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ABSTRACT— Now a days Advanced Encryption Standard (AES) is the most efficient public key 

encryption system based on Rijndael Algorithm that can be used to create faster and efficient 

cryptographic keys. AES generates keys through the properties of the Rijndael Algorithm instead of 

conventional method of the key generation. Although many encryption algorithms can be relatively 

efficiently implemented in Xilinx software, there is still a need for special purpose cryptographic 

processors. First of all, high throughput applications, such as the encryption of the physical layer of 

Internet traffic, require an ASIC that does not affect the data throughput. By using proposed technique we 

get high security than existed technique. 
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I.INTRODUCTION 

Several techniques, such as cryptography, 

steganography, watermarking, and scrambling, have 

been developed to keep data secure, private, and 

copyright protected [1], [2]. Cryptography is an 

essential tool underlying virtually all networking 

and computer protection, traditionally used for 

military and espionage. However, the need for 

secure transactions in ecommerce, private networks, 

and secure messaging has moved encryption into 

the commercial realm [3].Advanced encryption 

standard (AES) was issued as Federal Information 

Processing Standards (FIPS) by National Institute of 

Standards and Technology (NIST) as a successor to 

data encryption standard (DES) algorithms. In 

recent literature, a number of architectures for the 

VLSI implementation of AES Rijndael algorithm 

are reported [4], [5], [6], [7], [8]. It can be observed 

that some of these architectures are of low 

performance and some provide low throughput. 

Further, many of the architectures are not area 

efficient and can result in higher cost when 

implemented in silicon.In this paper, we propose a 

high performance, high throughput and area 

efficient VLSI architecture for Rijndeal algorithm 

that is suitable for low cost silicon implementation. 

The proposed architecture is optimized for high  

 

 

throughput in terms of the  Polynomial 

multiplication is implemented using XOR operation 

instead of using multipliers to decrease the 

hardware complexity. In the proposed architecture 

both the encryption and decryption modes use 

common hardware resources, thus making the 

design area efficient. Selective use of look-up tables 

and combinational logic further enhances the 

architecture’s memory optimization, area, and 

performance. An important feature of our proposed 

architecture is an effective solution of online (real-

time) round key generation needing significantly 

less storage for buffering. 

                 

                II.EXISTED SYSTEM 

 

 
Fig. 1 existed system 
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The substitution box is part of a unit in Pomaranch 

cipher which implements a key-dependent filter 

function, containing a 9-to-7-bit box and a balanced 

nonlinear Boolean function of seven variables. The  

9-bit output of the substitution box is converted into 

a 7-bit one with deletion of the most significant and 

the least significant bits, as shown in Fig 1. 

The operations are done in composite fields to 

achieve the inverse which is then retransformed to 

binary field using an inverse transformation matrix 

(M−1). Eventually, the two most and least 

significant bits are discarded to get to the uneven 

structure of the substitution box of Pomaranch. 

 

III.PROPOSED SYSTEM 

The data unit consists of: the initial round of key 

addition, Nr − 1 standard rounds, and a final round. 

The architecture for a standard round composed of 

four basic blocks is shown in Fig. 1(b). For each 

block, both the transformation and the inverse 

transformation needed for encryption and 

decryption, respectively are performed using the 

same hardware resources. This implementation 

generates one set of subkey and reuses it for 

calculating all other subkeys in real-time. 

 
 

Fig. 2. Top Level View of the Rijndael 

1) ByteSub: In this architecture each block is 

replaced by its substitution in an S-Box table 

consisting of the multiplicative inverse of 

each byte of the block state in the finite field 

GF(2
8
). In order 

 

to overcome the performance bottle neck, control 

Flow Round in the Data Unit the implementation 

of multiplicative inverses is carried out using look-

up tables (stored in a table of 8 × 256). The 

implementation includes the affine mapping of the 

input in both encryption and decryption processes 

as follows:Shift Row: In this transformation the 

rows of the block state are shifted over different 

offsets. The amount of shifts is determined by the 

block length. The proposed architecture implements 

the shift row operation using combinational logic 

considering the offset by which a row should be 

shifted. 

2) Mix Column: In this transformation each 

column of the block state is considered as a 

polynomial over GF(2
8
). It is multiplied with a 

constant polynomial C(x) or D(x) over a finite field 

in encryption or decryption, respectively. In 

hardware, the multiplication by the corresponding 

polynomial is done by XOR operations and 

multiplication of a block by X. This is implemented 

using a multiplexer, the control being the MSB is 1 

or 0. The equations implemented in hardware for 

Mix Column in encryption and decryption are as 

follows. 

In encryption process, 

In0 is the least significant 8 bits of a column of a 

matrix. Architecture of different units are shown in 

Fig. 2 and the architecture of Mix Column 

transformation is shown in the Fig. 3. 

 

Fig. 3. Architecture for Units used in Mix Column 

Transformation 
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Fig. 4. Architecture for Mix Column Transformation 

for 128 bits 

4) Add Round Key: In this transformation 

(architecture represented in Fig. 4), the round key 

obtained from the key scheduler is XORed with the 

block state obtained from the Mix Column 

transformation or Shift Row transformation based on 

the type of round being implemented. In the 

standard round, the round key is XORed with the 

output obtained from the Mix Column 

transformation. In the final round the round key is 

XORed with the output obtained from the Shift Row 

transformation. In the initial round, bitwise XOR 

operation is performed between the initial round key 

and the initial state block. 

 

Fig. 5 Architecture for Round Key Addition 

Transformation 

 

B. Memory Optimization 

Since the design is based on one clock cycle for 

each encryption round, the memory modules had to 

be duplicated. For example, in the Byte Sub, the S-

boxes need to be duplicated 16 times. Consequently, 

the choice of memory architecture is very critical. 

Since all the table entries are fixed and defined in 

the standard, the usage of ROM is preferred. 

Specifically, the architecture requires several small 

ROM modules instead of one large module, since 

each lookup will only be based on a maximum of 8-

bit address, which translates to 256 entries. We 

implemented the multiplicative inverse function 

using the look-up table of size 8×256. We have a 

total of 20 copies of the S-boxes in our design; 16 of 

them in encryption module and 4 in the key 

scheduling module. 

D. Performance Evaluation 

An AES-128 encryption / decryption of a 128-bit 

block was done in 11 clock cycles using the 

feedback logic. In each clock cycle, one 

transformation is executed and, at the same time, the 

appropriate key for the next round is calculated. The 

whole process concludes after 10 rounds of 

transformations. The outputs is shown in below 

figure 5 RTL and waveform. 

 

 
 

  

     
 

Fig.6 RTL, output wave form 
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IV. DISCUSSIONS AND CONCLUSIONS 

We have presented a VLSI architecture for the 

Rijndael AES algorithm that performs both the 

encryption and decryption. S-boxes are used for the 

implementation of the multiplicative inverses and 

shared between encryption and decryption. The 

round keys needed for each round of the 

implementation are generated in real-time. The 

forward and reverse key scheduling is implemented 

on the same device, thus allowing efficient area 

minimization. Although the algorithm is 

symmetrical, the hardware required is not, with the 

encryption algorithm being less complex than the 

decryption algorithm. The implementation of the 

key unit in the proposed architecture, can be scaled 

for the keys of length 192 and 256 bits easily. 
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