks of the existing schemes by

prioritizing the transactions based on their

features. The suggested system increases the

overall commit rate of the system and decreases

the rate of waits. The system employs the

concept of similarity between conflicting to

obtain a better real-time performance, and the

transaction criticalness criterion in order to

favor transactions with higher importance in

data conflict resolution. Furthermore, the system

exploits fuzzy 20International Journal of

Modeling and Optimization, Vol. 5, No. 1,

February 2015Experiment 2. Comparison of

waits% and commit% for Experiment 3.

Comparison of wait% and Commit% under

logic approach as the famous artificial

intelligence technique to merge transaction's

features to provide an easy conflict resolution

method between transactions. The advantages of

proposed scheme are 1) transactions data item

access priority is maintained to ensure

serializability without aborting the transactions.

2) the cost of waiting time of the transaction to

execute is less than the cost of re-execution of

the transaction. Hence, transaction can wait

little more to acquire a data item than to access

and get aborted 3) the transaction, which has

done more work, is given higher priority, as it

will finish early if given more privilege. Finally

4) the overall through put of the system

increases by sacrificing a small amount of

waiting time and overhead is conserved. Also, a

simulation implementation and a performance

comparison between fuzzy and non-fuzzy real-

time deadlock control methods show that our

method can ensure a very well real-time

performance while guaranteeing temporal

consistency and can even outperform non-fuzzy

method in many cases. Moreover, we can try to

implement our proposed method on a real-time

database test platform and on a real database

management system to obtain more accurate

results.

 REFERENCES

[1] P. Sapra, S. Kumar, and R. Rathy, "Deadlock

detection and recovery in distributed databases,"

International Journal of Computer Applications,

vol. 73, no. 1, pp. 32-36, July 2013.

[2] S. Singh and S. Tyagi, "A review of

distributed deadlock detection techniques based

on diffusion computation approach,"

International Journal of Computer Applications,

vol. 48, no. 9, pp. 28-32, June 2012.

[3] S. Selvarai and R. Ramasamy, "An efficient

detection and resolution of generalized

deadlocks in distributed systems," International

Journal of Computer Applications, vol. 1, no.

19, pp. 1-7, 2010.

[4] M. Goswami, K. Vaisla, and A. Singh, "

VGS algorithm: an efficient

deadlock prevention mechanism for distributed

transactions using

pipeline method," International Journal of

Computer Applications, vol.

46, no. 22, pp. 1-9, May 2012.

[5] S. Gupta, "Deadlock detection techniques in

distributed database

system," International Journal of Computer

Applications, vol. 74, no.

21, pp. 41-45, July 2013.

[6] F. Tanga, I. Youb, S. Yuc, C.-L. Wangd, M.

Guoa, and W. Liue, " An

efficient deadlock prevention approach for

service oriented transaction

processing," International Journal of Computers

and Mathematics

With Applications, vol. 63, no. 2, pp. 458-468,

2012.

