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ABSTRACT 

   With the latest developments in VLSI technology, the size of memories is rapidly 

growing. The yield criteria and testing problems have become the most critical areas 

for memory manufacturing. Traditionally, redundancies are applied so that the faulty 

cells can be repairable. Using external memory testers redundancy analysis is 

becoming slow as the chip density continues to grow, especially for the system chip 

with big embedded memories. This paper presents three redundancy allocation 

algorithms which can be implemented on-chip. Out of three algorithms, two are based 

on the local-bitmap concept: the local repair-most approach is good for a general 

spare configuration, and the local optimization approach has the better repair rate. 

The essential spare pivoting technique is proposed to simplify control circuitry.  

Index Terms— built-in self-test, DRAM , Built-in self-diagnosis, memory 

testing ,embedded memory, ,redundancy analysis, SRAM, yield improvement 

ACRONYMS 

BISD built-in self-diagnosis  

BIST built-in self-test            

BIRA built-in redundancy-analysis 

BISA built-in self-analysis 

RM repair-most 

FC fault collection 

SA spare allocation 

LRM local  repair-most 

LO local optimization 

ESP essential spare pivoting 

NOTATION 

   M              number of rows of memory array  

   N               number of columns of memory array  

    l               fault line of a row or column 

    F              total number of faulty cells  
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    Fl              number of faulty cell in a line  

    Fo            number of orthogonal faulty cells 

      m          number of rows of local bitmap  

      n            number of columns of local bitmap 

     ra             available spare rows 

     rc            available spare columns 

     nr            number of faulty rows not covered  

      nc                 number of faulty columns not covered  

       

1. INTRODUCTION 

MOS memories are 

microelectronic components they 

occupy about 30% of the world 

semiconductor market [1-4]. There is  

continuous innovation in VLSI 

technology which keeps increasing the 

capacity and density of semiconductor 

memories, integrating more and more  

cells in a silicon chip; as per Moore’s 

law the capacity of memory chips 

roughly doubles every 18months[5-7]. 

As the feature size shrinks, increasing 

the integration density and chip size, 

keeping a acceptable yield level is very 

hard. To improve yield, spare rows and 

columns of storage cells) are often 

added so that most faulty cells can be 

replaced by spare cells [8–13]. 

Redundancy, however, adds to cost 

due to area overhead. Therefore, 

analysis of redundancies to improve 

yield (after repair) and minimize cost 

is a vital process during 

manufacturing. Redundancy analysis 

using expensive memory testers is not 

cost-effective as the chip density 

continues to grow. The use of 

embedded memories creates yet 

another problem; embedded memories 

are even difficult to deal with using 

external testers [14-19]. There is a 

prediction that memories will occupy 

more than 90% of the system chip area 

within a decade while the chip 

complexity keeps increasing 

dramatically It has been widely noted 

that embedded memories will play an 

increasingly important role in the 

semiconductor market in the coming 

years, because the system-on-chip 

market is on demand and almost every 

system chip contains some type of 

embedded memory [20-23]. 

Testing embedded memory is 

more difficult than testing commodity 

memory in general, unless built-in self-

test (BIST) is used [24-27]. Several 

BIRA/BISR techniques have been 

proposed in the earlier, e.g., [28-30]. In 

a DRAM with BIST and BISR circuits 

has been proposed, using SRAM cells 

as the redundancy. The preference is 

on the power-on self-test and self-

repairs at the memory board level. In 

[31-32], a hierarchical BISR structure 

has been proposed to facilitate memory 

test, fault location, and self repair. In a 

microprocessor-based BISD circuit 

was presented for repairable embedded 

SRAM with programmable modules. 

An embedded high-density SRAM 

with BISR capability has been 

proposed [33-35], allowing 
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autonomous repair of the SRAM core 

with negligible timing penalty. The 

spare architecture was simplified (it 

has only spare columns), so a simple 

greedy algorithm can be used for 

diagnosis and self-repair [36-37]. 

Some segment-based redundancy 

architectures have been proposed to 

improve the repair efficiency with 

simplicity of the analysis algorithms 

[38]. Most of the works either assume 

simplified redundancy architecture, 

i.e., they assume only spare rows or 

spare columns are available. 

In this paper, we propose three 

BIRA algorithms. It will be shown that 

at, by our approaches, high repair rate 

and low area overhead can be 

achieved. The BIRA (or Built-In Self-

Analysis (BISA) [39]) techniques are 

flexible and can cooperate both with 

the external tester and BIST. In 

addition, when cooperating with BIST, 

redundancy analysis can be done 

concurrently when testing, so there is 

little time penalty for the analysis. 

2. CONVENTIONAL 

REDUNDANCY ANALYSIS 

ALGORITHMS 

Before the discussion of more efficient 

algorithms,  the terminology and 

notation are defined first. A memory 

block consists of rows and columns of 

storage cells, i.e. The origin of the 

array is the upper left corner. There are 

spare rows and spare columns. The 

following definitions are followed. 

Definition 1: A faulty line is said to be 

covered if all faulty cells on the line 

have been planned to be repaired by 

specific spare rows and/or spare 

columns. 

Definition 2: A faulty line is either a 

row or a column on which one or more 

faulty cells exist. The number of faulty 

cells in l is Fl . A faulty line can be a  

either a faulty row or a faulty column. 

Definition 3: A faulty cell which does 

not  any common  row or column with 

any other faulty cell is called as an 

orthogonal faulty cell. 

 

Let the number of available spare rows 

and available spare columns during the 

analysis process be denoted as ra and ca 

respectively. During BIRA, any faulty 

line which consists of k faulty cells 

requires either 1 spare line in the same 

direction or k perpendicular spare 

lines. 

Definition 4: Must repair faulty line is 

defined as  any faulty row (column) 

with k faulty cells (i.e.,Fl = k ), where, k 

> ca (k > ra ) . 

Aavide 1: Fl can be limited to 

>=c+1(r+ 1) for the must-repair faulty 

row (column) l. 

In case there are c+1 or more faulty 

cells in the faulty row, then it is a 

must-repair row (see Definition 4). 

And Aavide 1 indicates that a fault 

counter which counts up to c+1 is 

enough for the must-repair analysis. 

Actually, redundancy analysis is done 

on a memory tester using software. 

The tester stores the bitmap (a map of 

the faulty cells) after a diagnostic test, 

and performs redundancy analysis 

based on the bitmap. The algorithms 

consist of two phases: the must-repair 

phase followed by the final-repair 

phase. In the must-repair phase, all the 
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must-repair faulty lines are identified 

first by counting the number of faulty 

cells Fl for each faulty line, limiting the 

number of remaining faulty cells. With 

Aavide 1, the storage to record Fl for 

each faulty line can be restricted 

effectively. In the final-repair 

phase, simple algorithms, such as the 

repair-most algorithm or fault-driven 

algorithm, are used. The repair-most 

approach calculates Fl of the remaining 

faulty lines and selects the faulty line 

with the largest Fl for the repair one by 

one;  

 
        Fig 1 :Defective Memory of 

Worst case Here ra = 2 and ca = 4   

Let F denote the total number 

of faulty cells in the memory block, 

and     Fo represents the number of 

orthogonal faulty cells. 

Two important early termination 

conditions for redundancy analysis are 

as follows. 

Condition 1: After the must-repair 

phase, F > 2 raca 

Condition 2: Fo > ra + ca 

If any one of the  condition is met, then 

the analysis process stopped. Early 

termination conditions help to identify 

the memory which cannot be repaired 

by available spares. As per  Aavide 1, 

we have the following two additional 

early termination conditions. 

Condition 3: if nc > rc if ra = 0 where nc 

is the number of faulty columns not 

covered so far 

Condition 4: if nr > ra if ca = 0 where nr 

is the number of faulty rows not 

covered so far. 

If any of the above four conditions is 

true, then the memory block is 

unrepairable. 

A defective memory block of the bad 

case is shown in Fig. 1, where F=2raca 

after the must-repair phase, and all 

the available spare rows and columns 

have to be used for repairing the faulty 

lines. Especially, the available spare 

rows cover ra faulty rows, where each 

faulty row has ca faulty cells and 

among these faulty rows, no cells share 

the same column address. Therefore, 

the faulty cells in these rows are 

located in 

r a x ca different columns. Similarly, 

the c a faulty lines covered by the 

available spare columns have r a x c a 

row addresses for the faulty cells. In 

this special case, the width of the 

bitmap is c a r a + c a and the height is r 
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a c a + r a. Therefore, in general, the 

size of the bitmap can be limited to (r a 

c a + r a) X  (c a r a + c a)   instead of M 

X N after the must-repair phase. 

Without the must-repair phase, the 

maximum size of the bitmap can be 

limited to (r(c+1)+r) X (c(r+1)+c) due 

to Aavide 1. 

3. NEW BUILT-IN REDUNDANCY 

ANALYSIS APPROACHES 

A. Repair-Most Using Local Bitmap 

Having the full bitmap on-chip for the 

purpose of redundancy analysis 

obviously is not feasible. Our goal is 

for the BIRA circuit to properly 

allocate redundancies in parallel with 

the BIST operation. Two requirements 

of BIRA circuit are i) optimum repair 

rate ii) low area overhead.  

The repair rate of the redundancy 

analysis is defined as the ratio of good 

memories after the redundancy 

analysis and all the faulty memories. 

repair efficiency is defined as the 

repair rate with respect to unit area 

overhead. The area overhead should be 

low and the repair efficiency should be 

high. The proposed algorithm require 

only a small array of size m x n for the 

storage the local bitmap. This reduces 

the silicon area overhead for the 

bitmap and the row/column counters. 

The parameters, m and n, can be 

constant or proportional to r and c, 

respectively, depending on the defect 

cluster distribution. We will show later 

that the local-bitmap technique results 

in a fast and small BIRA circuit with 

good repair efficiency and the BIRA 

circuit can be easily interfaced with the 

BIST circuit. 

To illustrate LRM algorithm, consider 

the memory block as shown in Fig. 4, 

which is 8X8 size where  r = c = 

2(spare rows and spare columns). Also, 

it is assumed to perform a row-wise 

march algorithm during BIST. The 

physical cell location is also provided 

to facilitate the analysis. The LRM 

analysis process for the memory block 

is shown in Fig. 5. After the first five 

faulty cells have been detected, the 

bitmap is as shown in Fig. 5(a). The 

sixth faulty cell (i.e., cell(5,2)) has the 

same row address as the fourth row 

address tag of the current bitmap, but a 

column address different from any 

existing one. Since the   

 

 
bitmap is full  Row 1 is selected 

(shaded in the figure) for repair at this 

stage, resulting in the bitmap as shown 

in Fig. 5(b). The next 3 faulty cells 
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(i.e., cell(5,4), cell(5,3), and cell(5,0)) 

are all located in the same row (i.e., 

Row 5) as shown in Fig. 5(c), so Row 

5 is selected for repair next. Finally, 

after all faulty cells are processed, 

Column 6 and Column 3 are selected 

in sequence for repair according to 

their weights and the type of remaining 

spare lines, as shown in Fig. 5(c). In 

summary, Row 1, Row 5, Column 6, 

and Column 3 are replaced by spare 

lines after the repair process. 

To search for the faulty line with the 

largest fault count, two heuristic rules 

are applied: 

1) The address of the newly detected 

faulty cell is used together with the 

current bitmap to help determine the 

line with the largest fault count. It is 

possible that the row address is 

previously recorded in the bitmap but 

there is no room for the column 

address, or vice versa. 

2) Any row (column) with a fault count 

exceeding c a (r a ) is regarded as a 

must-repair faulty row (column). 

Additionally, Condition 3 or 4 can be 

applied if r a = 0  or c a = 0. Condition 

1 can be used for early termination if 

there is a fault counter for keeping the 

total fault number and the fault count 

from the must-repair faulty lines can 

be dynamically subtracted from the 

total fault count. Early termination by 

Condition 2 can be applied with 

additional address registers for the 

orthogonal faults.  

B. Local Optimization 

In LRM, selecting the faulty line with 

the largest fault count takes more time, 

because it may be required  to pickup 

more than one line for repair (the 

number of lines to be repaired is a 

variable). Also , the repair rate of LRM 

is constrained by the bitmap size. To 

deal with this problem, another 

algorithm is proposed, i.e., the Local 

Optimization (LO) algorithm. The LO 

algorithm has a better repair rate, 

though it also uses the local bitmap. It 

searches for all possible ways of spare 

allocation when the bitmap is full.  

Consider the same memory block as 

shown in Fig. 4 again.  The bitmap 

construction procedure is the same 

with LRM for the first 6 faults, as 

shown in Fig. 6(a). when the bitmap 

overflows, intensive  search is carried 

out to cover all faults recorded in the 

bitmap. Subsequently, Row 1, Row 5, 

and Column 3 are selected upon the 

detection of the sixth faulty cell, 

cell(5,2). Assume that after this search, 

all the remaining faults are covered 

except the last fault from cell(7,6). As 

shown in Fig. 8(b), the corresponding 

column, i.e., Column 6, is selected as 

there is only one spare column is left. 

The LO algorithm usually requires a 

more execution time  than LRM for 

large memory sizes, as exhaustive 

search is performed. However, for an 

unequal spare architecture (i.e. r #=  c 

), LO can take advantage of it by 

counting all combinations of along the 

direction with less spare lines. also the 

number of total iterations is reduced in 

this algorithm. 
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 The rules and regulations of LRM still 

apply to LO as discussed previously. In 

addition, a rule which deals with 

orthogonal faults, based on Condition 

2, can be used to improve the repair 

rate. The heuristic is as follows. Every 

incoming fault which does not match 

any of the row and column address 

tags in the local bitmap is stored in an 

additional orthogonal fault register 

(OFR). When a fault is detected, it is 

required to perform an additional 

check of the fault with those in the 

OFRs. If there is a row or column 

coincidence then both the matched and 

matching addresses are recorded in the 

bitmap and  the one in the OFR 

cleared. Orthogonal faults in the OFRs 

are considered first after all other faults 

are covered. The remaining spare lines 

are selected to cover those orthogonal 

faults, one by one, using any order. 

This heuristics obviously complicates 

the control, but improves the repair 

rate to a great extent. Condition 2 can 

be applied together with this heuristics. 

C. Essential Spare Pivoting 

So far the above algorithms  use a 

small bitmap instead of the full bitmap. 

As most algorithms depend on a 

bitmap as the tool for redundancy 

analysis, it may appear that  that a 

bitmap is inevitable. This is not true. In 

this section we  the essential spare 

pivoting (ESP) algorithm is proposed 

without using a bitmap. It will be 

shown later that the repair rate using 

ESP is still high, with a greatly simple 

implementation and reduced area 

overhead. 

So the following general 

guidelines are proposed for 

redundancy analysis. 

1) For any faulty row (column), if the 

number of faulty cells is greater than or 

equivalent to a threshold number Eth, 

repair it by a spare row (column). 

2) An orthogonal fault can be repaired 

by either a spare row or a spare 

column. Orthogonal faults should be 

processed after all others. 

This guideline is similar to the must-

repair rule, except that the decision is 

based on a customized threshold 

number E th, instead of  r a and c a . In 

the analysis procedure, we maintain a 

counter for the number of faults in 

each faulty line. When the number 

reaches E th, it is marked as an 

essential line. Assume E th to be 2, then 

the threshold comparison is greatly 

simplified. The second guideline 

shown above states that an orthogonal 

fault should be recognized early but 

processed after all other. The reason is 

that, e.g., while c a> 0 and r a > 0 , if we 

repair an orthogonal fault by a spare 

row before repairing other non-

orthogonal faults, we may lose the 

chance to repair more faults with this 

spare row, as  orthogonal fault can also 

be repaired by a spare column. With 

this guideline and the proposed 

guideline, a new algorithm called the 

essential spare pivoting (ESP) 
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algorithm, is developed as shown in 

Fig. 7. 

 The faulty-cell addresses are collected 

and stored in the P R ( row pivot) and P 

C ( column pivot) register files. Both 

have r + c registers, and all the 

registers are initially empty. An 

incoming faulty-cell address (R
^
, C^) 

is compared with the existing row 

pivots and column pivots in the 

register files. If there is a row-address 

match or column-address match, the 

matched pivot is marked as an 

essential pivot (EP). During the Fault 

collection phase, if the number of the 

pivot pairs exceeds r+c, this memory is 

unrepairable and the process 

terminates. If there is no match, the 

row address and column address of the 

current faulty cell are stored in the PR 

and PC registers, respectively. The 

repair rate is high when E th = 2 , and 

only a flag is needed along with each 

pivot to indicate whether it is an EP.  

In the Fault allocation phase, spares are 

distributed according the contents of 

the P R  and P C  registers. It consists of 

two stages. In the first stage, spare 

rows are allotted for the essential row 

pivots and spare columns for the 

essential column pivots. After the first 

stage, the pivot registers contain all 

and only the addresses of the 

orthogonal faults, because they have 

never matched other faulty-cell 

addresses. These  can repair these 

faults by either spare rows or spare 

columns. In ESP_SA(), we simply 

allocate available spare rows before 

spare columns. 

 
Now the ESP algorithm is explained 

by an example. The memory block 

under test is the same as shown in Fig. 

4. The faulty cells detected are, in 

sequence, cell(1,1), cell(1,5), cell(2,3), 

cell(3,3), cell(5,1), cell(5,0), cell(5,2), 

cell(5,3), cell(5,4) (5,6), and cell(7,6). 

The FC procedure is illustrated in Fig. 

7. In the figure, the and registers are 

shown as the left and right columns of 

the register array, respectively. For 

each faulty-cell address, the is stored in 

the left column and the is stored in the 

right column. There is a ‘ mark on a 

pivot if it is an essential pivot. To 

begin, the register array is empty, so 

the first address (1,1) is stored in the 

first row of the array directly. The 

second address (1,5) matches (1,1) in 

the row address, so the of cell(1,1) is 

marked as an EP. Similarly, the 

address (2,3) is inserted directly, while 

the address (3,3) matches (2,3) in its 

column address, thus the of cell(2,3) is 

marked as an EP. This procedure 

continues until the address (7,6) is 

recorded. The SA procedure is simple: 

first spares are allocated for the EPs—
Row 1, Row 5, and Column 4, then a 

spare column is allocated to repair the 

orthogonal fault on cell (7,3). The 

major advantage of the ESP is mainly 
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its simple in implementation, which 

results in smaller area overhead than 

other algorithms. The revised first 

guideline provides a simple search 

method for orthogonal faults. In the SA 

stage of the ESP algorithm, orthogonal 

faults and non orthogonal faults can be 

easily separated by checking their EP 

flags. The automatic recognition for 

orthogonal faults greatly increases the 

repair efficiency. These features make 

the ESP algorithm small, fast, and 

easily implementable. 

4. SUMMARY AND 

CONCLUSIONS 

THREE algorithms suitable for built-in 

redundancy analysis have been 

proposed. The algorithms are simple 

compared to conventional analysis 

algorithms on the memory tester. 

Among them, two are based on the 

local-bitmap idea, i.e., the LRM and 

LO algorithms. Our analysis shows 

that the LRM algorithm is highly 

scalable for general memory and 

redundancy architectures, and the LO 

algorithm optimizes spare allocation in 

the local bitmap, resulting in the best 

repair rate. Also, the time overhead of 

LO is low for a practical spare 

architecture. The third approach, i.e., 

the ESP algorithm, does not require a 

bitmap. It greatly simplifies the control 

circuit, and results in the lowest time 

and area overhead among the three 

BIRA schemes. It was shown to 

achieve a high repair rate for a mature 

fabrication process with small area 

overhead. The estimated area overhead 

of an individual LRM circuitry is 

below 0.3% for a 64Mbit embedded 

DRAM core. 
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