

Vol 09 Issue04, Apr 2020 ISSN 2456 – 5083 www.ijiemr.org

COPY RIGHT

2020 IJIEMR.Personal use of this material is permitted. Permission from IJIEMR must

be obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted

component of this work in other works. No Reprint should be done to this paper, all copy

right is authenticated to Paper Authors

IJIEMR Transactions, online available on 24th

Apr 2020. Link

:http://www.ijiemr.org/downloads.php?vol=Volume-09&issue=ISSUE-04

Title: BUILT IN REDUNDANCY PROCEDURES FOR MEMORY REPAIR

Volume 09, Issue 04, Pages: 67-78

Paper Authors

V.R.SESHAGIRI RAO, DR.ASHA RANI.M

 USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER

To Secure Your Paper As Per UGC Guidelines We Are Providing A Electronic

Bar Code

Vol 09 Issue04, Apr 2020 ISSN 2456 – 5083 Page 67

BUILT IN REDUNDANCY PROCEDURES FOR MEMORY

REPAIR

V.R.SESHAGIRI RAO, DR.ASHA RANI.M

1
ECE Department, Institute of Aernautical Engineering Dundigal Hyderabad, Telangana, India

500043
2
Professor, ECE Department, JNTUH College of Engineering Hyderabad, Telangana, India, 500

085
1
vadrevu.vr@gmail.com,

2
ashajntu1@yahoo.com

ABSTRACT

 With the latest developments in VLSI technology, the size of memories is rapidly

growing. The yield criteria and testing problems have become the most critical areas

for memory manufacturing. Traditionally, redundancies are applied so that the faulty

cells can be repairable. Using external memory testers redundancy analysis is

becoming slow as the chip density continues to grow, especially for the system chip

with big embedded memories. This paper presents three redundancy allocation

algorithms which can be implemented on-chip. Out of three algorithms, two are based

on the local-bitmap concept: the local repair-most approach is good for a general

spare configuration, and the local optimization approach has the better repair rate.

The essential spare pivoting technique is proposed to simplify control circuitry.

Index Terms— built-in self-test, DRAM , Built-in self-diagnosis, memory

testing ,embedded memory, ,redundancy analysis, SRAM, yield improvement

ACRONYMS

BISD built-in self-diagnosis

BIST built-in self-test

BIRA built-in redundancy-analysis

BISA built-in self-analysis

RM repair-most

FC fault collection

SA spare allocation

LRM local repair-most

LO local optimization

ESP essential spare pivoting

NOTATION

 M number of rows of memory array

 N number of columns of memory array

 l fault line of a row or column

 F total number of faulty cells

Vol 09 Issue03, Mar 2020 ISSN 2456 – 5083 Page 68

 Fl number of faulty cell in a line

 Fo number of orthogonal faulty cells

 m number of rows of local bitmap

 n number of columns of local bitmap

 ra available spare rows

 rc available spare columns

 nr number of faulty rows not covered

 nc number of faulty columns not covered

1. INTRODUCTION

MOS memories are

microelectronic components they

occupy about 30% of the world

semiconductor market [1-4]. There is

continuous innovation in VLSI

technology which keeps increasing the

capacity and density of semiconductor

memories, integrating more and more

cells in a silicon chip; as per Moore’s

law the capacity of memory chips

roughly doubles every 18months[5-7].

As the feature size shrinks, increasing

the integration density and chip size,

keeping a acceptable yield level is very

hard. To improve yield, spare rows and

columns of storage cells) are often

added so that most faulty cells can be

replaced by spare cells [8–13].

Redundancy, however, adds to cost

due to area overhead. Therefore,

analysis of redundancies to improve

yield (after repair) and minimize cost

is a vital process during

manufacturing. Redundancy analysis

using expensive memory testers is not

cost-effective as the chip density

continues to grow. The use of

embedded memories creates yet

another problem; embedded memories

are even difficult to deal with using

external testers [14-19]. There is a

prediction that memories will occupy

more than 90% of the system chip area

within a decade while the chip

complexity keeps increasing

dramatically It has been widely noted

that embedded memories will play an

increasingly important role in the

semiconductor market in the coming

years, because the system-on-chip

market is on demand and almost every

system chip contains some type of

embedded memory [20-23].

Testing embedded memory is

more difficult than testing commodity

memory in general, unless built-in self-

test (BIST) is used [24-27]. Several

BIRA/BISR techniques have been

proposed in the earlier, e.g., [28-30]. In

a DRAM with BIST and BISR circuits

has been proposed, using SRAM cells

as the redundancy. The preference is

on the power-on self-test and self-

repairs at the memory board level. In

[31-32], a hierarchical BISR structure

has been proposed to facilitate memory

test, fault location, and self repair. In a

microprocessor-based BISD circuit

was presented for repairable embedded

SRAM with programmable modules.

An embedded high-density SRAM

with BISR capability has been

proposed [33-35], allowing

Vol 09 Issue03, Mar 2020 ISSN 2456 – 5083 Page 69

autonomous repair of the SRAM core

with negligible timing penalty. The

spare architecture was simplified (it

has only spare columns), so a simple

greedy algorithm can be used for

diagnosis and self-repair [36-37].

Some segment-based redundancy

architectures have been proposed to

improve the repair efficiency with

simplicity of the analysis algorithms

[38]. Most of the works either assume

simplified redundancy architecture,

i.e., they assume only spare rows or

spare columns are available.

In this paper, we propose three

BIRA algorithms. It will be shown that

at, by our approaches, high repair rate

and low area overhead can be

achieved. The BIRA (or Built-In Self-

Analysis (BISA) [39]) techniques are

flexible and can cooperate both with

the external tester and BIST. In

addition, when cooperating with BIST,

redundancy analysis can be done

concurrently when testing, so there is

little time penalty for the analysis.

2. CONVENTIONAL

REDUNDANCY ANALYSIS

ALGORITHMS

Before the discussion of more efficient

algorithms, the terminology and

notation are defined first. A memory

block consists of rows and columns of

storage cells, i.e. The origin of the

array is the upper left corner. There are

spare rows and spare columns. The

following definitions are followed.

Definition 1: A faulty line is said to be

covered if all faulty cells on the line

have been planned to be repaired by

specific spare rows and/or spare

columns.

Definition 2: A faulty line is either a

row or a column on which one or more

faulty cells exist. The number of faulty

cells in l is Fl . A faulty line can be a

either a faulty row or a faulty column.

Definition 3: A faulty cell which does

not any common row or column with

any other faulty cell is called as an

orthogonal faulty cell.

Let the number of available spare rows

and available spare columns during the

analysis process be denoted as ra and ca

respectively. During BIRA, any faulty

line which consists of k faulty cells

requires either 1 spare line in the same

direction or k perpendicular spare

lines.

Definition 4: Must repair faulty line is

defined as any faulty row (column)

with k faulty cells (i.e.,Fl = k), where, k

> ca (k > ra) .

Aavide 1: Fl can be limited to

>=c+1(r+ 1) for the must-repair faulty

row (column) l.

In case there are c+1 or more faulty

cells in the faulty row, then it is a

must-repair row (see Definition 4).

And Aavide 1 indicates that a fault

counter which counts up to c+1 is

enough for the must-repair analysis.

Actually, redundancy analysis is done

on a memory tester using software.

The tester stores the bitmap (a map of

the faulty cells) after a diagnostic test,

and performs redundancy analysis

based on the bitmap. The algorithms

consist of two phases: the must-repair

phase followed by the final-repair

phase. In the must-repair phase, all the

Vol 09 Issue03, Mar 2020 ISSN 2456 – 5083 Page 70

must-repair faulty lines are identified

first by counting the number of faulty

cells Fl for each faulty line, limiting the

number of remaining faulty cells. With

Aavide 1, the storage to record Fl for

each faulty line can be restricted

effectively. In the final-repair

phase, simple algorithms, such as the

repair-most algorithm or fault-driven

algorithm, are used. The repair-most

approach calculates Fl of the remaining

faulty lines and selects the faulty line

with the largest Fl for the repair one by

one;

 Fig 1 :Defective Memory of

Worst case Here ra = 2 and ca = 4

Let F denote the total number

of faulty cells in the memory block,

and Fo represents the number of

orthogonal faulty cells.

Two important early termination

conditions for redundancy analysis are

as follows.

Condition 1: After the must-repair

phase, F > 2 raca

Condition 2: Fo > ra + ca

If any one of the condition is met, then

the analysis process stopped. Early

termination conditions help to identify

the memory which cannot be repaired

by available spares. As per Aavide 1,

we have the following two additional

early termination conditions.

Condition 3: if nc > rc if ra = 0 where nc

is the number of faulty columns not

covered so far

Condition 4: if nr > ra if ca = 0 where nr

is the number of faulty rows not

covered so far.

If any of the above four conditions is

true, then the memory block is

unrepairable.

A defective memory block of the bad

case is shown in Fig. 1, where F=2raca

after the must-repair phase, and all

the available spare rows and columns

have to be used for repairing the faulty

lines. Especially, the available spare

rows cover ra faulty rows, where each

faulty row has ca faulty cells and

among these faulty rows, no cells share

the same column address. Therefore,

the faulty cells in these rows are

located in

r a x ca different columns. Similarly,

the c a faulty lines covered by the

available spare columns have r a x c a

row addresses for the faulty cells. In

this special case, the width of the

bitmap is c a r a + c a and the height is r

Vol 09 Issue03, Mar 2020 ISSN 2456 – 5083 Page 71

a c a + r a. Therefore, in general, the

size of the bitmap can be limited to (r a

c a + r a) X (c a r a + c a) instead of M

X N after the must-repair phase.

Without the must-repair phase, the

maximum size of the bitmap can be

limited to (r(c+1)+r) X (c(r+1)+c) due

to Aavide 1.

3. NEW BUILT-IN REDUNDANCY

ANALYSIS APPROACHES

A. Repair-Most Using Local Bitmap

Having the full bitmap on-chip for the

purpose of redundancy analysis

obviously is not feasible. Our goal is

for the BIRA circuit to properly

allocate redundancies in parallel with

the BIST operation. Two requirements

of BIRA circuit are i) optimum repair

rate ii) low area overhead.

The repair rate of the redundancy

analysis is defined as the ratio of good

memories after the redundancy

analysis and all the faulty memories.

repair efficiency is defined as the

repair rate with respect to unit area

overhead. The area overhead should be

low and the repair efficiency should be

high. The proposed algorithm require

only a small array of size m x n for the

storage the local bitmap. This reduces

the silicon area overhead for the

bitmap and the row/column counters.

The parameters, m and n, can be

constant or proportional to r and c,

respectively, depending on the defect

cluster distribution. We will show later

that the local-bitmap technique results

in a fast and small BIRA circuit with

good repair efficiency and the BIRA

circuit can be easily interfaced with the

BIST circuit.

To illustrate LRM algorithm, consider

the memory block as shown in Fig. 4,

which is 8X8 size where r = c =

2(spare rows and spare columns). Also,

it is assumed to perform a row-wise

march algorithm during BIST. The

physical cell location is also provided

to facilitate the analysis. The LRM

analysis process for the memory block

is shown in Fig. 5. After the first five

faulty cells have been detected, the

bitmap is as shown in Fig. 5(a). The

sixth faulty cell (i.e., cell(5,2)) has the

same row address as the fourth row

address tag of the current bitmap, but a

column address different from any

existing one. Since the

bitmap is full Row 1 is selected

(shaded in the figure) for repair at this

stage, resulting in the bitmap as shown

in Fig. 5(b). The next 3 faulty cells

Vol 09 Issue03, Mar 2020 ISSN 2456 – 5083 Page 72

(i.e., cell(5,4), cell(5,3), and cell(5,0))

are all located in the same row (i.e.,

Row 5) as shown in Fig. 5(c), so Row

5 is selected for repair next. Finally,

after all faulty cells are processed,

Column 6 and Column 3 are selected

in sequence for repair according to

their weights and the type of remaining

spare lines, as shown in Fig. 5(c). In

summary, Row 1, Row 5, Column 6,

and Column 3 are replaced by spare

lines after the repair process.

To search for the faulty line with the

largest fault count, two heuristic rules

are applied:

1) The address of the newly detected

faulty cell is used together with the

current bitmap to help determine the

line with the largest fault count. It is

possible that the row address is

previously recorded in the bitmap but

there is no room for the column

address, or vice versa.

2) Any row (column) with a fault count

exceeding c a (r a) is regarded as a

must-repair faulty row (column).

Additionally, Condition 3 or 4 can be

applied if r a = 0 or c a = 0. Condition

1 can be used for early termination if

there is a fault counter for keeping the

total fault number and the fault count

from the must-repair faulty lines can

be dynamically subtracted from the

total fault count. Early termination by

Condition 2 can be applied with

additional address registers for the

orthogonal faults.

B. Local Optimization

In LRM, selecting the faulty line with

the largest fault count takes more time,

because it may be required to pickup

more than one line for repair (the

number of lines to be repaired is a

variable). Also , the repair rate of LRM

is constrained by the bitmap size. To

deal with this problem, another

algorithm is proposed, i.e., the Local

Optimization (LO) algorithm. The LO

algorithm has a better repair rate,

though it also uses the local bitmap. It

searches for all possible ways of spare

allocation when the bitmap is full.

Consider the same memory block as

shown in Fig. 4 again. The bitmap

construction procedure is the same

with LRM for the first 6 faults, as

shown in Fig. 6(a). when the bitmap

overflows, intensive search is carried

out to cover all faults recorded in the

bitmap. Subsequently, Row 1, Row 5,

and Column 3 are selected upon the

detection of the sixth faulty cell,

cell(5,2). Assume that after this search,

all the remaining faults are covered

except the last fault from cell(7,6). As

shown in Fig. 8(b), the corresponding

column, i.e., Column 6, is selected as

there is only one spare column is left.

The LO algorithm usually requires a

more execution time than LRM for

large memory sizes, as exhaustive

search is performed. However, for an

unequal spare architecture (i.e. r #= c

), LO can take advantage of it by

counting all combinations of along the

direction with less spare lines. also the

number of total iterations is reduced in

this algorithm.

Vol 09 Issue03, Mar 2020 ISSN 2456 – 5083 Page 73

 The rules and regulations of LRM still

apply to LO as discussed previously. In

addition, a rule which deals with

orthogonal faults, based on Condition

2, can be used to improve the repair

rate. The heuristic is as follows. Every

incoming fault which does not match

any of the row and column address

tags in the local bitmap is stored in an

additional orthogonal fault register

(OFR). When a fault is detected, it is

required to perform an additional

check of the fault with those in the

OFRs. If there is a row or column

coincidence then both the matched and

matching addresses are recorded in the

bitmap and the one in the OFR

cleared. Orthogonal faults in the OFRs

are considered first after all other faults

are covered. The remaining spare lines

are selected to cover those orthogonal

faults, one by one, using any order.

This heuristics obviously complicates

the control, but improves the repair

rate to a great extent. Condition 2 can

be applied together with this heuristics.

C. Essential Spare Pivoting

So far the above algorithms use a

small bitmap instead of the full bitmap.

As most algorithms depend on a

bitmap as the tool for redundancy

analysis, it may appear that that a

bitmap is inevitable. This is not true. In

this section we the essential spare

pivoting (ESP) algorithm is proposed

without using a bitmap. It will be

shown later that the repair rate using

ESP is still high, with a greatly simple

implementation and reduced area

overhead.

So the following general

guidelines are proposed for

redundancy analysis.

1) For any faulty row (column), if the

number of faulty cells is greater than or

equivalent to a threshold number Eth,

repair it by a spare row (column).

2) An orthogonal fault can be repaired

by either a spare row or a spare

column. Orthogonal faults should be

processed after all others.

This guideline is similar to the must-

repair rule, except that the decision is

based on a customized threshold

number E th, instead of r a and c a . In

the analysis procedure, we maintain a

counter for the number of faults in

each faulty line. When the number

reaches E th, it is marked as an

essential line. Assume E th to be 2, then

the threshold comparison is greatly

simplified. The second guideline

shown above states that an orthogonal

fault should be recognized early but

processed after all other. The reason is

that, e.g., while c a> 0 and r a > 0 , if we

repair an orthogonal fault by a spare

row before repairing other non-

orthogonal faults, we may lose the

chance to repair more faults with this

spare row, as orthogonal fault can also

be repaired by a spare column. With

this guideline and the proposed

guideline, a new algorithm called the

essential spare pivoting (ESP)

Vol 09 Issue03, Mar 2020 ISSN 2456 – 5083 Page 74

algorithm, is developed as shown in

Fig. 7.

 The faulty-cell addresses are collected

and stored in the P R (row pivot) and P

C (column pivot) register files. Both

have r + c registers, and all the

registers are initially empty. An

incoming faulty-cell address (R
^
, C^)

is compared with the existing row

pivots and column pivots in the

register files. If there is a row-address

match or column-address match, the

matched pivot is marked as an

essential pivot (EP). During the Fault

collection phase, if the number of the

pivot pairs exceeds r+c, this memory is

unrepairable and the process

terminates. If there is no match, the

row address and column address of the

current faulty cell are stored in the PR

and PC registers, respectively. The

repair rate is high when E th = 2 , and

only a flag is needed along with each

pivot to indicate whether it is an EP.

In the Fault allocation phase, spares are

distributed according the contents of

the P R and P C registers. It consists of

two stages. In the first stage, spare

rows are allotted for the essential row

pivots and spare columns for the

essential column pivots. After the first

stage, the pivot registers contain all

and only the addresses of the

orthogonal faults, because they have

never matched other faulty-cell

addresses. These can repair these

faults by either spare rows or spare

columns. In ESP_SA(), we simply

allocate available spare rows before

spare columns.

Now the ESP algorithm is explained

by an example. The memory block

under test is the same as shown in Fig.

4. The faulty cells detected are, in

sequence, cell(1,1), cell(1,5), cell(2,3),

cell(3,3), cell(5,1), cell(5,0), cell(5,2),

cell(5,3), cell(5,4) (5,6), and cell(7,6).

The FC procedure is illustrated in Fig.

7. In the figure, the and registers are

shown as the left and right columns of

the register array, respectively. For

each faulty-cell address, the is stored in

the left column and the is stored in the

right column. There is a ‘ mark on a

pivot if it is an essential pivot. To

begin, the register array is empty, so

the first address (1,1) is stored in the

first row of the array directly. The

second address (1,5) matches (1,1) in

the row address, so the of cell(1,1) is

marked as an EP. Similarly, the

address (2,3) is inserted directly, while

the address (3,3) matches (2,3) in its

column address, thus the of cell(2,3) is

marked as an EP. This procedure

continues until the address (7,6) is

recorded. The SA procedure is simple:

first spares are allocated for the EPs—
Row 1, Row 5, and Column 4, then a

spare column is allocated to repair the

orthogonal fault on cell (7,3). The

major advantage of the ESP is mainly

Vol 09 Issue03, Mar 2020 ISSN 2456 – 5083 Page 75

its simple in implementation, which

results in smaller area overhead than

other algorithms. The revised first

guideline provides a simple search

method for orthogonal faults. In the SA

stage of the ESP algorithm, orthogonal

faults and non orthogonal faults can be

easily separated by checking their EP

flags. The automatic recognition for

orthogonal faults greatly increases the

repair efficiency. These features make

the ESP algorithm small, fast, and

easily implementable.

4. SUMMARY AND

CONCLUSIONS

THREE algorithms suitable for built-in

redundancy analysis have been

proposed. The algorithms are simple

compared to conventional analysis

algorithms on the memory tester.

Among them, two are based on the

local-bitmap idea, i.e., the LRM and

LO algorithms. Our analysis shows

that the LRM algorithm is highly

scalable for general memory and

redundancy architectures, and the LO

algorithm optimizes spare allocation in

the local bitmap, resulting in the best

repair rate. Also, the time overhead of

LO is low for a practical spare

architecture. The third approach, i.e.,

the ESP algorithm, does not require a

bitmap. It greatly simplifies the control

circuit, and results in the lowest time

and area overhead among the three

BIRA schemes. It was shown to

achieve a high repair rate for a mature

fabrication process with small area

overhead. The estimated area overhead

of an individual LRM circuitry is

below 0.3% for a 64Mbit embedded

DRAM core.

REFERENCES

[1].Lee, H., Kim, J., Cho, K., & Kang,

S. (2018). Fast Built-In Redundancy

Analysis Based on Sequential Spare

Line Allocation. IEEE Transactions on

Reliability.

[2].Patnaik, S., & Ravi, V. (2018). A

Built-in Self-Repair Architecture for

Random Access Memories. In

Nanoelectronic Materials and Devices

(pp. 133-146). Springer, Singapore.

[3].Gebregiorgis, A., Bishnoi, R., &

Tahoori, M. B. (2018). A

Comprehensive Reliability Analysis

Framework for NTC Caches: A

System to Device Approach. IEEE

Transactions on Computer-Aided

Design of Integrated Circuits and

Systems.

[4]. Huang, C. T., Wu, C. F., Li, J. F.,

& Wu, C. W. (2003). Built-in

redundancy analysis for memory yield

improvement. IEEE transactions on

Reliability, 52(4), 386-399.

[4]. M. Lin, Ed., “1997 Semiconductor

Industry Annual Report,” (in Chinese),

Industrial Technology Research

Institute (ITRI), Hsinchu,Taiwan, ITIS

project report, 1997.

 [5] C.-T. Huang, J.-R. Huang, C.-F.

Wu, C.-W. Wu, and T.-Y. Chang, “A

programmable BIST core for

embedded DRAM,” IEEE Design &

Test of Computers, vol. 16, pp. 59–70,

Jan.–Mar. 1999.

[6]. “Semiconductor industry

association,” in International

Technology Roadmap for

Semiconductors (ITRS), Dec. 2000.

Vol 09 Issue03, Mar 2020 ISSN 2456 – 5083 Page 76

[7]. K. K. Saluja, S. H. Sng, and K.

Kinoshita, “Built-in self-testing RAM:

A practical alternative,” IEEE Design

& Test of Computers, vol. 4, pp. 42–
51, Feb. 1987.

[8]. M. Franklin and K. K. Saluja,

“Built-in self-testing of random-access

memories,” IEEE Computer, pp. 45–
56, Oct. 1990.

[9]. B. Nadeau-Dostie, A. Silburt, and

V. K. Agarwal, “Serial interface for

embedded-memory testing,” IEEE

Design & Test of Computers, vol. 7,

pp. 52–63, Apr. 1990.

[10]. P. Camurati, P. Prinetto, M. S.

Reorda, S. Barbagallo, A. Burri, and

D. Medina, “Industrial BIST of

embedded RAMs,” IEEE Design &

Test of Computers, vol. 12, pp. 86–95,

1995.

[11]. S. Tanoi, Y. Tokunaga, T.

Tanabe, K. Takahashi, A. Okada, M.

Itoh, Y. Nagatomo, Y. Ohtsuki, and M.

Uesugi, “On-wafer BIST of a 200-Gb/s

failed-bit search for 1-Gb DRAM,”
IEEE J. Solid-State Circuits, vol. 32,

pp. 1735–1742, Nov. 1997.

 [12]. J. Dreibelbis, J. Barth, H. Kalter,

and R. Kho, “Processor-based built-in

self-test for embedded DRAM,” IEEE

J. Solid-State Circuits, pp. 1731–1740,

Nov. 1998.

[13]. R. P. Treuer and V. K. Agarwal,

“Built-in self-diagnosis for repairable

embedded RAMs,” IEEE Design &

Test of Computers, vol. 10, pp. 24–33,

June 1993.

[14]. C.-W. Wang, C.-F. Wu, J.-F. Li,

C.-W. Wu, T. Teng, K. Chiu, and H.-P.

Lin, “A built-in self-test and self-

diagnosis scheme for embedded

SRAM,” in Proc. Ninth IEEE Asian

Test Symp. (ATS), Taipei, Dec. 2000,

pp. 45–50.

[15]. P. Mazumder and J. S. Yih, “A

novel built-in self-repair approach to

VLSI memory yield enhancement,” in

Proc. Int. Test Conf. (ITC), 1990, pp.

833–841.

[16]. A. Tanabe, T. Takeshima, H.

Koike, Y. Aimoto, M. Takada, T.

Ishijima, N. Kasai, H. Hada, K.

Shibahara, T. Kunio, T. Tanigawa, T.

Saeki, M.Sakao, H. Miyamoto, H.

Nozue, S. Ohya, T. Murotani, K.

Koyama, and T. Okuda, “A 30-ns 64-

Mb DRAM with built-in self-test and

self-repair function,” IEEE J. Solid-

State Circuits, vol. 27, pp. 1525–1533,

Nov. 1992.

[17]. T. Chen and G. Sunada, “Design

of a self-testing and self-repairing

structure for highly hierarchical ultra-

large capacity memory chips,” IEEE

Trans. VLSI Systems, vol. 1, pp. 88–97,

June 1993.

[18]. P. Mazumder and Y.-S. Jih, “A

new built-in self-repair approach to

VLSI memory yield enhancement by

using neural-type circuits,” IEEE

Trans. Computer-Aided Design of

Integrated Circuits and Systems, vol.

12, pp. 124–136, Jan. 1993.

[19]. I. Kim, Y. Zorian, G. Komoriya,

H. Pham, F. P. Higgins, and J. L.

Vol 09 Issue03, Mar 2020 ISSN 2456 – 5083 Page 77

Lweandowski, “Built in self repair for

embedded high density SRAM,” in

Proc. Int. Test Conf. (ITC), Oct. 1998,

pp. 1112–1119.

[20]. D. K. Bhavsar, “An algorithm for

row-column self-repair of RAMs and

its implementation in the alpha 21

264,” in Proc. Int. Test Conf. (ITC),

1999, pp. 311–318.

[22]. N. Park and E. Lombardi,

“Repair of memory arrays by cutting,”
in Proc. IEEE Int. Workshop on

Memory Technology, Design and

Testing (MTDT), San Jose, Aug. 1998,

pp. 124–130.

[23]. S.-K. Lu and C.-H. Hsu, “Built-in

self-repair for divided word line

memory,” in Proc. IEEE Int. Symp.

Circuits and Systems (ISCAS), 2001,

pp. 13–16.

[24]. T. Kawagoe, J. Ohtani, M. Niiro,

T. Ooishi, M. Hamada, and H. Hidaka,

“A built-in self-repair analyzer

(CRESTA) for embedded DRAMs,” in

Proc. Int. Test Conf. (ITC), 2000, pp.

567–574.

[25]. J. Ohtani, T. Ooishi, T. Kawagoe,

M. Niiro, M. Maruta, and H. Hidaka,

“A shared built-in self-repair analysis

for multiple embedded memories,” in

Proc. IEEE Custom Integrated Circuits

Conf. (CICC), vol. 4, 2001, pp. 187–
190..

 [26]. R.W. Haddad, A. T. Dahbura,

and A. B. Sharma, “Increased

throughput for the testing and repair of

RAMs with redundancy,” IEEE Trans.

Computers, vol. 40, pp. 154–166, Feb.

1991..

[27]. M. Choi and N. Park, “Dynamic

yield analysis and enhancement of

FPGA reconfigurable memory

system,” in Proc. 18th IEEE

Instrumentation and Measurement

Technology Conf. (IMTC), vol. 1,

Budapest, Hungary, May 2001, pp.

386–391.

[28]. M. Choi, N. Park, F. Meyer, F.

Lombardi, and V. Piuri, “Reliability

measurement of fault-tolerant onboard

memory system under fault

clustering,” in Proc. 19th IEEE

Instrumentation and Measurement

Technology Conf. (IMTC), vol. 2,

Anchorage, AK, May 2002, pp. 1161–
1166.

[29]. C.-F.Wu, C.-T. Huang, C.-

W.Wang, K.-L. Cheng, and C.-W.Wu,

“Error catch and analysis for

semiconductor memories using march

tests,” in Proc. IEEE/ACMInt. Conf.

Computer-Aided Design (ICCAD), San

Jose, Nov. 2000, pp. 468–471.

[30] V.R.Seshagiri Rao, Dr.

M.Asharani “Reliability measurement

of memory system using spare blocks

,” International journal of electrical

engineering & technology (ijeet) Vol

9, Issue 1, Jan-Feb 2018, pp. 18–25;

ISSN Print: 0976-6545 and ISSN

Online: 0976-6553

[31] V.R.Seshagiri Rao, Dr.

M.Asharani “Redundancy Algorithm

Using Line Based Method for

Memories achieving Less Area

Vol 09 Issue03, Mar 2020 ISSN 2456 – 5083 Page 78

Overhead ,” “International Journal of

Engineering and Technology (UAE)

(IJET) ISSN: 2227-524X

 [32] V.R.Seshagiri Rao, Dr.

M.Asharani “Global Spare Blocks for

Repair of Clustered Fault Cells in

Embedded Memories ,” Journal of

Computational and Theoretical Nano

science printed in the United States of

America Vol. 16, No. 1, 924–933,

2019.

