

Vol 09 Issue06, Jun 2020 ISSN 2456 – 5083 www.ijiemr.org

COPY RIGHT

2020 IJIEMR.Personal use of this material is permitted. Permission from IJIEMR must

be obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted

component of this work in other works. No Reprint should be done to this paper, all copy

right is authenticated to Paper Authors

IJIEMR Transactions, online available on 30th

June 2020. Link

:http://www.ijiemr.org/downloads.php?vol=Volume-09&issue=ISSUE-06

Title: IMPROVING BUG TRIAGING WITH HIGH CONFIDENCE PREDICTIONS AT ERICSSON

Volume 09, Issue 06, Pages: 181-186

Paper Authors

GURRALA PRAKASH, C.SIVA

 USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER

To Secure Your Paper As Per UGC Guidelines We Are Providing A Electronic

Bar Code

Vol 09 Issue06, Jun 2020 ISSN 2456 – 5083 Page 181

IMPROVING BUG TRIAGING WITH HIGH CONFIDENCE

PREDICTIONS AT ERICSSON

GURRALA PRAKASH, C.SIVA

PG SCHOLAR.DEPT OF CSE, SIR C.V. RAMAN INSTITUTE OF TECHNOLOGY & SCIENCE, AP, INDIA

ASSOCIATE PROFESSOR, DEPT OF CSE, SIR C.V. RAMAN INSTITUTE OF TECHNOLOGY & SCIENCE,, AP,

INDIA

ABSTRACT: Bug triaging refers to the process of assigning a bug to the most appropriate

developer to fix. It becomes more and more difficult and complicated as the size of software and

the number of developers increase. In this paper, we propose a new framework for bug triaging,

which maps the words in the bug reports (i.e., the term space) to their corresponding topics (i.e.,

the topic space). We propose a specialized topic modeling algorithm named multi-feature topic

model (MTM) which extends Latent Dirichlet Allocation (LDA) for bug triaging. MTM

considers product and component information of bug reports to map the term space to the topic

space. Finally, we propose an incremental learning method named TopicMiner which considers

the topic distribution of a new bug report to assign an appropriate fixer based on the affinity of

the fixer to the topics. We pair Topic Miner with MTM (TopicMiner MTM). We have evaluated

our solution on 5 large bug report datasets including GCC, Open Office, Mozilla, Netbeans, and

Eclipse containing a total of 227,278 bug reports. We show that Topic Miner MTM can achieve

top-1 and top-5 prediction accuracies of 0.4831 - 0.6868, and 0.7686 - 0.9084, respectively. We

also compare TopicMinerMTM with Bugzie, LDA-KL, SVM-LDA, LDA-Activity, and Yang et

al.’s approach. The results show that TopicMinerMTM on average improves top-1 and top-5

prediction accuracies of Bugzie by 128.48% and 53.22%, LDA-KL by 262.91% and 105.97%,

SVM-LDA by 205.89% and 110.48%, LDA-Activity by 377.60% and 176.32%, and Yang et

al.’s approach by 59.88% and 13.70%, respectively.

1.INTRODUCTION

Bugs show up during programming

advancement and upkeep, and bug fixing is

a tedious and expensive undertaking.

Numerous product ventures use bug

following frameworks (e.g., Bugzilla and

JIRA) to oversee bug revealing, bug goals,

and bug documenting forms [9]. Beside bug

depiction and synopsis data, a run of the mill

bug report records different sorts of helpful

data, e.g., item and part. We allude to this

data as highlights of a bug report. Figure 1

presents a bug report from Eclipse with

BugID=212000.1 In the figure, we notice

that the bug report has a place with item

CDT and part cdt-center. When a bug report

is gotten, allocating it to an appropriate

engineer inside a brief timeframe span can

diminish the time and cost of the bug fixing

process. This task procedure is known as

Vol 09 Issue06, Jun 2020 ISSN 2456 – 5083 Page 182

bug triaging (e.g., in Figure 1, the bug is

alloted to Oleg Krasilnikov2). Bug triaging

is a tedious procedure since frequently

numerous designers are engaged with

programming advancement and support. For

Eclipse and Mozilla, in excess of 1,800

designers took an interest in the bug fixing

process (see Table 2). On the off chance that

the entirety of the bug reports should be

physically allocated to the most proper

designers, the bug triaging errands would

take a ton of time and exertion. To help in

finding fitting engineers, programmed bug

triaging approaches have been proposed [7],

[10], [20], [38]. Huge numbers of these

methodologies utilize the vector space

model (VSM) to speak to a bug report, i.e., a

bug report is treated as a vector of terms

(words) and their checks. Notwithstanding,

designers frequently utilize different terms

to communicate a similar significance. A

similar term can likewise convey various

implications relying upon the unique

circumstance. These equivalent and

polysemous words can't be caught by VSM.

In the data recovery network, theme

displaying [36], which can gather the

inalienable idle subjects of a printed record,

has been utilized as an approach to manage

equivalent words and polysemy issues. A

point model proselytes terms in an archive

to subjects. Two terms that are distinctive

would now be able to be esteemed

comparative on the off chance that they are

of a similar subject which tends to the

equivalent word and polysemy issues.

Different point demonstrating calculations

are proposed in the writing including Latent

Semantic Indexing/Analysis (LSA) [16],

probabilistic LSA (pLSA) [18], and Latent

Dirichlet Allocation (LDA) [12].

Among the three, LDA is the most as of late

proposed and it tends to the constraints of

LSA and pLSA [12]. LDA thinks about an

archive as an irregular blend of idle subjects,

where a theme is an arbitrary blend of terms.

We expand LDA and propose another point

model named multi-include theme model

(MTM) for the bug triaging issue. Since a

bug report has different highlights (e.g., item

influenced by the bug, part influenced by the

bug, and so on.), MTM considers the

highlights of a bug report when it changes

over terms in the printed portrayal of the

report (i.e., messages in the synopsis and

depiction fields of the report) to their

relating subjects in the point space. Given a

bug report with a specific element mix (i.e.,

item part blend), MTM changes over a word

in the bug report, to a subject. Like standard

theme displaying calculation, as Latent

Dirichlet Allocation (LDA) [12], the word to

point change is finished by taking a gander

at cooccurrences of words in records (for

our situation: bug reports outlines and

portrayals). In any case, unique in relation to

LDA, when changing over words to subjects

in a bug report with a specific element mix,

MTM puts an uncommon accentuation on

the appearances of words in bug reports with

a similar element blend, without

disregarding the word appearances in all

other bug reports. Since the quantity of bug

reports of a specific element mix is

frequently restricted, to surmise better

points, MTM needs to likewise consider

Vol 09 Issue06, Jun 2020 ISSN 2456 – 5083 Page 183

terms that show up in bug reports having a

place with other component blends. MTM

thinks about every mix of highlights as an

irregular blend of idle themes, where a

subject is an arbitrary blend of terms. MTM

is an extensible point model, where at least

one highlights can be thought about. We

allude to an element as an absolute field in a

bug report that a bug journalist can fill when

the columnist presents a bug report. These

fields incorporate the item, part, columnist,

need, seriousness, OS, adaptation, and stage

fields. We prohibit the regular language

depictions in the bug reports, which

incorporates the substance of the outline and

portrayal fields, as the highlights since they

are not absolute in nature. In this paper, we

utilize the item segment mix as the

information include blend, since item and

part are two of the most significant

highlights that depict a bug. Given a bug

report with a specific element mix, MTM

changes over a term in the bug report to a

point by putting uncommon accentuation on

the appearances of the word in bug reports

with a similar component blend, without

overlooking the word appearances in all

other bug reports.

We propose another methodology for bug

triaging which influences MTM. We take as

information a preparation set of bug reports

(whose fixers are known) and another bug

report whose fixer is to be anticipated. Our

methodology, named TopicMinerMTM

processes the liking of an engineer to

another bug report, in view of the reports

that the designer fixed previously. To do

this, we analyze the subjects that show up in

the new bug report with those in the old

reports that the engineer has fixed

previously.

2.EXISTING SYSTEM:

To aid in finding appropriate developers,

automatic bug triaging approaches have

been proposed in the existing. Many of these

approaches use the vector space model

(VSM) to represent a bug report, i.e., a bug

report is treated as a vector of terms (words)

and their counts. However, developers often

use various terms to express the same

meaning. The same term can also carry

different meanings depending on the

context. These synonymous and polysemous

words cannot be captured by VSM.

Various topic modeling algorithms are

proposed in the literature including Latent

Semantic Indexing/Analysis (LSA),

probabilistic LSA (pLSA), and Latent

Dirichlet Allocation (LDA). Among the

three, LDA is the most recently proposed

and it addresses the limitations of LSA and

pLSA.

DISADVANTAGES OF EXISTING

SYSTEM:

LDA considers a document as a random

mixture of latent topics, where a topic is a

random mixture of terms.

One or few features can be only taken into

consideration.

Lower accuracy.

More complex

More time taken

3.PROPOSED SYSTEM:

We extend LDA and propose a new topic

model named multi-feature topic model

(MTM) for the bug triaging problem. Since

Vol 09 Issue06, Jun 2020 ISSN 2456 – 5083 Page 184

a bug report has multiple features (e.g.,

product affected by the bug, component

affected by the bug, etc.), MTM considers

the features of a bug report when it converts

terms in the textual description of the report

(i.e., texts in the summary and description

fields of the report) to their corresponding

topics in the topic space. Given a bug report

with a particular feature combination (i.e.,

product component combination), MTM

converts a word in the bug report, to a topic.

We refer to a feature as a categorical field in

a bug report that a bug reporter can fill when

the reporter submits a bug report. These

fields include the product, component,

reporter, priority, severity, OS, version, and

platform fields. We exclude the natural

language descriptions in the bug reports,

which includes the contents of the summary

and description fields, as the features since

they are not categorical in nature.

In this paper, we use the product-component

combination as the input feature

combination, since product and component

are two of the most important features that

describe a bug. Given a bug report with a

particular feature combination, MTM

converts a term in the bug report to a topic

by putting special emphasis on the

appearances of the word in bug reports with

the same feature combination, without

ignoring the word appearances in all other

bug reports.

ADVANTAGES OF PROPOSED

SYSTEM:

MTM considers each combination of

features as a random mixture of latent

topics, where a topic is a random mixture of

terms.

MTM is an extensible topic model, where

one or more features can be taken into

consideration.

We propose a new approach for bug triaging

which leverages MTM. We take as input a

training set of bug reports (whose fixers are

known) and a new bug report whose fixer is

to be predicted.

Our approach, named TopicMiner MTM

computes the affinity of a developer to a

new bug report, based on the reports that the

developer fixed before. To do this, we

compare the topics that appear in the new

bug report with those in the old reports that

the developer has fixed before.

4. SYSTEM ARCHITECTURE:

Fig 1 SYSTEM ARCHITECTURE

5. IMPLEMENTATION

Admin

In this module, the Admin has to login by

using valid user name and password. After

login successful he can do some operations

such as search all bug status, view all

request, request & response and top

developer etc.

Vol 09 Issue06, Jun 2020 ISSN 2456 – 5083 Page 185

Request & Response

In this module, the admin can view the all

the developer request and response. Here all

the request and response will be stored with

their tags such as Id, requested user photo,

requested user name, user name request to,

status and time & date. If the user accepts

the request then status is accepted or else the

status is waiting.

Developer

In this module, there are n numbers of users

are present. User should register before

doing some operations. And register user

details are stored in user module. After

registration successful he has to login by

using authorized user name and password.

Login successful he will do some operations

like view or search Bug details, send

request, view topic model, check inbox.

6.CONCLUSION

We propose a new topic model based bug

triaging approach, named Topic Miner, and

a new topic model, named multi-feature

topic model (MTM), which takes into

consideration the features of a bug report

when assigning topics to words in the report.

We have evaluated our solution on 227,278

bugre ports from five software systems and

demonstrate that Topic Miner MTM

outperforms Bugzie, LDA-KL, SVM-

LDA,LDA-Activity, and Yang et al.’s

approach by substantial margins.

In the future, we plan to improve the

effectiveness of our approach further, and

investigate additional bug reports. Also, in

this work, we merge the two features (i.e.,

product and component) as one composite

feature (i.e., by creating a feature

combination). Other ways of using the

multiple features exist and we plan to

explore them in a future work. We also plan

to design a better topic model to predict

fixers when the number of bug reports in a

specific product component combination is

small (e.g., by using a mixture of models

which includes a general model that the

approach can back off to when the number

of bug reports in a specific product-

component combination is small).

REFERENCES

[1] Eclipse bug tracking system.

https://bugs.eclipse.org/bugs/.

[2] Gcc bug tracking system.

http://gcc.gnu.org/bugzilla/.

[3] Mozilla bug tracking system.

[4] Netbeans bug tracking system.

http://netbeans.org/bugzilla/.

[5] Openoffice bug tracking system.

https://issues.apache.org/ooo/.

[6] H. Abdi. Bonferroni and ˇsid´ak
corrections for multiple comparisons.in nj

salkind (ed.). encyclopedia of measurement

andstatistics. Encyclopedia of measurement

and statistics, 2007.

[7] J. Anvik, L. Hiew, and G. Murphy. Who

should fix this bug? InProceedings of the

28th international conference on Software

engineering,pages 361–370, 2006.

[8] J. Anvik and G. Murphy. Determining

implementation expertisefrom bug reports.

In Mining Software Repositories, 2007.

ICSEWorkshops MSR’07. Fourth

International Workshop on, 2007.

[9] D. Bertram, A. Voida, S. Greenberg, and

R. Walker. Communication,collaboration,

and bugs: the social nature of issue tracking

Vol 09 Issue06, Jun 2020 ISSN 2456 – 5083 Page 186

insmall, collocated teams. In Proceedings of

the 2010 ACM conferenceon Computer

supported cooperative work, pages 291–300.

ACM, 2010.

[10] P. Bhattacharya and I. Neamtiu. Fine-

grained incremental learningand multi-

feature tossing graphs to improve bug

triaging. InSoftware Maintenance (ICSM),

2010 IEEE International Conference

on,pages 1–10. IEEE, 2010.

[11] D. Binkley, D. Heinz, D. Lawrie, and J.

Overfelt. Understandinglda in source code

analysis. In Proceedings of the 22Nd

InternationalConference on Program

Comprehension, pages 26–36. ACM, 2014.

[12] D. Blei, A. Ng, and M. Jordan. Latent

dirichlet allocation. Journalof Machine

Learning Research, 3:993–1022, 2003.

[13] G. Bortis and A. van der Hoek.

Porchlight: A tag-based approachto bug

triaging. In Software Engineering (ICSE),

2013 35th InternationalConference on,

pages 342–351. IEEE, 2013.

[14] N. Cliff. Ordinal methods for

behavioral data analysis. PsychologyPress,

2014.

[15] D. Cˇ ubranic´. Automatic bug triage
using text categorization. InIn SEKE 2004:

Proceedings of the Sixteenth International

Conference onSoftware Engineering &

Knowledge Engineering, 2004.

[16] S. Deerwester, S. T. Dumais, G. W.

Furnas, T. K. Landauer, andR. Harshman.

Indexing by latent semantic analysis. Journal

of theAmerican Society for Information

Science, 41(6):391–407, 1990.

[17] G. Heinrich. Parameter estimation for

text analysis.

Web:http://www.arbylon.net/publications/te

xt-est.pdf, 2005.

[18] T. Hofmann. Probabilistic latent

semantic analysis. In UAI, pages289–296,

1999.

	Improving Bug Triaging with High Confidence Predictions at Ericsson

