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Abstract—This paper presents improved architectures for a fused floating-point add–subtract unit. The fused 

floating-point add–subtract unit is useful for digital signal processing (DSP) applications such as fast Fourier 

transform (FFT) and discrete cosine transform (DCT) butterfly operations. To improve the performance of the fused 

floating-point add–subtract unit, a dual-path algorithm and pipelining are employed. The proposed designs are 

implemented for both single and double precision and synthesized with a 45-nm standard-cell library. The fused 

floating-point add–subtract unit saves 40% of the area and power consumption compared to a discrete floating-point 

add–subtract unit. The proposed dual-path design reduces the latency by 30% compared to the discrete design with 

area and power consumption between that of the discrete and fused designs. Based on a data flow analysis, the 

proposed fused dual-path floating-point add–subtract unit can be split into two pipeline stages. Since the latencies of 

two pipeline stages are fairly well balanced, the throughput is increased by 80% compared to the non pipelined dual-

path design. 

Index Terms—Digital signal processing (DSP), floating-point arithmetic, fused floating-point operation, high-speed 

computer arithmetic. 

 

I. INTRODUCTION 

Current digital signal processing (DSP) systems are 

making the transition from fixed-point arithmetic 

(used initially because of its simplicity) to floating-

point arithmetic. The latter has several advantages 

including the freedom from overflow and underflow 

and ease of interfacing to the rest of the system 

(which generally will use IEEE-754 Standard 

floating-point arithmetic [1]). To improve the 

performance of floating-point arithmetic, several 

fused floating - point operations have been 

introduced: Fused Multiply–Add (FMA) [2], Fused 

Add–Subtract [7], and Fused Two-Term Dot-Product 

[8].This paper presents improved architecture designs 

and implementations for a fused floating-point add–

subtract unit. Many DSP applications such as fast 

Fourier transform (FFT) and discrete cosine 

transform (DCT) butterfly operations can benefit 

from the fused floating point add–subtract unit [3]. 

There-fore, the improved fused floating-point add–

subtract unit will contribute to the next generation 

floating-point arithmetic and DSP application 
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development. The proposed fused floating-point add–

subtract unit takes two normalized floating-point 

operands and generates their sum and difference 

simultaneously. It supports all five rounding modes 

specified in IEEE-754 Standard [1]. Several 

techniques are applied to achieve low area and high 

speed: Instead of executing two identical floating-

point adders, the fused floating-point add–subtract 

unit shares the common logic to generate the sum and 

difference simultaneously. Therefore, it saves much 

of the area compared to a discrete floating-point add–

subtract unit. Also, it reduces the latency by 

simplifying the control signals. 

1) A dual-path algorithm can be applied to increase 

speed. The dual-path logic consists of a far path and a 

close path. In the far path, the addition, subtraction 

and rounding logic are performed in parallel. By 

aligning the significands to the minimal number of 

bits, the addition, subtraction and rounding logic are 

simplified. There are three cases for the close path 

depending on the difference of the exponents. For 

each case, addition, subtraction and leading zero 

anticipation (LZA) are performed in parallel and 

rounding is not required. Therefore, the dual-path 

design reduces the latency of the critical path. 

 2) To increase the throughput, pipelining can be 

applied. Based on data flow analysis, the proposed 

dual-path de-sign is split into two pipeline stages. By 

properly arranging the components, latencies of the 

two pipeline stages are balanced so that the 

throughput of the entire design is increased. Section 

II describes the traditional discrete floating point 

add–subtract unit with two identical floating point 

adders. The next three sections present improved 

architectures for a fused floating-point add– subtract 

unit design. In Section III, the fundamental concepts 

of the fused floating -point add–subtract unit and its 

implementation are presented. Improved architectures 

for applying the dual-path algorithm and 

implementation details are described in Section IV. 

 

II. TRADITIONAL FLOATING-POINT ADD-

SUBTRACT UNIT 

A direct way to implement the floating-point add– 

subtract operation is to use two identical floating-

point adders in parallel. One of the adders performs 

an addition and the other performs a subtraction to 

produce the sum and difference simultaneously. A 

traditional floating-point adder such as that of Fig. 1 

can be used for each operation. The steps to execute 

the floating-point addition are as follows: 

1) Exponent compare logic compares the exponents 

of the two operands A and B to determine which 

exponent is greater and calculates their difference. 

2) The exponent comparison results are used for the 

significand swap logic. When the exponents are 

equal, the significands are compared to identify the 

smaller significand. The significand of the smaller 

operand is shifted by the amount of the exponent 

difference (if any) for the alignment and the guard, 

round and sticky bits are attached to the LSB. 
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Fig. 1. Traditional floating-point adder 

 

3) Since some of rounding modes specified in IEEE-

754 Standard [1] require knowing the sign (i.e., round 

to positive and negative infinity), the sign logic must 

be performed prior to the round logic. The sign logic 

provides the sign of the sum and the operation 

decision bit to the round logic and significand 

adders,respectively. 

4) The two significands are passed to the significand 

add–sub-tract unit and LZA simultaneously. The 

add–subtract unit performs the addition or 

subtractionof the two significands depending on the 

operation. It produces rounded and un-rounded 

results and the round logic selects one of them for a 

fast rounding. The LZA generates the amount of 

cancellation during the subtraction in a constant time 

so that the subtraction result is immediately 

normalized. The overflow of the significand adder 

and the shift amount from the LZA are passed to the 

exponent adjust logic. Using the shift amount, the 

exponent adjust logic generates the exponent of the 

sum. In this step, inexact, overflow and underflow of 

the exponent (if any) are detected for setting the 

exception flags. 

 

III. FUSED FLOATING-POINT ADD-SUBTRACT 

UNIT 

The discrete floating-point add–subtract unit 

produces the sum and difference simultaneously by 

executing two identical floating-point additions. 

However, much of the logic such as exponent 

comparison, significand swap and alignment in the 

two floating-point adders is nearly the same for the 

two operations. 

In order to reduce the overhead, a fused floating-

point add–subtract unit shares the common logic for 

the two operations. Fig. 2 shows the design of a fused 

floating point add–subtract unit. The fused floating-

point add– subtract unit produces the sum and 

difference results simultaneously by executing the 

shared logic such as the exponent comparison, 

significand swap and alignment. Also, the fused 

floating-point add–subtract unit performs only one 

significand addition and subtraction for each 

operation. 
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Fig. 2. Fused floating-point add–subtract unit 

 

Since two operations are explicitly performed for 

sum and difference results (e.g., if the addition is 

used for the sum, the subtraction is used for the 

difference), the addition and subtraction are 

separately placed and only one LZA and 

normalization (for the subtraction) is required. 

Assuming both sign bits are positive, the addition and 

subtraction are performed separately. Then, two 

multiplexers select the sum and difference with the 

operation decision bit, which is the XOR of the two 

sign bits. More details of the logic are described in 

next section. This approach simplifies the addition 

and subtraction operations. It also reduces the control 

signals for distinguishing the signs and final results. 

Thus, the fused floating-point add–subtract unit 

achieves low area and high speed. 

 

IV. DUAL PATH FUSED FLOATING-POINT 

ADD-SUBTRACT UNIT 

To achieve a high-performance fused floating-point 

add–sub-tract unit, this paper proposes a dual-path 

approach. Most high-speed floating-point adders 

employ the dual-path algorithm [4]. Fig. 3 shows the 

dual-path fused floating-point add–subtract unit. The 

dual-path algorithm skips the normalization step 

depending on the exponent difference. Since the 

normalization after the subtraction is one of the 

bottlenecks in the fused floatingpoint add–subtract 

unit, the dual-path approach improves the 

performance. 

The dual-path approach consists of far path and close 

path logic. The far path logic takes the significands if 

the difference of the exponents is greater than 1. In 

this case,,massive cancellation does not occur during 

the subtraction so that the LZA is un-necessary. The 

far-path logic is implemented similar to the front end 

of the traditional floating-point adder as shown in 

Fig. 3. 

The greater and smaller signifi cands are determined 

by swap-ping two significands based on the exponent 

comparison: 

 

 

TABLE I SIGN DECISION TABLE 
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The two significands are aligned with a 1 attached to 

the MSB end to make 24- bit normalized 

significands. By aligning the two significands to 24-

bits, significand addition and subtraction are 

simplified, re-sulting in a reduction in the logic area 

and delay. The significand of the smaller operand is 

right shifted by amount of the exponent difference 

and aligned to 24 -bits. The sticky bit is set if at least 

one bit of the 22 LSBs is a 1 and the 23
rd

 and the 24th 

LSBs become the round and guard bits, respectively. 

Since the significand of the larger operand is not 

shifted, the 24-bit significand is kept as it is without 

guard, round and sticky bits. The greater and smaller 

significands are passed to the addition and 

subtraction units. 

 

The round logic takes the LSBs, guard, round and 

sticky bits of the two significands and performs 4-bit 

addition and subtraction to determine if the result is 

rounded up or not for each operation. Also, it requires 

the sign bits of the addition and subtraction to support 

all five round modes specified in IEEE-754 Standard. 

Since the far path requires at most a 1-bit 

normalization shift for both addition and subtraction, 

it avoids a large normalization procedure. 

 

The close path takes the significands if the difference 

of the two exponents is 0 or 1. Fig. 5 shows the close 

path 

logic. There are three cases for the close path 

depending on the difference of the exponents: 

 

For each case, addition, subtraction and LZA are 

performed simultaneously. LZA with concurrent 

correction is used for a fast normalization [5], [6]. 

One of the three results is selected based on the small 

exponent comparison, which compares the two LSBs 

of the exponents. In contrast to the far path, the 

significands are not swapped to avoid a large 

significand comparison. 

When the subtraction result is negative, a two’s 

complement operation is performed to convert the 

result to a positive value. The carry-out of the 

subtraction indicates a significand comparison, which 

is passed to the sign logic, to determine the sign bits 

when the two exponents are equal. Since the 

significands in the close path are mis-aligned by at 

most 1-bit, rounding is not required. The addition 

result is normalized by 1-bit overflow, while the 

subtraction result is normalized by up to 23-bits using 

the shift amount from the LZA. The remaining logic 

for the dual-path fused floatingpoint add–subtract 

unit are the exponent compare logic shown in Fig. 6 

calculates the difference of the two exponents and 

determines which is greater, these are the same 

functions required for the traditional logic. In 

addition to thisthe path decision between the far and 

close paths based on the exponent difference is 

required: 
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Fig. 3 . Dual-path fused floating-point add–subtract 

unit 

 

The path decision flag is passed to the two 

multiplexers for selecting the addition and 

subtraction results between the far and close paths. 

The exponent adjust logic shown in Fig.7 performs 

addition and subtraction to adjust the exponents by 

the amount that the significands are shifted. The 

exponent adjust logic produces two exponent results 

simultaneously. In the case of addition, one of the 

increment values is added depending on the path 

decision that is the overflow from the significand 

addition. In the case of subtraction, if the far path is 

selected, the decrement value is subtracted that is the 

underflow from the significand subtraction. If the 

close path is selected, the 

normalization shift value is subtracted that is the shift 

amount of the massive cancellation that occurred 

during the subtraction. The two adjusted exponents 

are passed to the exception logic. Since underflow 

does not occur in default exception handling, the 

exception logic supports abrupt Underflow, an 

alternate exception handling specified in IEEE-754 

Standard [1] to detect three exception cases: 

where round up is the rounding decision of the 

significand result. The overflow flag is set if the 

exponent exceeds the maximum value that can be 

represented such as positive and negative infinity. 

The underflow flag is set if the exponent is too small 

to be represented such as zero and subnormal values. 

Overflow only occurs in addition and underflow only 

occurs in subtraction. 

 

V. PIPELINED FUSED FLOATING-POINT ADD–

SUBTRACT UNIT 

As is well known, proper pipelining increases the 

throughput of floating-point adders [4]. In order to 

achieve a proper pipelined fused floating-point add–

subtract unit, the latencies of the components in the 

proposed design are investigated. Each component is 

implemented in Verilog- 

HDL, simulated with XILINX ISE design suite and 

synthesized with Leonardo spectrum ASIC standard 

library. Since several components are executed in 

parallel, they are combined to a stage and the sum of 

the component delays determines the latency of the 

stage. Considering the latencies of components and 

their parallel execution, the proposed design is split 

into two pipeline stages. Each pipeline stage is 

executed every cycle so that the largest latency 

determines the  throughput of the design. Fig. 8 

shows the data flow, the latency of each component, 

and the critical path. The first pipeline stage consists 
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of unpacking logic and the two data paths: the far 

path and the close path. The two data paths are the 

first half of the dual path, which is described in Figs. 

4 and 5. The far path in the first pipeline stage 

contains the exponent compare, sign logic 1, 

significand swap, align and sticky logic. The close 

path in the first pipeline stage contains the small 

exponent compare, small significand align, three 

additions, subtractions and LZAs, and 3:1 select 

logic. Among the two data paths, the close path takes 

the larger latency so that it becomes the critical path. 

The series of components in the close path 

determines the latency of the first pipeline stage, 

which is 4.37 ns. The second half of the dual path and 

the remaining logic comprise the second pipeline 

stage. The far path in the second pipeline stage 

contains the addition, subtraction, round logic, and 

round select logic. The close path in the second 

pipeline stage contains the sign logic 2, complement 

and normalization logic. Among the two data paths, 

the far path takes the larger latency so that the second 

half of the far path logic and the remaining logic 

(path select, exponent adjust, and operation select 

logic) comprise the critical path, which adds up to 3.9 

ns. The latencies of the two pipeline stages are fairly 

well balanced so that the throughput of the design is 

increased. Since the latency of the first pipeline stage 

is slightly larger than that of the second pipeline 

stage, it determines the throughput of the entire 

design. 

 

VI. RESULTS 

The previous sections have introduced various 

designs for the fused floating-point add–subtract unit. 

Each design is implemented in Verilog-HDL and 

synthesized with xilinix. 

 

 

 

Fig 4 Simulation Result 

 

 

 

Fig 5 Simulation Result 

 

VII. CONCLUSION 

Improved architectures for the design and 

implementation of a fused floating-point add–subtract 

unit are presented. The floating-point add–subtract 

unit is useful for digital signal processing 

applications such as FFT and DCT butterfly 

operations. This paper presents improved 
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architectures which apply the dual-path algorithm 

and pipelining to the fused floating-point add– 

subtract unit and compares the area, latency, 

throughput with the traditional parallel 

implementation. The fused floating-point add–

subtract unit saves area compared to the traditional 

discrete floating-point add– subtract unit by sharing 

the common logic. Also, the fused floating-point 

add–subtract unit reduces the latency due to its 

simplified control logic. The dualpath fused 

floatingpoint add–subtract unit reduces the latency 

compared to the discrete design by performing 

several add–subtract operations for each case in 

parallel. Additionally, a pipelined implementation to 

increase the throughput of the dual-path fused 

floating-point add–subtract unit is described. It uses 

two pipeline stages and the latencies are well 

balanced so that the throughput is increased 

compared to the non-pipelined dual-path design. 
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