

Vol 06 Issue 02 May 2017 ISSN 2456 - 5083 Page 1

COPY RIGHT

2017 IJIEMR. Personal use of this material is permitted. Permission from IJIEMR must be

obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this

work in other works. No Reprint should be done to this paper, all copy right is authenticated

to Paper Authors

IJIEMR Transactions, online available on 16 May 2017. Link :

http://www.ijiemr.org/downloads.php?vol=Volume-6&issue=ISSUE-3

Title: A New Architecture For floating-point fused add-subtract Unit Design

Volume o6, Issue 03, Pages: 52 – 59.

Paper Authors

G.SIVA KUMAR, Y.B.SHABBIR HUSSIAN.

Dept of Electronics and Communication Engineering, CVRT, AP, India.

 USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER

 To Secure Your Paper As Per UGC Guidelines We Are Providing A Electronic Bar

Code

Vol 06, Issue 03, May 2017 ISSN: 2456 – 5083 Page 52

A New Architecture For floating-point fused add-subtract Unit

Design

G.SIVA KUMAR

1
, Y.B.SHABBIR HUSSIAN

 2

1
PG Scholar, Electronics and Communication Engineering, CVRT, AP, India

2
Assistant Professor, Electronics and Communication Engineering, CVRT, AP, India

kamakshi.n14@gmail.com

Abstract—This paper presents improved architectures for a fused floating-point add–subtract unit. The fused

floating-point add–subtract unit is useful for digital signal processing (DSP) applications such as fast Fourier

transform (FFT) and discrete cosine transform (DCT) butterfly operations. To improve the performance of the fused

floating-point add–subtract unit, a dual-path algorithm and pipelining are employed. The proposed designs are

implemented for both single and double precision and synthesized with a 45-nm standard-cell library. The fused

floating-point add–subtract unit saves 40% of the area and power consumption compared to a discrete floating-point

add–subtract unit. The proposed dual-path design reduces the latency by 30% compared to the discrete design with

area and power consumption between that of the discrete and fused designs. Based on a data flow analysis, the

proposed fused dual-path floating-point add–subtract unit can be split into two pipeline stages. Since the latencies of

two pipeline stages are fairly well balanced, the throughput is increased by 80% compared to the non pipelined dual-

path design.

Index Terms—Digital signal processing (DSP), floating-point arithmetic, fused floating-point operation, high-speed

computer arithmetic.

I. INTRODUCTION

Current digital signal processing (DSP) systems are

making the transition from fixed-point arithmetic

(used initially because of its simplicity) to floating-

point arithmetic. The latter has several advantages

including the freedom from overflow and underflow

and ease of interfacing to the rest of the system

(which generally will use IEEE-754 Standard

floating-point arithmetic [1]). To improve the

performance of floating-point arithmetic, several

fused floating - point operations have been

introduced: Fused Multiply–Add (FMA) [2], Fused

Add–Subtract [7], and Fused Two-Term Dot-Product

[8].This paper presents improved architecture designs

and implementations for a fused floating-point add–

subtract unit. Many DSP applications such as fast

Fourier transform (FFT) and discrete cosine

transform (DCT) butterfly operations can benefit

from the fused floating point add–subtract unit [3].

There-fore, the improved fused floating-point add–

subtract unit will contribute to the next generation

floating-point arithmetic and DSP application

mailto:kamakshi.n14@gmail.com

Vol 06, Issue 03, May 2017 ISSN: 2456 – 5083 Page 53

development. The proposed fused floating-point add–

subtract unit takes two normalized floating-point

operands and generates their sum and difference

simultaneously. It supports all five rounding modes

specified in IEEE-754 Standard [1]. Several

techniques are applied to achieve low area and high

speed: Instead of executing two identical floating-

point adders, the fused floating-point add–subtract

unit shares the common logic to generate the sum and

difference simultaneously. Therefore, it saves much

of the area compared to a discrete floating-point add–

subtract unit. Also, it reduces the latency by

simplifying the control signals.

1) A dual-path algorithm can be applied to increase

speed. The dual-path logic consists of a far path and a

close path. In the far path, the addition, subtraction

and rounding logic are performed in parallel. By

aligning the significands to the minimal number of

bits, the addition, subtraction and rounding logic are

simplified. There are three cases for the close path

depending on the difference of the exponents. For

each case, addition, subtraction and leading zero

anticipation (LZA) are performed in parallel and

rounding is not required. Therefore, the dual-path

design reduces the latency of the critical path.

 2) To increase the throughput, pipelining can be

applied. Based on data flow analysis, the proposed

dual-path de-sign is split into two pipeline stages. By

properly arranging the components, latencies of the

two pipeline stages are balanced so that the

throughput of the entire design is increased. Section

II describes the traditional discrete floating point

add–subtract unit with two identical floating point

adders. The next three sections present improved

architectures for a fused floating-point add– subtract

unit design. In Section III, the fundamental concepts

of the fused floating -point add–subtract unit and its

implementation are presented. Improved architectures

for applying the dual-path algorithm and

implementation details are described in Section IV.

II. TRADITIONAL FLOATING-POINT ADD-

SUBTRACT UNIT

A direct way to implement the floating-point add–

subtract operation is to use two identical floating-

point adders in parallel. One of the adders performs

an addition and the other performs a subtraction to

produce the sum and difference simultaneously. A

traditional floating-point adder such as that of Fig. 1

can be used for each operation. The steps to execute

the floating-point addition are as follows:

1) Exponent compare logic compares the exponents

of the two operands A and B to determine which

exponent is greater and calculates their difference.

2) The exponent comparison results are used for the

significand swap logic. When the exponents are

equal, the significands are compared to identify the

smaller significand. The significand of the smaller

operand is shifted by the amount of the exponent

difference (if any) for the alignment and the guard,

round and sticky bits are attached to the LSB.

Vol 06, Issue 03, May 2017 ISSN: 2456 – 5083 Page 54

Fig. 1. Traditional floating-point adder

3) Since some of rounding modes specified in IEEE-

754 Standard [1] require knowing the sign (i.e., round

to positive and negative infinity), the sign logic must

be performed prior to the round logic. The sign logic

provides the sign of the sum and the operation

decision bit to the round logic and significand

adders,respectively.

4) The two significands are passed to the significand

add–sub-tract unit and LZA simultaneously. The

add–subtract unit performs the addition or

subtractionof the two significands depending on the

operation. It produces rounded and un-rounded

results and the round logic selects one of them for a

fast rounding. The LZA generates the amount of

cancellation during the subtraction in a constant time

so that the subtraction result is immediately

normalized. The overflow of the significand adder

and the shift amount from the LZA are passed to the

exponent adjust logic. Using the shift amount, the

exponent adjust logic generates the exponent of the

sum. In this step, inexact, overflow and underflow of

the exponent (if any) are detected for setting the

exception flags.

III. FUSED FLOATING-POINT ADD-SUBTRACT

UNIT

The discrete floating-point add–subtract unit

produces the sum and difference simultaneously by

executing two identical floating-point additions.

However, much of the logic such as exponent

comparison, significand swap and alignment in the

two floating-point adders is nearly the same for the

two operations.

In order to reduce the overhead, a fused floating-

point add–subtract unit shares the common logic for

the two operations. Fig. 2 shows the design of a fused

floating point add–subtract unit. The fused floating-

point add– subtract unit produces the sum and

difference results simultaneously by executing the

shared logic such as the exponent comparison,

significand swap and alignment. Also, the fused

floating-point add–subtract unit performs only one

significand addition and subtraction for each

operation.

Vol 06, Issue 03, May 2017 ISSN: 2456 – 5083 Page 55

Fig. 2. Fused floating-point add–subtract unit

Since two operations are explicitly performed for

sum and difference results (e.g., if the addition is

used for the sum, the subtraction is used for the

difference), the addition and subtraction are

separately placed and only one LZA and

normalization (for the subtraction) is required.

Assuming both sign bits are positive, the addition and

subtraction are performed separately. Then, two

multiplexers select the sum and difference with the

operation decision bit, which is the XOR of the two

sign bits. More details of the logic are described in

next section. This approach simplifies the addition

and subtraction operations. It also reduces the control

signals for distinguishing the signs and final results.

Thus, the fused floating-point add–subtract unit

achieves low area and high speed.

IV. DUAL PATH FUSED FLOATING-POINT

ADD-SUBTRACT UNIT

To achieve a high-performance fused floating-point

add–sub-tract unit, this paper proposes a dual-path

approach. Most high-speed floating-point adders

employ the dual-path algorithm [4]. Fig. 3 shows the

dual-path fused floating-point add–subtract unit. The

dual-path algorithm skips the normalization step

depending on the exponent difference. Since the

normalization after the subtraction is one of the

bottlenecks in the fused floatingpoint add–subtract

unit, the dual-path approach improves the

performance.

The dual-path approach consists of far path and close

path logic. The far path logic takes the significands if

the difference of the exponents is greater than 1. In

this case,,massive cancellation does not occur during

the subtraction so that the LZA is un-necessary. The

far-path logic is implemented similar to the front end

of the traditional floating-point adder as shown in

Fig. 3.

The greater and smaller signifi cands are determined

by swap-ping two significands based on the exponent

comparison:

TABLE I SIGN DECISION TABLE

Vol 06, Issue 03, May 2017 ISSN: 2456 – 5083 Page 56

The two significands are aligned with a 1 attached to

the MSB end to make 24- bit normalized

significands. By aligning the two significands to 24-

bits, significand addition and subtraction are

simplified, re-sulting in a reduction in the logic area

and delay. The significand of the smaller operand is

right shifted by amount of the exponent difference

and aligned to 24 -bits. The sticky bit is set if at least

one bit of the 22 LSBs is a 1 and the 23
rd

 and the 24th

LSBs become the round and guard bits, respectively.

Since the significand of the larger operand is not

shifted, the 24-bit significand is kept as it is without

guard, round and sticky bits. The greater and smaller

significands are passed to the addition and

subtraction units.

The round logic takes the LSBs, guard, round and

sticky bits of the two significands and performs 4-bit

addition and subtraction to determine if the result is

rounded up or not for each operation. Also, it requires

the sign bits of the addition and subtraction to support

all five round modes specified in IEEE-754 Standard.

Since the far path requires at most a 1-bit

normalization shift for both addition and subtraction,

it avoids a large normalization procedure.

The close path takes the significands if the difference

of the two exponents is 0 or 1. Fig. 5 shows the close

path

logic. There are three cases for the close path

depending on the difference of the exponents:

For each case, addition, subtraction and LZA are

performed simultaneously. LZA with concurrent

correction is used for a fast normalization [5], [6].

One of the three results is selected based on the small

exponent comparison, which compares the two LSBs

of the exponents. In contrast to the far path, the

significands are not swapped to avoid a large

significand comparison.

When the subtraction result is negative, a two’s

complement operation is performed to convert the

result to a positive value. The carry-out of the

subtraction indicates a significand comparison, which

is passed to the sign logic, to determine the sign bits

when the two exponents are equal. Since the

significands in the close path are mis-aligned by at

most 1-bit, rounding is not required. The addition

result is normalized by 1-bit overflow, while the

subtraction result is normalized by up to 23-bits using

the shift amount from the LZA. The remaining logic

for the dual-path fused floatingpoint add–subtract

unit are the exponent compare logic shown in Fig. 6

calculates the difference of the two exponents and

determines which is greater, these are the same

functions required for the traditional logic. In

addition to thisthe path decision between the far and

close paths based on the exponent difference is

required:

Vol 06, Issue 03, May 2017 ISSN: 2456 – 5083 Page 57

Fig. 3 . Dual-path fused floating-point add–subtract

unit

The path decision flag is passed to the two

multiplexers for selecting the addition and

subtraction results between the far and close paths.

The exponent adjust logic shown in Fig.7 performs

addition and subtraction to adjust the exponents by

the amount that the significands are shifted. The

exponent adjust logic produces two exponent results

simultaneously. In the case of addition, one of the

increment values is added depending on the path

decision that is the overflow from the significand

addition. In the case of subtraction, if the far path is

selected, the decrement value is subtracted that is the

underflow from the significand subtraction. If the

close path is selected, the

normalization shift value is subtracted that is the shift

amount of the massive cancellation that occurred

during the subtraction. The two adjusted exponents

are passed to the exception logic. Since underflow

does not occur in default exception handling, the

exception logic supports abrupt Underflow, an

alternate exception handling specified in IEEE-754

Standard [1] to detect three exception cases:

where round up is the rounding decision of the

significand result. The overflow flag is set if the

exponent exceeds the maximum value that can be

represented such as positive and negative infinity.

The underflow flag is set if the exponent is too small

to be represented such as zero and subnormal values.

Overflow only occurs in addition and underflow only

occurs in subtraction.

V. PIPELINED FUSED FLOATING-POINT ADD–

SUBTRACT UNIT

As is well known, proper pipelining increases the

throughput of floating-point adders [4]. In order to

achieve a proper pipelined fused floating-point add–

subtract unit, the latencies of the components in the

proposed design are investigated. Each component is

implemented in Verilog-

HDL, simulated with XILINX ISE design suite and

synthesized with Leonardo spectrum ASIC standard

library. Since several components are executed in

parallel, they are combined to a stage and the sum of

the component delays determines the latency of the

stage. Considering the latencies of components and

their parallel execution, the proposed design is split

into two pipeline stages. Each pipeline stage is

executed every cycle so that the largest latency

determines the throughput of the design. Fig. 8

shows the data flow, the latency of each component,

and the critical path. The first pipeline stage consists

Vol 06, Issue 03, May 2017 ISSN: 2456 – 5083 Page 58

of unpacking logic and the two data paths: the far

path and the close path. The two data paths are the

first half of the dual path, which is described in Figs.

4 and 5. The far path in the first pipeline stage

contains the exponent compare, sign logic 1,

significand swap, align and sticky logic. The close

path in the first pipeline stage contains the small

exponent compare, small significand align, three

additions, subtractions and LZAs, and 3:1 select

logic. Among the two data paths, the close path takes

the larger latency so that it becomes the critical path.

The series of components in the close path

determines the latency of the first pipeline stage,

which is 4.37 ns. The second half of the dual path and

the remaining logic comprise the second pipeline

stage. The far path in the second pipeline stage

contains the addition, subtraction, round logic, and

round select logic. The close path in the second

pipeline stage contains the sign logic 2, complement

and normalization logic. Among the two data paths,

the far path takes the larger latency so that the second

half of the far path logic and the remaining logic

(path select, exponent adjust, and operation select

logic) comprise the critical path, which adds up to 3.9

ns. The latencies of the two pipeline stages are fairly

well balanced so that the throughput of the design is

increased. Since the latency of the first pipeline stage

is slightly larger than that of the second pipeline

stage, it determines the throughput of the entire

design.

VI. RESULTS

The previous sections have introduced various

designs for the fused floating-point add–subtract unit.

Each design is implemented in Verilog-HDL and

synthesized with xilinix.

Fig 4 Simulation Result

Fig 5 Simulation Result

VII. CONCLUSION

Improved architectures for the design and

implementation of a fused floating-point add–subtract

unit are presented. The floating-point add–subtract

unit is useful for digital signal processing

applications such as FFT and DCT butterfly

operations. This paper presents improved

Vol 06, Issue 03, May 2017 ISSN: 2456 – 5083 Page 59

architectures which apply the dual-path algorithm

and pipelining to the fused floating-point add–

subtract unit and compares the area, latency,

throughput with the traditional parallel

implementation. The fused floating-point add–

subtract unit saves area compared to the traditional

discrete floating-point add– subtract unit by sharing

the common logic. Also, the fused floating-point

add–subtract unit reduces the latency due to its

simplified control logic. The dualpath fused

floatingpoint add–subtract unit reduces the latency

compared to the discrete design by performing

several add–subtract operations for each case in

parallel. Additionally, a pipelined implementation to

increase the throughput of the dual-path fused

floating-point add–subtract unit is described. It uses

two pipeline stages and the latencies are well

balanced so that the throughput is increased

compared to the non-pipelined dual-path design.

REFERENCES

[1] IEEE Standard for Floating-Point Arithmetic,

ANSI/IEEE Standard 754-2008, New York: IEEE,

Inc., Aug. 29, 2008.

[2] T. Lang and J. D. Bruguera, “Floating-point fused

multiply-add with reduced latency,” IEEE Trans.

Comput., vol. 53, no. 8, pp. 988– 1003, Aug. 2004.

[3] E. E. Swartzlander, Jr. and H. H. Saleh, “FFT

implementation with fused floating-point operations,”

IEEE Trans. Comput., vol. 61, no. 2,pp. 284–288,

Feb. 2012.

[4] P. M. Seidel and G. Even, “Delay-optimized

implementation of IEEE floating-point addition,”

IEEE Trans. Comput., vol. 53, no. 2, pp.97– 113,

Feb. 2004.

[5] J. D. Bruguera and T. Lang, “Leading—One

prediction with concurrent position correction,” IEEE

Trans. Comput., vol. 48, no. 10, pp. 1083–1097, Oct.

1999.

[6] R. Ji, Z. Ling, X. Zeng, B. Sui, L. Chen, J. Zhang,

Y. Feng, and G. Luo, “Comments on ‘Leading one

prediction with concurrent position correction’,”

IEEE Trans. Comput., vol. 58, no. 12, pp. 1726–

1727,Dec. 2009.

[7] H. H. Saleh and E. E. Swartzlander, Jr., “A

floating-point fused add–subtract unit,” in Proc. 51st

IEEE Midwest Symp. Circuits Syst., 2008, pp. 519–

522.

[8] H. H. Saleh and E. E. Swartzlander, Jr., “A

floating-point fused dotproduct unit,” in Proc. IEEE

Int. Conf. Comput. Design, 2008, pp. 427–431.

