

Vol 09 Issue06, Jun 2020 ISSN 2456 – 5083 www.ijiemr.org

COPY RIGHT

2020 IJIEMR.Personal use of this material is permitted. Permission from IJIEMR must

be obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted

component of this work in other works. No Reprint should be done to this paper, all copy

right is authenticated to Paper Authors

IJIEMR Transactions, online available on 21st

June 2020. Link

:http://www.ijiemr.org/downloads.php?vol=Volume-09&issue=ISSUE-06

Title: LOW POWER TECHNIQUE FOR VECTOR PROCESSING -AWARE ADVANCED CLOCK-

GATING TECHNIQUES IN FUSED MULTIPLY-ADD

Volume 09, Issue 06, Pages: 100-107

Paper Authors

SREE VIDYA, T.NAGAVENI

 USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER

To Secure Your Paper As Per UGC Guidelines We Are Providing A Electronic

Bar Code

Vol 09 Issue06, Jun 2020 ISSN 2456 – 5083 Page 100

LOW POWER TECHNIQUE FOR VECTOR PROCESSING -AWARE

ADVANCED CLOCK-GATING TECHNIQUES IN FUSED MULTIPLY-

ADD
SREE VIDYA

1
, T.NAGAVENI

2

1
PG Scholar, Dept of ECE, SIR C.V. RAMAN Institute of Technology & Science, AP, India

2
 Assistant Professor, Dept of ECE, SIR C.V. RAMAN Institute of Technology & Science, AP, India

 ABSTRACT: The need for power efficiency is driving a rethink of design decisions in

processor architectures. While vector processors succeeded in the high-performance market in

the past, they need a retail ring for the mobile market that they are entering now. Floating-point

(FP) fused multiply-add (FMA), being a functional unit with high power consumption, deserves

special attention. Although clock gating is a well-known method to reduce switching power in

synchronous designs, there are unexplored opportunities for its application to vector processors,

especially when considering active operating mode. In this research, we comprehensively

identify, propose, and evaluate the most suitable clock-gating techniques for vector FMA units

(VFUs). These techniques ensure power savings without jeopardizing the timing. We evaluate

the proposed techniques using both synthetic and “real-world” application-based benchmarking.

Using vector masking and vector multilane-aware clock gating, we report power reductions of up

to 52%, assuming active VFU operating at the peak performance. Among other findings, we

observe that vector instruction-based clock-gating techniques achieve power savings for all

vector FP instructions. Finally, when evaluating all techniques together, using “real-world”
benchmarking, the power reduction. Additionally, in accordance with processor design trends,

we perform this research in a fully parameterizable and automated fashion.

1. INTRODUCTION

Although computer arithmetic is sometimes

viewed as a specialized part of CPU design,

still the discrete component designing is also

a very important aspect. A tremendous

variety of algorithms have been proposed for

use in floating-point systems. Actual

implementations are usually based on

refinements and variations of the few basic

algorithms presented here. In addition to

choosing algorithms for addition,

subtraction, multiplication, and division, the

computer architect must make other choices.

Our discussion of floating point will focus

almost exclusively on the IEEE floating-

point standard (IEEE 754) because of its

rapidly increasing acceptance. Although

floating-point arithmetic involves

manipulating exponents and shifting

fractions, the bulk of the time in floating-

point operations is spent operating on

fractions using integer algorithms. Thus,

after our discussion of floating point, we

will take a more detailed look at efficient

algorithms and architectures.

Vol 09 Issue06, Jun 2020 ISSN 2456 – 5083 Page 101

Many applications require numbers that

aren’t integers. There are a number of ways

that non-integers can be represented. Adding

two such numbers can be done with an

integer add, whereas multiplication requires

some extra shifting. There is various ways to

represent the number systems. However,

only one non-integer representation has

gained widespread use, and that is floating

point. Current digital signal processing

(DSP) systems are making the transition

from fixed-point arithmetic (used initially

because of its simplicity) to floating-point

arithmetic. The latter has several advantages

including the freedom from overflow and

underflow and ease of interfacing to the rest

of the system. To improve the performance

of floating-point arithmetic, several fused

floating-point operations have been

introduced: Fused Multiply–Add (FMA)

used Add–Subtract, and Fused Two-Term

Dot-Product. The fused floating-point

operations not only improve the

performance, but also reduce the area and

power consumption compared to discrete

floating-point implementations

This design presents improved architecture

designs and implementations for a fused

floating-point add–subtract unit. Many DSP

applications such as fast Fourier Transform

(FFT) and Discrete Cosine Transform

(DCT) butterfly operations can benefit from

the fused floating-point add–subtract unit.

Therefore, he improved fused floating-point

add–subtract unit will contribute to the next

generation floating-point arithmetic and

DSP application development. The proposed

fused floating-point add–subtract unit takes

two normalized floating-point operands and

generates their sum and difference

simultaneously. It supports all five rounding

modes specified in IEEE-754 Standard.

Several techniques are applied to achieve

low area, low power consumption and high

speed:

1) Instead of executing two identical

floating-point adders, the fused floating-

point add–subtract unit shares the common

logic to generate the sum and difference

simultaneously. Therefore, it saves much of

the area and power consumption compared

to a discrete floating-point add–subtract unit.

2) A dual-path algorithm can be applied to

increase speed. The dual-path logic consists

of a far path and a close path. In the far path,

the addition, subtraction and rounding logic

are performed in parallel. By aligning the

significands to the minimal number of bits,

the addition, subtraction and rounding logic

are simplified. There are three cases for the

close path depending on the difference of the

exponents. For each case, addition,

subtraction and leading zero anticipation

(LZA) are performed in parallel and

rounding is not required. Therefore, the

dual-path design reduces the latency of the

critical path.

3) To increase the throughput, pipelining can

be applied. Based on data flow analysis, the

proposed dual-path design is split into two

pipeline stages. By properly arranging the

components, latencies of the two pipeline

stages are balanced so that the throughput of

the entire design is increased. Also, it

reduces the latency by simplifying the

control signals.

Vol 09 Issue06, Jun 2020 ISSN 2456 – 5083 Page 102

Clock gating is a common method to reduce

switching power in synchronous pipelines..

It is practically a standard in low-power

design. The goal is to “gate” the clock of

any component whenever it does not

perform useful work. In that way, the power

spent in the associated clock tree, registers,

and the logic between the registers is

reduced. It is the most efficient power

reduction technique for active operating

mode.1 Therefore, the conditions under

which clock gating can be applied should be

extensively studied and identified. A widely

used approach is to clock gate a whole FU

when it is idle. A complementary and more

challenging approach is clock gating the FU

or its subblocks when it is active, i.e.,

operating at peak performance

Exploring the tradeoffs between

programmability and efficiency in data-

parallel accelerators by Y. Lee et al We

present a taxonomy and modular

implementation approach for data-parallel

accelerators, including the MIMD, vector-

SIMD,subword-SIMD, SIMT, and vector-

thread (VT) architectural design patterns.

We have developed a new VT micro

architecture, Maven, based on the traditional

vector-SIMD micro architecture that is

considerably simpler to implement and

easier to program than previous VT designs.

Using an extensive design-space exploration

of full VLSI implementations of many

accelerator design points, we evaluate the

varying tradeoffs between programmability

and implementation efficiency among the

MIMD, vector-SIMD, and VT pat-terns on a

workload of micro benchmarks and

compiled application kernels. We find the

vector cores provide greater efficiency than

the MIMD cores, even on fairly irregular

kernels. Our results suggest that the Maven

VT micro architecture is superior to the

traditional vector-SIMD architecture,

providing both greater efficiency and easier

programmability.

Deterministic clock gating for

microprocessor power reduction by H. Li, S.

Bhunia, Y. Chen, T. N. Vijaykumar, and K.

Roy With the scaling of technology and the

need for higher performance and more

functionality, power dissipation is becoming

a major bottleneck for microprocessor

designs. Pipeline balancing (PLB), a

previous technique, is essentially a

methodology to clock-gate unused

components whenever a program's

instruction-level parallelism is predicted to

be low. However, no nonpredictive

methodologies are available in the literature

for efficient clock gating. This paper

introduces deterministic clock gating (DCG)

based on the key observation that for many

of the stages in a modern pipeline, a circuit

block's usage in a specific cycle in the near

future is deterministically known a few

cycles ahead of time. Our experiments show

an average of 19.9% reduction in processor

power with virtually no performance loss for

an 8-issue, out-of-order superscalar

processor by applying DCG to execution

units, pipeline latches, D-Cache wordline

decoders, and result bus drivers. In contrast,

PLB achieves 9.9% average power savings

at 2.9% performance loss.

Vol 09 Issue06, Jun 2020 ISSN 2456 – 5083 Page 103

Deterministic clock gating to eliminate

wasteful activity due to wrong-path

instructions in outof-order superscalar

processors by N. Mohyuddin, K. Patel, and

M. Pedram In this paper we present

deterministic clock gating schemes for

various micro architectural blocks of a

modern out-of-order superscalar processor.

We propose to make use of (1) idle stages of

the pipelined function units (FUs) and (2)

wrong-path instruction execution during

branch mis-prediction, in order to clock gate

various stages of FUs. The baseline

Pipelined Functional unit Clock Gating

(PFCG), presented for evaluation purpose

only, disables the clock on idle stages and

thus results in 13.93% chip-wide energy

saving. Wrong-path instruction Clock

Gating (WPCG) detects wrong-path

instructions in the event of branch mis-

prediction and prevents them from being

issued to the FUs, and subsequently,

disables the clock of these FUs along with

reducing the stress on register file and cache.

Simulations demonstrate that more than 92%

of all wrong-path instructions can be

detected and stopped from being executed.

The WPCG architecture results in 16.26%

chip-wide energy savings which is 2.33%

more than that of the baseline PFCG

scheme.

What every computer scientist should know

about floating-point arithmetic, by D.

Goldberg Floating-point arithmetic is

considered an esoteric subject by many

people. This is rather surprising, because

floating-point is ubiquitous in computer

systems: Almost every language has a

floating-point data type; computers from

PCs to supercomputers have floating-point

accelerators; most compilers will be called

upon to compile floating-point algorithms

from time to time; and virtually every

operating system must respond to floating-

point exceptions such as overflow This

paper presents a tutorial on the aspects of

floating-point that have a direct impact on

designers of computer systems. It begins

with background on floating-point

representation and rounding error, continues

with a discussion of the IEEE floating-point

standard, and concludes with examples of

how computer system builders can better

support floating point,

2. VECTOR PROCESSORS

Vector processors operate on vectors of data

within the same instruction.2 Vector

instruction set architecture (ISA) provides an

efficient organization for controlling a large

amount of computation resources.

Furthermore, vector ISAs emphasize local

communication and provide excellent

computation/area ratios. Vector instructions

express DLP in a very compact form, thus

removing much redundant work (e.g.,

instruction fetch, decode, and issue). For

example, a vector FP FMA instruction

(FPFMAV) indicates the operation (FMA),

three source vector registers, and one

destination vector register. Thus, tuples of

three elements, one from each source

register,

are the inputs for the VFU, and the result is

written to the destination. All tuples can be

processed independently, and multiple

elements could be accommodated in a vector

Vol 09 Issue06, Jun 2020 ISSN 2456 – 5083 Page 104

register. The register file is designed so that

a single named register holds a number of

elements. The entire architecture is designed

to take advantage of the vector style in

organizing data. Additionally, the memory

system of vector processors allows efficient

stride and indexed memory access. The

number of elements of a vector register is

denoted by the maximum vector length

(MVL). Occasionally, fewer elements than

the MVL are used, which reduces the

effective vector length (EVL). The vector

execution model streamlines one vector

register element per cycle to a fully

pipelined vector FU. As a result, the

execution time of a vector instruction is the

startup latency (a number of stages) of the

vector FU plus the EVL.A common

technique to reduce this time is to implement

multiple vector lanes through replicated

lock-stepped vector FU. Each lane accesses

its own “slice” of the vector register file,

which reduces the need for increasing the

number of ports typically associated with a

larger number of FUs. Lock stepping the

lanes simplifies the control logic and is

power efficient. These concepts are shown

in Fig. 1. Although lanes were proposed for

increasing performance, using multiple lanes

can increase the energy efficiency of a

vector architecture. Additionally, an

interesting feature that vector processors

typically offer is a vector mask control.

Masked operations are used to vectorize

loops that include conditional statements.

Masked operation uses an MVL -bit vector

mask register (VMR) for indicating which

operations of the vector instruction are

actually performed. In other words, masked

vector instructions operate only on the

vector elements whose corresponding entries

in the VMR are “1.”
Conventional vector processors should not

be confused with single instruction multiple

data (SIMD) multimedia extensions such as

AVX-512 that are an alternative way to

exploit DLP and indicate operations to

perform on multiple elements.3 The main

difference of these extensions with a

conventional vector processor is that they

exploit subword-SIMD parallelism and are

typically implemented with multiple vector

FUs that operate on all independent

elements in parallel. Having a vector FU per

element to operate on all them in parallel

would be inefficient for vector processors

because they operate on much longer

vectors. Instead, a vector FU is fully

pipelined, and the elements of the vector

register are streamlined to the unit, one per

cycle, possibly using a small number of

vector lanes.

Fig. 1. Two-lane, four-stage VFU (MVL =

EVL = 64) executing FPFMAV V3<-

V0,V1,V2.

3. FMA

The FMA unit executes the FMA instruction

(FMA R <- A, B, C) that implements R = A ∗ B + C. In contrast to a multiplication

followed by an addition, the FMA

Vol 09 Issue06, Jun 2020 ISSN 2456 – 5083 Page 105

instruction assumes all three operands at the

same time. It was introduced for the first

time in IBM’s RS/600 in 1990. IEEE754-

2008 standard defines the FMA instruction

to be computed initially with unbounded

range and precision, rounding only once to

the destination format. For this reason, FMA

is faster

and more precise than a multiplication

followed by an addition. The FMA unit

performs operand alignment in parallel with

the multiplication. This leads to shorter

latency (nS) compared with a multiplication

followed by an addition. Additionally, the

FMA operation reduces the number of

interconnections between FP units and the

number of adders and normalizers. The

FMA instructions help compilers to produce

more efficient code. Potential drawbacks are

increased latency of FPADD and FPMUL

instructions (if executed on the FMA) and a

complex normalizer. A simplified list of

steps of the computations the FMA flow is

as follows:

1) mantissas multiplication (MA × MB),

exponents addition (EA + EB), alignment of

the addend’s mantissa (MC), and calculation

of the intermediate result exponent ER =

max(EA + EB, EC);

2) addition of the product (MA × MB) and

aligned MC ;

3) normalization of the addition result and

exponent update;

4) rounding;

5) determination of the exception flags and

special values.

A simplified implementation block diagram

of the FMA unit used in our research is

shown in Fig. 2. As we assume double

precision, we need a 162-bit adder and a 53

× 53 multiplier. For the adder and the

multiplier, we choose Brent–Kung and

Wallace algorithms, respectively, as it is

aligned with our findings. The aligner

performs shifting of the addend based on the

exponents difference in order to align it with

the product (MA × MB). FP addition using

the FMA unit is implemented by setting the

first operand to 1 (A = 1.0), while FP

multiplication is implemented by setting the

third operand to 0 (C = 0.0).

Fig. 2. Simplified block diagram of a one-

lane, four-stage VFU with all clock-gating

techniques applied (AllCG technique).

4. CONCLUSION:

Traditional clock gating approaches reduce

FPU power consumption if no instructions

are executed, or at best, re-duce the power

consumption for the idle cycles between

subsequent instructions. In numerical

applications with highly optimized floating-

point routines these traditional clock gating

schemes are not efficient for the FPU. We

Vol 09 Issue06, Jun 2020 ISSN 2456 – 5083 Page 106

have developed new clock gating schemes

that address exactly this scenario, i.e., they

save power even if the FPU executes an

instruction every cycle. The schemes clock

gate parts of the FPU based on instruction

type, precision, and operand values..

BIBLIOGRAPHY

[1] I. Ratkovi´c, O. Palomar, M. Stani´c, O.

Unsal, A. Cristal, and M. Valero, “A fully

parameterizable low power design of vector

fused multiply-add using active clock-gating

techniques,” in Proc. Int. Symp. Low Power

Electron. Design (ISLPED), 2016, pp. 362–
367.

[2] K. Asanovi´c, “Vector microprocessor,”
Ph.D. dissertation, Dept. Comput. Sci.,

Univ. California, Berkeley, Berkeley, CA,

USA, 1998.

[3] Y. Lee et al., “Exploring the tradeoffs

between programmability and efficiency in

data-parallel accelerators,” in Proc. 38th

Annu. Int. Symp. Comput. Archit. (ISCA),

2011, pp. 129–140.

[4] B. Zimmer et al., “A RISC-V vector

processor with simultaneousswitching

switched-capacitor DC–DC converters in 28

nm FDSOI,” IEEE J. Solid-State Circuits,

vol. 51, no. 4, pp. 930–942, Apr. 2016.

[5] R. Espasa, M. Valero, and J. E. Smith,

“Vector architectures: Past, present and

future,” in Proc. 12th Int. Conf.

Supercomput. (SC), 1998, pp. 425–432.

[6] H. Li, S. Bhunia, Y. Chen, T. N.

Vijaykumar, and K. Roy, “Deterministic

clock gating for microprocessor power

reduction,” in Proc. 9th Int. Symp. High-

Perform. Comput. Archit. (ISCA), Feb.

2003, pp. 113–122.

[7] N. Mohyuddin, K. Patel, and M. Pedram,

“Deterministic clock gating to eliminate

wasteful activity due to wrong-path

instructions in outof- order superscalar

processors,” in Proc. IEEE Int. Conf.

Comput. Design (ICCD), Oct. 2009, pp.

166–172.

[8] J. Preiss, M. Boersma, and S. M.

Mueller, “Advanced clockgating schemes

for fused-multiply-add-type floating-point

units,” in Proc. 19th IEEE Symp. Comput.

Arithmetic (ARITH), Jun. 2009, pp. 48–56.

[9] I. Ratkovi´c, O. Palomar, M. Stani´c, O.

S. Ünsal, A. Cristal, and M. Valero, “On the

selection of adder unit in energy efficient

vector processing,” in Proc. 14th Int. Symp.

Quality Electron. Design (ISQED), Mar.

2013, pp. 143–150.

[10] I. Ratkovi´c et al., “Joint circuit-system

design space exploration of multiplier unit

structure for energy-efficient vector

processors,” in Proc. IEEE Comput. Soc.

Annu. Symp. VLSI (ISVLSI), Jul. 2015, pp.

19–26.

[11] M. Stanic, O. Palomar, I. Ratkovi´c, M.

Duric, O. Unsal, and A. Cristal, “VALib and

SimpleVector: Tools for rapid initial

research on vector architectures,” in Proc.

11th ACM Conf. Comput. Frontiers (CS),

2014, p. 7.

[12] (2016). ARM Processors. [Online].

Available: http://arm.com/

[13] S. Momose, “NEC Vector

supercomputer: Its present and future,” in

Sustained Simulation Performance. Cham,

Switzerland: Springer, 2015, pp. 95–105.

[14] R. Espasa et al., “Tarantula: A vector

extension to the alpha architecture,” in Proc.

Vol 09 Issue06, Jun 2020 ISSN 2456 – 5083 Page 107

29th Annu. Int. Symp. Comput. Archit.

(ISCA), 2002, pp. 281–292.

[15] O. Shacham, O. Azizi, M. Wachs, S.

Richardson, and M. Horowitz, “Rethinking

digital design: Why design must change,”
IEEE Micro, vol. 30, no. 6, pp. 9–24,

Nov./Dec. 2010.

[16] B. Nikolic, “Simpler, more efficient

design,” in Proc. 41st Eur. Solid-State

Circuits Conf. (ESSCIRC), 2015, pp. 20–25.

[17] J. Bachrach et al., “Chisel: Constructing

hardware in a scala embedded language,” in

Proc. 49th Annu. Design Autom. Conf.

(DAC), 2012, pp. 1216–1225.

