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 ABSTRACT: The need for power efficiency is driving a rethink of design decisions in 

processor architectures. While vector processors succeeded in the high-performance market in 

the past, they need a retail ring for the mobile market that they are entering now. Floating-point 

(FP) fused multiply-add (FMA), being a functional unit with high power consumption, deserves 

special attention. Although clock gating is a well-known method to reduce switching power in 

synchronous designs, there are unexplored opportunities for its application to vector processors, 

especially when considering active operating mode. In this research, we comprehensively 

identify, propose, and evaluate the most suitable clock-gating techniques for vector FMA units 

(VFUs). These techniques ensure power savings without jeopardizing the timing. We evaluate 

the proposed techniques using both synthetic and “real-world” application-based benchmarking. 

Using vector masking and vector multilane-aware clock gating, we report power reductions of up 

to 52%, assuming active VFU operating at the peak performance. Among other findings, we 

observe that vector instruction-based clock-gating techniques achieve power savings for all 

vector FP instructions. Finally, when evaluating all techniques together, using “real-world” 
benchmarking, the power reduction. Additionally, in accordance with processor design trends, 

we perform this research in a fully parameterizable and automated fashion.  

 

1. INTRODUCTION 

Although computer arithmetic is sometimes 

viewed as a specialized part of CPU design, 

still the discrete component designing is also 

a very important aspect. A tremendous 

variety of algorithms have been proposed for 

use in floating-point systems. Actual 

implementations are usually based on 

refinements and variations of the few basic 

algorithms presented here. In addition to 

choosing algorithms for addition, 

subtraction, multiplication, and division, the 

computer architect must make other choices. 

Our discussion of floating point will focus 

almost exclusively on the IEEE floating-

point standard (IEEE 754) because of its 

rapidly increasing acceptance. Although 

floating-point arithmetic involves 

manipulating exponents and shifting 

fractions, the bulk of the time in floating-

point operations is spent operating on 

fractions using integer algorithms. Thus, 

after our discussion of floating point, we 

will take a more detailed look at efficient 

algorithms and architectures. 
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Many applications require numbers that 

aren’t integers. There are a number of ways 

that non-integers can be represented. Adding 

two such numbers can be done with an 

integer add, whereas multiplication requires 

some extra shifting. There is various ways to 

represent the number systems. However, 

only one non-integer representation has 

gained widespread use, and that is floating 

point. Current digital signal processing 

(DSP) systems are making the transition 

from fixed-point arithmetic (used initially 

because of its simplicity) to floating-point 

arithmetic. The latter has several advantages 

including the freedom from overflow and 

underflow and ease of interfacing to the rest 

of the system. To improve the performance 

of floating-point arithmetic, several fused 

floating-point operations have been 

introduced: Fused Multiply–Add (FMA) 

used Add–Subtract, and Fused Two-Term 

Dot-Product. The fused floating-point 

operations not only improve the 

performance, but also reduce the area and 

power consumption compared to discrete 

floating-point implementations 

This design presents improved architecture 

designs and implementations for a fused 

floating-point add–subtract unit. Many DSP 

applications such as fast Fourier Transform 

(FFT) and Discrete Cosine Transform 

(DCT) butterfly operations can benefit from 

the fused floating-point add–subtract unit. 

Therefore, he improved fused floating-point 

add–subtract unit will contribute to the next 

generation floating-point arithmetic and 

DSP application development. The proposed 

fused floating-point add–subtract unit takes 

two normalized floating-point operands and 

generates their sum and difference 

simultaneously. It supports all five rounding 

modes specified in IEEE-754 Standard. 

Several techniques are applied to achieve 

low area, low power consumption and high 

speed: 

1) Instead of executing two identical 

floating-point adders, the fused floating-

point add–subtract unit shares the common 

logic to generate the sum and difference 

simultaneously. Therefore, it saves much of 

the area and power consumption compared 

to a discrete floating-point add–subtract unit.  

2) A dual-path algorithm can be applied to 

increase speed. The dual-path logic consists 

of a far path and a close path. In the far path, 

the addition, subtraction and rounding logic 

are performed in parallel. By aligning the 

significands to the minimal number of bits, 

the addition, subtraction and rounding logic 

are simplified. There are three cases for the 

close path depending on the difference of the 

exponents. For each case, addition, 

subtraction and leading zero anticipation 

(LZA) are performed in parallel and 

rounding is not required. Therefore, the 

dual-path design reduces the latency of the 

critical path. 

3) To increase the throughput, pipelining can 

be applied. Based on data flow analysis, the 

proposed dual-path design is split into two 

pipeline stages. By properly arranging the 

components, latencies of the two pipeline 

stages are balanced so that the throughput of 

the entire design is increased. Also, it 

reduces the latency by simplifying the 

control signals. 
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Clock gating is a common method to reduce 

switching power in synchronous pipelines.. 

It is practically a standard in low-power 

design. The goal is to “gate” the clock of 

any component whenever it does not 

perform useful work. In that way, the power 

spent in the associated clock tree, registers, 

and the logic between the registers is 

reduced. It is the most efficient power 

reduction technique for active operating 

mode.1 Therefore, the conditions under 

which clock gating can be applied should be 

extensively studied and identified. A widely 

used approach is to clock gate a whole FU 

when it is idle. A complementary and more 

challenging approach is clock gating the FU 

or its subblocks when it is active, i.e., 

operating at peak performance 

Exploring the tradeoffs between 

programmability and efficiency in data-

parallel accelerators by Y. Lee et al We 

present a taxonomy and modular 

implementation approach for data-parallel 

accelerators, including the MIMD, vector-

SIMD,subword-SIMD, SIMT, and vector-

thread (VT) architectural design patterns. 

We have developed a new VT micro 

architecture, Maven, based on the traditional 

vector-SIMD micro architecture that is 

considerably simpler to implement and 

easier to program than previous VT designs. 

Using an extensive design-space exploration 

of full VLSI implementations of many 

accelerator design points, we evaluate the 

varying tradeoffs between programmability 

and implementation efficiency among the 

MIMD, vector-SIMD, and VT pat-terns on a 

workload of micro benchmarks and 

compiled application kernels. We find the 

vector cores provide greater efficiency than 

the MIMD cores, even on fairly irregular 

kernels. Our results suggest that the Maven 

VT micro architecture is superior to the 

traditional vector-SIMD architecture, 

providing both greater efficiency and easier 

programmability. 

Deterministic clock gating for 

microprocessor power reduction by H. Li, S. 

Bhunia, Y. Chen, T. N. Vijaykumar, and K. 

Roy With the scaling of technology and the 

need for higher performance and more 

functionality, power dissipation is becoming 

a major bottleneck for microprocessor 

designs. Pipeline balancing (PLB), a 

previous technique, is essentially a 

methodology to clock-gate unused 

components whenever a program's 

instruction-level parallelism is predicted to 

be low. However, no nonpredictive 

methodologies are available in the literature 

for efficient clock gating. This paper 

introduces deterministic clock gating (DCG) 

based on the key observation that for many 

of the stages in a modern pipeline, a circuit 

block's usage in a specific cycle in the near 

future is deterministically known a few 

cycles ahead of time. Our experiments show 

an average of 19.9% reduction in processor 

power with virtually no performance loss for 

an 8-issue, out-of-order superscalar 

processor by applying DCG to execution 

units, pipeline latches, D-Cache wordline 

decoders, and result bus drivers. In contrast, 

PLB achieves 9.9% average power savings 

at 2.9% performance loss. 
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Deterministic clock gating to eliminate 

wasteful activity due to wrong-path 

instructions in outof-order superscalar 

processors by N. Mohyuddin, K. Patel, and 

M. Pedram In this paper we present 

deterministic clock gating schemes for 

various micro architectural blocks of a 

modern out-of-order superscalar processor. 

We propose to make use of (1) idle stages of 

the pipelined function units (FUs) and (2) 

wrong-path instruction execution during 

branch mis-prediction, in order to clock gate 

various stages of FUs. The baseline 

Pipelined Functional unit Clock Gating 

(PFCG), presented for evaluation purpose 

only, disables the clock on idle stages and 

thus results in 13.93% chip-wide energy 

saving. Wrong-path instruction Clock 

Gating (WPCG) detects wrong-path 

instructions in the event of branch mis-

prediction and prevents them from being 

issued to the FUs, and subsequently, 

disables the clock of these FUs along with 

reducing the stress on register file and cache. 

Simulations demonstrate that more than 92% 

of all wrong-path instructions can be 

detected and stopped from being executed. 

The WPCG architecture results in 16.26% 

chip-wide energy savings which is 2.33% 

more than that of the baseline PFCG 

scheme. 

What every computer scientist should know 

about floating-point arithmetic, by D. 

Goldberg Floating-point arithmetic is 

considered an esoteric subject by many 

people. This is rather surprising, because 

floating-point is ubiquitous in computer 

systems: Almost every language has a 

floating-point data type; computers from 

PCs to supercomputers have floating-point 

accelerators; most compilers will be called 

upon to compile floating-point algorithms 

from time to time; and virtually every 

operating system must respond to floating-

point exceptions such as overflow This 

paper presents a tutorial on the aspects of 

floating-point that have a direct impact on 

designers of computer systems. It begins 

with background on floating-point 

representation and rounding error, continues 

with a discussion of the IEEE floating-point 

standard, and concludes with examples of 

how computer system builders can better 

support floating point, 

2. VECTOR PROCESSORS 

Vector processors operate on vectors of data 

within the same instruction.2 Vector 

instruction set architecture (ISA) provides an 

efficient organization for controlling a large 

amount of computation resources. 

Furthermore, vector ISAs emphasize local 

communication and provide excellent 

computation/area ratios. Vector instructions 

express DLP in a very compact form, thus 

removing much redundant work (e.g., 

instruction fetch, decode, and issue). For 

example, a vector FP FMA instruction 

(FPFMAV) indicates the operation (FMA), 

three source vector registers, and one 

destination vector register. Thus, tuples of 

three elements, one from each source 

register, 

are the inputs for the VFU, and the result is 

written to the destination. All tuples can be 

processed independently, and multiple 

elements could be accommodated in a vector 
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register. The register file is designed so that 

a single named register holds a number of 

elements. The entire architecture is designed 

to take advantage of the vector style in 

organizing data. Additionally, the memory 

system of vector processors allows efficient 

stride and indexed memory access. The 

number of elements of a vector register is 

denoted by the maximum vector length 

(MVL ). Occasionally, fewer elements than 

the MVL are used, which reduces the 

effective vector length (EVL). The vector 

execution model streamlines one vector 

register element per cycle to a fully 

pipelined vector FU. As a result, the 

execution time of a vector instruction is the 

startup latency (a number of stages) of the 

vector FU plus the EVL.A common 

technique to reduce this time is to implement 

multiple vector lanes through replicated 

lock-stepped vector FU. Each lane accesses 

its own “slice” of the vector register file, 

which reduces the need for increasing the 

number of ports typically associated with a 

larger number of FUs. Lock stepping the 

lanes simplifies the control logic and is 

power efficient. These concepts are shown 

in Fig. 1. Although lanes were proposed for 

increasing performance, using multiple lanes 

can increase the energy efficiency of a 

vector architecture. Additionally, an 

interesting feature that vector processors 

typically offer is a vector mask control. 

Masked operations are used to vectorize 

loops that include conditional statements. 

Masked operation uses an MVL -bit vector 

mask register (VMR) for indicating which 

operations of the vector instruction are 

actually performed. In other words, masked 

vector instructions operate only on the 

vector elements whose corresponding entries 

in the VMR are “1.” 
Conventional vector processors should not 

be confused with single instruction multiple 

data (SIMD) multimedia extensions such as 

AVX-512 that are an alternative way to 

exploit DLP and indicate operations to 

perform on multiple elements.3 The main 

difference of these extensions with a 

conventional vector processor is that they 

exploit subword-SIMD parallelism and are 

typically implemented with multiple vector 

FUs that operate on all independent 

elements in parallel. Having a vector FU per 

element to operate on all them in parallel 

would be inefficient for vector processors 

because they operate on much longer 

vectors. Instead, a vector FU is fully 

pipelined, and the elements of the vector 

register are streamlined to the unit, one per 

cycle, possibly using a small number of 

vector lanes. 

 

Fig. 1. Two-lane, four-stage VFU (MVL = 

EVL = 64) executing FPFMAV V3<-

V0,V1,V2. 

3. FMA 

The FMA unit executes the FMA instruction 

(FMA R <- A, B, C) that implements R = A ∗  B + C. In contrast to a multiplication 

followed by an addition, the FMA 
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instruction assumes all three operands at the 

same time. It was introduced for the first 

time in IBM’s RS/600 in 1990. IEEE754-

2008 standard defines the FMA instruction 

to be computed initially with unbounded 

range and precision, rounding only once to 

the destination format. For this reason, FMA 

is faster 

and more precise than a multiplication 

followed by an addition. The FMA unit 

performs operand alignment in parallel with 

the multiplication. This leads to shorter 

latency (nS) compared with a multiplication 

followed by an addition. Additionally, the 

FMA operation reduces the number of 

interconnections between FP units and the 

number of adders and normalizers. The 

FMA instructions help compilers to produce 

more efficient code. Potential drawbacks are 

increased latency of FPADD and FPMUL 

instructions (if executed on the FMA) and a 

complex normalizer. A simplified list of 

steps of the computations the FMA flow is 

as follows: 

1) mantissas multiplication (MA × MB), 

exponents addition (EA + EB), alignment of 

the addend’s mantissa (MC), and calculation 

of the intermediate result exponent ER = 

max(EA + EB, EC); 

2) addition of the product (MA × MB) and 

aligned MC ; 

3) normalization of the addition result and 

exponent update; 

4) rounding; 

5) determination of the exception flags and 

special values. 

A simplified implementation block diagram 

of the FMA unit used in our research is 

shown in Fig. 2. As we assume double 

precision, we need a 162-bit adder and a 53 

× 53 multiplier. For the adder and the 

multiplier, we choose Brent–Kung and 

Wallace algorithms, respectively, as it is 

aligned with our findings. The aligner 

performs shifting of the addend based on the 

exponents difference in order to align it with 

the product (MA × MB). FP addition using 

the FMA unit is implemented by setting the 

first operand to 1 (A = 1.0), while FP 

multiplication is implemented by setting the 

third operand to 0 (C = 0.0).                                            

 

 

Fig. 2. Simplified block diagram of a one-

lane, four-stage VFU with all clock-gating 

techniques applied (AllCG technique). 

4. CONCLUSION: 

Traditional clock gating approaches reduce 

FPU power consumption if no instructions 

are executed, or at best, re-duce the power 

consumption for the idle cycles between 

subsequent instructions. In numerical 

applications with highly optimized floating-

point routines these traditional clock gating 

schemes are not efficient for the FPU. We 
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have developed new clock gating schemes 

that address exactly this scenario, i.e., they 

save power even if the FPU executes an 

instruction every cycle. The schemes clock 

gate parts of the FPU based on instruction 

type, precision, and operand values..                                                      
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