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Abstract: The data traffic in wireless networks is steadily growing. The long-term trend follows 

Cooper’s law, where the traffic is doubled every two-and-a-half year, and it will likely continue 

for decades to come. The data transmission is tightly connected with the energy consumption in 

the power amplifiers, transceiver hardware, and baseband processing. The relation is captured by 

the energy efficiency metric, measured in bit/Joule, which describes how much energy is 

consumed per correctly received information bit. While the data rate is fundamentally limited by 

the channel capacity, there is currently no clear understanding of how energy-efficient a 

communication system can become. Current research papers typically present values on the 

order of 10 Mbit/Joule, while previous network generations seem to operate at energy 

efficiencies on the order of 10 kbit/Joule. Is this roughly as energy-efficient future systems (5G 

and beyond) can become, or are we still far from the physical limits? These questions are 

answered in this paper. We analyze a different cases representing potential future deployment 

and hardware characteristics. 

 

1. INTRODUCTION 

WITH the increasing demand for higher 

spectral effi- ciency and reliability in the 

next generation wireless communications, 

multiple-input multiple-output (MIMO) 

systems have been receiving great attention 

for their ability in improving the 

transmission rate and error performance [1]– 

[3]. Recently, a novel MIMO scheme called 

spatial modulation (SM) has emerged as an 

appealing candidate to fulfill the spectral 

and energy efficiency requirements of the 

next generation wireless communication 

systems [4]–[10]. In SM, information bits 

are conveyed by not only the modulated 

symbol but also the index of the active  

 

transmit antenna. Compared with classical 

MIMO, SM has a number of advantages, 

including reduced interchannel interference, 

relaxed inter-antenna synchronization 

requirements, and reduced receiver 

complexity [6], [7]. Owing to its various 

advantages, design and analysis of SM 

transmission in various scenarios, e.g., 

adaptive SM [11]–[13], generalized SM 

[14]–[16], and energy evaluation of SM 

[17]–[20], are extensively investigated. 

Specially, for practical multipath fading 

channels, single-carrier aided SM [21]–[23] 

is conceived as an appealing technique to 

eliminate inter-antenna interference and 
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achieve high energy efficiency with only 

one active antenna at any time instant. 

Compared with single-carrier transmission, 

orthogonal frequency division multiplexing 

(OFDM) is usually more favored for 

multipath fading channels as it facilitates 

low-complexity receiver design by 

converting the multipath fading channel into 

several parallel flat fading channels in the 

expense of an increased peak-toaverage-

power ratio (PAPR) at the transmitter. 

For the past centuries, people desire 

to communicate with each other in a 

convenience and economical way. Due to 

this demand, communications has been a 

vibrant field of research for more than 

hundred years. Thanks to the development 

of Very Large Scale Integration (VLSI) and 

Signal Processing technology since the 

1960s, wireless communications has become 

one of the most significant research areas in 

the field of modern communications, [1]. A 

tremendous advantage of wireless 

communication compared with wired 

communication is that it does not require 

any physical cables. This superiority not 

only enables devices to work anywhere 

without considering the limitation of the 

wires but also saves the money. 

2. LITERATURE SURVEY 

In the optimal number of active subcarriers 

selection problem is investigated. In recent 

times, the performance of OFDM-IM is 

analyzed in terms of ergodic achievable rate 

[38] and average mutual information [39]. 

Due to the advantages of OFDM and MIMO 

transmission techniques, the combination of 

them has been regarded as a promising 

solution for enhancing the data rates of next 

generation wireless communications 

systems. More recently, by combining 

OFDM-IM with MIMO transmission 

techniques, a novel MIMO-OFDM with 

index modulation (MIMO-OFDMIM) 

scheme is presented in [40], which exhibits 

the potential to surpass the classical MIMO-

OFDM. Specifically, by deactivating a 

subset of subcarriers, MIMO-OFDM-IM has 

the potential to achieve much better BER 

performance than classical MIMO-OFDM, 

resulting in higher energy efficiency for 

practical systems. Then, the error 

performance of the MIMO-OFDM-IM 

scheme is investigated theoretically for 

different types of detectors in [41] and its 

adaptation to visible light communications 

systems is presented in [42]. In this scheme, 

since each transmit antenna transmits an 

independent OFDM-IM block, its spectral 

efficiency can reach Nt times that of 

OFDM-IM, where Nt denotes the number of 

transmit antennas. Inheriting from OFDM-

IM, MIMO-OFDM-IM is also able to 

provide an interesting trade-off between the 

spectral efficiency and the error 

performance by adjusting the number of 

active subcarriers in each OFDM-IM 

subblock. However, due to the dependence 

of the subcarrier symbols within each 

OFDM-IM subblock and the strong inter-

channel interference (ICI) between the 

transmit antennas of the MIMO-OFDM-IM 

system, it becomes much more challenging 

to detect the active subcarrier indices and 

modulated symbols. Although the ML 

detector is able to achieve optimal 

performance, it necessitates an exhaustive 

search with prohibitive computational 



Vol 09 Issue06, Jun 2020                                ISSN 2456 – 5083   Page 79 
 

complexity, which makes itself impractical 

for MIMO-OFDM-IM. To reduce the 

detection complexity, several low 

complexity detectors, e.g., simple minimum 

mean square error (MMSE) detector, log-

likelihood ratio (LLR) based MMSE 

detector, and ordered successive interference 

cancellation (OSIC) based MMSE detector 

are proposed for the detection of 

MIMOOFDM-IM [40], [41]. However, 

those existing low complexity detectors 

suffer from a significant error performance 

loss compared to the ML detector. 

Therefore, the design of lowcomplexity 

detection algorithms for MIMO-OFDM-IM 

with near-optimal error performance 

remains an open as well as challenging 

research problem. 

In this paper, in order to achieve near-

optimal error performance while 

maintaining low computational complexity, 

two types of detection algorithms based on 

the sequential Monte Carlo (SMC) theory 

are proposed for MIMO-OFDM-IM. By 

regarding each OFDM-IM subblock as a 

super modulated symbol drawn from a large 

finite set, the first type of detector draws 

samples independently at the subblock level. 

Although it is capable of achieving near-

optimal performance with substantially 

reduced complexity, its decoding 

complexity can be still unsatisfactory when 

the size of the OFDM-IM subblock grows 

much larger. To further reduce the 

complexity, the second type of detector is 

proposed to draw samples subcarrierwise 

from the modified constellation with a much 

smaller size. To meet the constraint on the 

legal active subcarrier combinations within 

each OFDM-IM subblock, the second type 

of detector is coupled with a carefully 

designed examination method to avoid 

illegal samples. Thanks to the effectiveness 

of the deterministic SMC sampling and 

legality examination, it only suffers from a 

marginal error performance loss. Finally, 

computer simulation and numerical results 

in terms of BER and number of complex 

multiplications (NCM) corroborate the 

superiority of both proposed detection 

methods. 

3. SMC ANDSEQUENTIAL 

STRUCTURE FOR MIMO-

OFDM 

   The SMC method, also referred to as 

particle filter, is a class of the sampling 

based sequential Bayesian inference 

methodologies for general dynamic systems, 

which has been widely applied in wireless 

communications [43]–[48]. In the following, 

we will first briefly introduce the concept of 

the deterministic SMC and then construct 

the sequential structure for MIMO-OFDM. 

In most applications of digital 

communications, the transmitted signals 

take values from a finite set and the received 

signals are the superimposition of 

transmitted signals corrupted by Gaussian 

noise. The a posteriori distribution can be 

thus computed by performing an exhaustive 

search over all possible realizations of the 

transmitted signal block, whose 

computational complexity grows 

exponentially with the of the transmitted 

signal block. Instead of the exhaustive 

search and computation, the objective of the 

deterministic SMC method is to numerically 

approximate the a posteriori distributions of 
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the states of some Markov processes, given 

some noisy and partial observations. At each 

sampling interval, we draw symbol samples 

from the given finite set to construct new 

sequential particles, and then update their 

corresponding importance weights, where an 

illustrative example is shown in Fig. 3. 

Specifically, after calculating the importance 

weights for all hypotheses generated by the 

previous particles n (Xt−1) (b) oβ b=1 , we 
only retain β most promising hypotheses 
associated with the highest importance 

weights as the new particles n (Xt) (b) oβ 
b=1 while discarding other hypotheses 

immediately at each sampling interval. More 

detailed descriptions of the deterministic 

SMC concept will be given in Section IV 

with the proposed algorithms. 

It has been shown that the deterministic 

SMC-based detectors can achieve near-ML 

performance with much lower 

computational cost to the receiver for 

various communications systems [43]–[48]. 

Moreover, attributed to its nature of being 

soft-input and soft-output, SMC based 

detection can also be efficiently employed in 

coded communication systems. However, to 

apply the deterministic SMC theory in a 

specific system, it is essential to construct 

the sequential structure based on the 

observed signals for the sampling procedure, 

which varies for different communication 

scenarios. 

4. LOW-COMPLEXITY 

DETECTORS FORMIMO-

OFDM-IM 

In this section, we will develop two types of 

SMC-based detectors by using the structure 

of (10) as the kernel for MIMOOFDM-IM. 

As will be shown by computer simulations, 

the new algorithms can avoid error 

propagation successfully and provide near-

optimal error performance for MIMO-

OFDMIM. 

After the lower triangular operation, the 

sequential structure in (10) can be exploited 

by applying the SMC method to draw 

samples starting from the first transmit 

antenna and ending to the last one. Indeed, if 

we simply regard each OFDM-IM subblock 

x g t as a super modulated symbol drawn 

from a large finite set, we have the a 

posteriori distribution of {x g t } Nt t=1 

conditioned on {z g t } Nt t=1 as where z g t 

, [z g t (1) z g t (2) ·  ·  ·  z g t (N)]T denotes 

the observed subblock in the t-th (1 ≤ t ≤ Nt) 
branch of the receiver after the lower 

triangular operation in (10), and X g t , {x g 

t 0} t t 0=1. Based on (11), we construct the 

sequence of probability distributions n P  X 

g t    Z g t oNt t=1 , which can be expressed 

as where Z g t , {z g t 0} t t 0=1. From the 

perspective of the probability theory, our 

aim is to estimate the a posteriori probability 

of each OFDM-IM subblock. based on the 

observed subblocks {z g t } Nt t=1, where 

Φ˜ , {Φi} NCMK i=1 with |Φ˜ | = NCMK 
denotes the set including all possible 

realizations of the OFDM-IM subblock. 

Instead of the direct computation of (13), 

which is too computationally expensive, we 

seek to numerically approximate (13) by 

using the deterministic SMC theory to 

substantially reduce the complexity at the 

receiver. Let (X g t ) (b) with b = 1, . . . , β 
be the particles drawn by the SMC method 

at the t-th sampling interval on the basis of 

subblock, where β denotes the total number 
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of particles. To implement the SMC method, 

we first generate a set of incomplete 

particles for the OFDM-IM subblocks, and 

then update the corresponding importance 

weights for those particles with respect to 

the distribution of (11) until the subblock at 

the last antenna is reached. Moreover, to 

update the importance weights, it is crucial 

to design the trial distribution which 

minimizes the variance of the importance 

weights conditioned upon the previous 

particles and the observed signals [50]. 

Under the criterion of minimum conditional 

variance of the importance weights, we 

simply choose the trial distribution as for t = 

1,, Nt. Proposition 1: With the trial 

distribution given in (14), the importance 

weight for the SMC can be updated 

according 5) where p  z g t    X g t−1 (b)  
can be regarded as the prediction 

distribution of the current observed subblock 

z g t under the condition of the previous 

particle X g t−1. 
5. PROPOSED METHOD 

A new wireless technology generation is 

introduced every decade and the 

standardization is guided by the 

International Telecommunication Union 

(ITU), which provides the minimum 

performance requirements. For example, 4G 

was designed to satisfy the IMT-Advanced 

requirements [1] on spectral efficiency, 

bandwidth, latency, and mobility. Similarly, 

the new 5G standard [2] is supposed to 

satisfy the minimum requirements of being 

an IMT-2020 radio interface [3]. In addition 

to more stringent requirements in the 

aforementioned four categories, a new 

metric has been included in [3]: energy 

efficiency (EE). A basic definition of the EE 

is [4], [5] EE [bit/Joule] = Data rate [bit/s] 

Energy consumption [Joule/s] . (1) This is a 

benefit-cost ratio and the energy 

consumption term includes transmit power 

and dissipation in the transceiver hardware 

and baseband processing [5], [6]. A general 

concern is that higher data rates can only be 

achieved by consuming more energy; if the 

EE is constant, then 100× higher data rate in 

5G is associated with a 100× higher energy 

consumption. This is an environmental 

concern since wireless networks are 

generally not powered from renewable green 

sources. It is desirable to vastly increase the 

EE in 5G, but IMT-2020 provides no 

measurable targets for it, but claims that 

higher spectral efficiency will be sufficient. 

There are two main ways to improve the 

spectral efficiency: smaller cells [6], [7] 

This paper was supported by ELLIIT and 

grants from the Swedish Foundation for 

Strategic Research (SSF) and the Swedish 

Research Council (VR). and massive 

multiple-input multiple-output (MIMO) [8], 

[9]. The former gives substantially higher 

signal-to-noise ratios (SNRs) by reducing 

the propagation distances and the latter 

allows for spatial multiplexing of many 

users and/or higher SNRs. Since these gains 

are achieved by deploying more transceiver 

hardware per km2 , higher spectral 

efficiency will not necessarily improve the 

EE; the EE first grows with smaller cell 

sizes and more antennas, but there is an 

inflection point where it starts decaying 

instead [10]. The bandwidth is fixed in these 

prior works, but many other parameters are 

optimized for maximum EE. There are other 
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non-trivial tradeoffs, such as the fact that 

transceiver hardware becomes more efficient 

with time [6], [11], so the energy 

consumption of a given network topology 

gradually reduces. While the Shannon 

capacity [12] manifests the maximal spectral 

efficiency over a channel and the speed of 

light limits the latency, the corresponding 

upper limit on the EE is unknown. A 

comprehensive study of the EE of 4G base 

stations is found in [13]. It shows that a 

macro site delivering 28 Mbit/s has an 

energy consumption of 1.35 kW, leading to 

an EE of 20 kbit/Joule. Recent papers report 

EE numbers in the order of 10 Mbit/Joule 

[5], [14], [15] when considering future 5G 

deployment scenarios and using estimates of 

current transceivers’ energy consumption. 

There is also numerous papers that consider 

normalized setups (e.g., 1 Hz of bandwidth) 

that give no insights into the EE that can be 

achieved in practice. Finally, the channel 

capacity per unit cost was studied for 

additive white Gaussian noise (AWGN) 

channels in [16], which is a rigorous but 

normalized form of EE analysis. The goal of 

this paper is to analyze the physical EE 

limits in a few different cases and, 

particularly, give practically relevant 

numbers on the maximum achievable EE. 

6. CONCLUSION 

The answer to the question “How energy-

efficient can a wireless communication 

system become?” depends strongly on 

which parameter values can be selected in 

practice and the energy consumption 

modeling. If it is modeled to capture the 

most essential hardware characteristics, the 

optimal EE is achieved for a particular ratio 

of the transmit power P and bandwidth B, 

which typically corresponds to a low SNR. 

Any data rate can be achieved by jointly 

increasing P and B while keeping the 

optimal ratio. The physical upper limit on 

the EE is around 1 Pbit/Joule. For practical 

number of antennas and channel gains, we 

can rather hope to reach EEs in the order of 

a few Tbit/Joule (as in Fig. 4) in future 

systems 
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