

Vol 06 Issue 03 May 2017 ISSN 2456 – 5083 www.ijiemr.org

COPY RIGHT

2017 IJIEMR. Personal use of this material is permitted. Permission from IJIEMR must

be obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted

component of this work in other works. No Reprint should be done to this paper, all copy

right is authenticated to Paper Authors

IJIEMR Transactions, online available on 3
rd

 June 2017. Link :

http://www.ijiemr.org/downloads.php?vol=Volume-6&issue=ISSUE-3

Title: Design An Cryptography Algorithm Using Shiftrow Mixcolun Technique

Volume 06, Issue 03, Pages: 641 – 644.

Paper Authors

*ANGALAKUDURU VIJAYA VANI, SIVA PRASAD,

*CHINTALAPUDI ENGINEERING COLLEGE CHINTALAPUDI, GUNTUR A.P

 USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER

To Secure Your Paper As Per UGC Guidelines We Are Providing A Electronic

Bar Code

Volume 06, Issue 03, May2017 ISSN:2456-5083 Page 641

Design An Cryptography Algorithm Using Shiftrow Mixcolun Technique

ANGALAKUDURU VIJAYA VANI
1

SIVA PRASAD
2

1
V.L.S.I & E.S, E.C.E Dept, CHINTALAPUDI ENGINEERING COLLEGE CHINTALAPUDI, GUNTUR A.P

2
HEAD OF THE DEPARTMENT, E.C.E Dept,, CHINTALAPUDI ENGINEERING COLLEGE CHINTALAPUDI, GUNTUR A.P

ABSTRACT— Now a days Advanced Encryption Standard (AES) is the most efficient public key

encryption system based on Rijndael Algorithm that can be used to create faster and efficient

cryptographic keys. AES generates keys through the properties of the Rijndael Algorithm instead of

conventional method of the key generation. Although many encryption algorithms can be relatively

efficiently implemented in Xilinx software, there is still a need for special purpose cryptographic

processors. First of all, high throughput applications, such as the encryption of the physical layer of

Internet traffic, require an ASIC that does not affect the data throughput. By using proposed technique we

get high security than existed technique.

Keywords: Cryptography, Rijndael, Encryption, Decryption, Cypher, Inverse cypher.

I.INTRODUCTION

Several techniques, such as cryptography,

steganography, watermarking, and scrambling, have

been developed to keep data secure, private, and

copyright protected [1], [2]. Cryptography is an

essential tool underlying virtually all networking

and computer protection, traditionally used for

military and espionage. However, the need for

secure transactions in ecommerce, private networks,

and secure messaging has moved encryption into

the commercial realm [3].Advanced encryption

standard (AES) was issued as Federal Information

Processing Standards (FIPS) by National Institute of

Standards and Technology (NIST) as a successor to

data encryption standard (DES) algorithms. In

recent literature, a number of architectures for the

VLSI implementation of AES Rijndael algorithm

are reported [4], [5], [6], [7], [8]. It can be observed

that some of these architectures are of low

performance and some provide low throughput.

Further, many of the architectures are not area

efficient and can result in higher cost when

implemented in silicon.In this paper, we propose a

high performance, high throughput and area

efficient VLSI architecture for Rijndeal algorithm

that is suitable for low cost silicon implementation.

The proposed architecture is optimized for high

throughput in terms of the Polynomial

multiplication is implemented using XOR operation

instead of using multipliers to decrease the

hardware complexity. In the proposed architecture

both the encryption and decryption modes use

common hardware resources, thus making the

design area efficient. Selective use of look-up tables

and combinational logic further enhances the

architecture’s memory optimization, area, and

performance. An important feature of our proposed

architecture is an effective solution of online (real-

time) round key generation needing significantly

less storage for buffering.

 II.EXISTED SYSTEM

Fig. 1 existed system

Volume 06, Issue 03, May2017 ISSN:2456-5083 Page 642

The substitution box is part of a unit in Pomaranch

cipher which implements a key-dependent filter

function, containing a 9-to-7-bit box and a balanced

nonlinear Boolean function of seven variables. The

9-bit output of the substitution box is converted into

a 7-bit one with deletion of the most significant and

the least significant bits, as shown in Fig 1.

The operations are done in composite fields to

achieve the inverse which is then retransformed to

binary field using an inverse transformation matrix

(M−1). Eventually, the two most and least

significant bits are discarded to get to the uneven

structure of the substitution box of Pomaranch.

III.PROPOSED SYSTEM

The data unit consists of: the initial round of key

addition, Nr − 1 standard rounds, and a final round.

The architecture for a standard round composed of

four basic blocks is shown in Fig. 1(b). For each

block, both the transformation and the inverse

transformation needed for encryption and

decryption, respectively are performed using the

same hardware resources. This implementation

generates one set of subkey and reuses it for

calculating all other subkeys in real-time.

Fig. 2. Top Level View of the Rijndael

1) ByteSub: In this architecture each block is

replaced by its substitution in an S-Box table

consisting of the multiplicative inverse of

each byte of the block state in the finite field

GF(2
8
). In order

to overcome the performance bottle neck, control

Flow Round in the Data Unit the implementation

of multiplicative inverses is carried out using look-

up tables (stored in a table of 8 × 256). The

implementation includes the affine mapping of the

input in both encryption and decryption processes

as follows:Shift Row: In this transformation the

rows of the block state are shifted over different

offsets. The amount of shifts is determined by the

block length. The proposed architecture implements

the shift row operation using combinational logic

considering the offset by which a row should be

shifted.

2) Mix Column: In this transformation each

column of the block state is considered as a

polynomial over GF(2
8
). It is multiplied with a

constant polynomial C(x) or D(x) over a finite field

in encryption or decryption, respectively. In

hardware, the multiplication by the corresponding

polynomial is done by XOR operations and

multiplication of a block by X. This is implemented

using a multiplexer, the control being the MSB is 1

or 0. The equations implemented in hardware for

Mix Column in encryption and decryption are as

follows.

In encryption process,

In0 is the least significant 8 bits of a column of a

matrix. Architecture of different units are shown in

Fig. 2 and the architecture of Mix Column

transformation is shown in the Fig. 3.

Fig. 3. Architecture for Units used in Mix Column

Transformation

Volume 06, Issue 03, May2017 ISSN:2456-5083 Page 643

Fig. 4. Architecture for Mix Column Transformation

for 128 bits

4) Add Round Key: In this transformation

(architecture represented in Fig. 4), the round key

obtained from the key scheduler is XORed with the

block state obtained from the Mix Column

transformation or Shift Row transformation based on

the type of round being implemented. In the

standard round, the round key is XORed with the

output obtained from the Mix Column

transformation. In the final round the round key is

XORed with the output obtained from the Shift Row

transformation. In the initial round, bitwise XOR

operation is performed between the initial round key

and the initial state block.

Fig. 5 Architecture for Round Key Addition

Transformation

B. Memory Optimization

Since the design is based on one clock cycle for

each encryption round, the memory modules had to

be duplicated. For example, in the Byte Sub, the S-

boxes need to be duplicated 16 times. Consequently,

the choice of memory architecture is very critical.

Since all the table entries are fixed and defined in

the standard, the usage of ROM is preferred.

Specifically, the architecture requires several small

ROM modules instead of one large module, since

each lookup will only be based on a maximum of 8-

bit address, which translates to 256 entries. We

implemented the multiplicative inverse function

using the look-up table of size 8×256. We have a

total of 20 copies of the S-boxes in our design; 16 of

them in encryption module and 4 in the key

scheduling module.

D. Performance Evaluation

An AES-128 encryption / decryption of a 128-bit

block was done in 11 clock cycles using the

feedback logic. In each clock cycle, one

transformation is executed and, at the same time, the

appropriate key for the next round is calculated. The

whole process concludes after 10 rounds of

transformations. The outputs is shown in below

figure 5 RTL and waveform.

Fig.6 RTL, output wave form

Y[0]

Z

Z

Z

32

32

32

32

Fourth Column of State Matrix

Matrix

Matrix Second Column of State

Third Column of State

 Matrix First Column of State

Z [0]

Out[3][2]

Out[2][1] Out[2][2]

Out[1][3] Out[1][2]
Out[1][1]

Out[2][3]

Out[3][3]
Out[3][1] Out[3][0]

Out[2][0]

Out[1][0]

Out[0][3] Out[0][2] Out[0][1] Out[0][0]

[3]

Y[3]

[2]

Y[2]

[1]

Y[1]

K (i)
00 K (i)

01
K (i)

K (i) 02
03

K (i)
31 K (i)

32 K (i)
33

00 B (i)
01 02 B (i) B (i)

03 B (i)
31 32 B (i) B (i)

33 B (i)

00 B (i+1) 01 B (i+1)
02 B (i+1)

03 B (i+1)
31 B (i+1)

32 B (i+1)
33 B (i+1)

Ist byte nd byte 2
rd byte 4 3 th byte 16 th byte th byte 15

14 th byte

Volume 06, Issue 03, May2017 ISSN:2456-5083 Page 644

IV. DISCUSSIONS AND CONCLUSIONS

We have presented a VLSI architecture for the

Rijndael AES algorithm that performs both the

encryption and decryption. S-boxes are used for the

implementation of the multiplicative inverses and

shared between encryption and decryption. The

round keys needed for each round of the

implementation are generated in real-time. The

forward and reverse key scheduling is implemented

on the same device, thus allowing efficient area

minimization. Although the algorithm is

symmetrical, the hardware required is not, with the

encryption algorithm being less complex than the

decryption algorithm. The implementation of the

key unit in the proposed architecture, can be scaled

for the keys of length 192 and 256 bits easily.

V.REFERENCE

[1] S. P. Mohanty, K. R. Ramakrishnan, and M. S.

Kankanhalli, “A DCT Domain Visible

Watermarking Technique for Images,” in Proc

of the IEEE International Conf on Multimedia

and Expo, 2000, pp. 1029–1032.

[2] M. S. Kankanhalli and T. T. Guan,

“Compressed-Domain Scrambler / Descrambler

for Digital Video,” IEEE Transactions on

Consumer Electronics, vol. 48, no. 2, pp. 356–
365, May 2002.

[3] B. M. Macq and J. J. Quisquater,

“Cryptography for Digital TV Broadcasting,”
Proceedings of the IEEE, vol. 83, no. 6, pp.

944–957 , Jun 1995.

[4] H. Kuo and I. Verbauwhede, “Architectural

Optimization for a 1.82

Gbits/sec VLSI Implementation of the AES

Rijndael Algorithm,” in Proceedings of the

Workshop on Cryptographic Hardware and

Embedded Systems, 2001, vol. 2162, pp. 51–64.

[5] M. McLoone and J. V. McCanny, “Rijndael

FPGA Implementation Utilizing Look-up

Tables,” in Proceedings of the IEEE Workshop

[6] A. Satoh, S. Morioka, K. Takano, and S.

Munetoh, “A Compact Rijndael Hardware

[7] Architecture with S-Box Optimization,” in

Proceedings of Advances in Cryptology -

ASIACRYPT 2001, 2001, pp. 171–184.

[8] S. Mangard, M. Aigner, and S. Dominikus, “A

Highly Regular and Scalable AES Hardware

Architecture,” IEEE Transactions on

Computers, vol. 52, no. 4, pp. 483–491, April

2003.

[9] T. Sodon O. J. Hernandez and M. Adel, “Low-

Cost Advanced Encryption Standard (AES)

VLSI Architecture: A Minimalist Bit-Serial

Approach,” in Proc of IEEE Southeast

Conference, 2005, pp. 121–125.

[10] J. Daemen and V. Rijmen, The Design of

Rijndael, Springer-Verlag, 2002.

[11] A. J. Elbirt, W. Yip, B. Chetwynd, and

Christof Paar, “An FPGA Implementation and

Performance Evaluation of the AES Block

Cipher Candidate Algorithm Finalists,” in

Proceedings of the Third Advanced Encryption

Standard (AES) Candidate Conference, 2000,

pp. 13–27.

	B. Memory Optimization
	D. Performance Evaluation

