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Abstract.. This article discusses algorithms for constructing and optimizing the functioning 

of gas pipeline multi-circuit networks using the graph theory method and software for optimal 

control, analysis and synthesis of pipeline systems. 
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1.Introduction. Technical progress in 

various areas of the national economy of 

the Republic largely depends on the degree 

of use of automation tools, information 

technologies and the level of automation of 

management processes. However, the 

capabilities of modern computer systems 

and the development of mathematical 

modeling methods are not fully used due to 

the informalization of many problems, as 

well as the imperfection or absence of a 

number of algorithms that make it possible 

to analyze the functioning of an object, 

process incoming information and make 

appropriate decisions on optimal 

management of multi-connected systems. 

In this regard, the development and 

research of computer models, 

computational algorithms and on their 

basis the creation of object-oriented 

software in this direction is an urgent 

problem for the further development of 

automation of scientific research for 

various subject areas, in particular pipeline 

systems. 

Every real energy network, including a gas 

network, is equivalent in its topological 

structure to a graph. It is difficult to 

calculate and analyze the inconsistency of 

the source information of networks with 

more than one ring. In these cases, it is 

necessary to refer to Kirchhoff's laws and 

the corresponding closing relations. 

Nevertheless, the network topology is 

diverse, as evidenced, in particular, by the 

schemes of urban heat supply networks in 

Kazakhstan and the Russian Federation [1, 

3, 4]. 

The method for solving the 

resulting system of mixed (linear and 

square) equations can be unified, but each 

of the networks differs in the number of 

water sources, heating units (boilers, 

thermal power plants), the number of 

connected consumers and the volume of 

their consumption, and others. A similar 

mailto:baxrom@rambler.ru
mailto:lutnur@mail.ru


Vol 09 Issue10, Oct 2020                                   ISSN 2456 – 5083 Page 115 
 

pattern is also observed for gas supply 

networks. 

In such conditions, the main burden 

of hydraulic or economic calculation 

should be concentrated on the stage of 

network topology formation, for which 

graph theories are used. Moreover, with 

minimal initial information about the 

network, it is necessary to develop the 

maximum final information required in the 

process of hydraulic or economic 

calculation of the network. 

Currently, topological matrices 

describing the graph model of engineering, 

in particular pipeline networks, are widely 

used. Mathematical statements and models 

of problems related to the design, analysis 

and optimization of pipeline networks (TS) 

are described using these matrices. 

However, the construction and various 

operations on them, as well as the 

preparation of the necessary information 

for this purpose, meet serious difficulties 

due to the large dimension and structural 

feature of the matrices. In this regard, the 

creation of automation tools for these 

processes is of great importance. This 

paper provides descriptions and texts of 

algorithms for machine construction of 

matrices and Offers a new approach to 

modeling optimal gas distribution systems 

based on the application of graph theory. 

2. Problem formulation. Let G  - cyclic 

graph of the pipeline network (TC), M  – 

selected in it МД, аnd crA  и trA  – the 

corresponding matrix is known. In 

addition, the set of fundamental FC 

contours is defined in the following way: 

Add to M -th chord (remember that the 

chords are numbered with numbers 

mnn ,...,1,  ) and assign a number to 

the resulting contour n ; 

.2a  Repeat 1a  for mnn ,...,2,1  -

th chord. The result of this process will be 

a set of fundamental contours (FC). 

Obviously, each FC contains only one 

chord with respect to , the direction of 

which is taken as the positive direction of 

the given fundamental contour (FC). 

The matrix of the FC set is expressed by 

and in the following 

form    EAOAEBfBf
trcrt
,,  , 

where 
cr

A  and 
tr

AO   – the transpose of the 

matrix for 
cr

A  and 
tr

OA , dimentions 

 1 nk  and 1n ; E  - the identity 

matrix of dimension k ; Bf , 
t

Bf  - matrix 

ФК and its submatrix, corresponding arc 

M , dimention mk   и  1 nk . 

 Matrix Bf , being equivalent to the 

matrix B , it has the following advantages 

over B , which determine the effectiveness 

of its application: first, the construction 

Bf  does not need the information 

contained in the rows 1K  and 2K  table 

3.1; second, it is not necessary to define 

the entire matrix and store it in computer 

memory, but only to have its first part 

trcr
AOABf  . 

3. The algorithms for 

constructing. The algorithm for 

constructing fundamental contours is based 

on this relationship. 

Assigning zeros to the elements 

Bf . 

.1S  Solve 2S  for ki ,...,2,1  and 

mj ,...,2,1 . 

.2S  Let   0, jiBf  and 0i . 

.3S  Take 1 ii  and 0j . 
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.4S  Take 1 jj  and 0ij . 

.5S  Take 1 ijij . 

In the matrix multiplication 

operation 
tr

AO   and 
c

A  only non-

zero elements are involved. 

.6S  If   0, jijOA
tr

 and 

  0,11  ijinA , then solving 

       jijOAijinAjiBfjiBf
tr

,,11,, 
, else go to .7S  

.7S  If 1 nij , then go to 5S  else go 

to .8S  

.8S  If 1 nj , then go to 4S  else go 

to .9S  

 Add to matrix 
t

Bf  by matrix E . 

.9S  Take   11,  iniBf . 

 Chek for end of algorithm  – go 

from one row of matrix to another 

row of matrix 
c

A . 
.10S  If kj  , then go to 3S  else go to 

.11S  

.11S  The end.  

 Matrix Bf  built. 

 We have established a relationship 

between the matrices T  and 
tr

OA . It is 

easy to see that if you select from 
tr

OA  

those columns that correspond to the end 

vertexes 
L

UUU ,...,,
21

 the graph in 

question G , transpose and change the 

signs of their elements to opposite ones, 

then we get a matrix T . This is done in 

two ways.. 

First way. All destination nodes 

(except the base) are numbered L,...,2,1 , 

and the remaining vertices in an arbitrary 

order. Then the matrix is obtained 
tr

OA  

next structure: 

 
21

,
trtrtr

OAOAOA  , 

Then we take that 

1tr
AOT  . 

Second way. The vertexes are 

numbered in any order, as in the General 

case. Known matrices A  and 
tr

OA . Use 

A  to determine the end points. Viewing a 

row-by-row matrix A  definite that rows, 

for which  

i

m

j
ij

mkaabs 







1

, 

where 
i

mk  – number of non-zero elements 

i -th row A  )1,...,2,1( n . These lines 

correspond to the end vertices 

L
UUU ,...,,

21
. Then selecting from 

tr
OA  

columns with numbers 
L

UUU ,...,,
21

, 

transposing and changing the signs of their 

elements to the opposite, we find T . 

 The following algorithm is based 

on the second method. 

Note. Matrix T , obtained using a 

modified algorithm, has the dimension 

 1 nL , and not mL , that occurred 

during the application of the General 

algorithm. In addition, trace numbers are 

determined by line numbers T , then, the 

first route is the one that connects the 

vertexes n  and 
1

U ; the second route is the 

one that connects n  and 
2

U  and etc. 

Let's present a modified algorithm 

for constructing the trace matrix. 

Assigning zeros to the elements T . 

.1S  Solve 2S  for Li ,...,2,1  and 

1,...,2,1  nj . 

.2S  Put   0, jiT . 

.3S  Put 0L ,  0i . 

.4S  Put 0j ; 1 ii ; 0mk ; 

0LS . 



Vol 09 Issue10, Oct 2020                                   ISSN 2456 – 5083 Page 117 
 

 mk  – number of non-zero 

elements i -th row of matrix A , 

and LS  – an algebraic sum of the 

same elements. 

Starting the search for end vertices 

G  with using A . 

.5S  Put 1 jj . 

Begin view i -th row of A . 

.6S  If   0, jiA , then go to 7S  else go 

to .8S  

.7S  Put  jiALSLS , ; 

1mkmk . 

 Checking for the end of viewing i -

th row A . 

.8S  If 1 mj , then go to 5S  else go 

to .9S  

.9S  If   mkLSabs  , then go to 10S  

else go to .13S  

Renumbering of end vertexes, i.e. 

moving from the set 
L

UUU ,...,,
21

 

to the set L,...,2,1 . 

.10S  Put 1 LL . 

 Selection of columns 
tr

OA , 

corresponding to the end vertexes 

G  and building matrix T . 

.11S  Solve 12S  for 1,...,2,1  nij . 

.12S  Put    iijOAijLT
tr

,,  . 

 Checking for the end of the 

algorithm 

.13S  If 1 ni , then go to 4S  else go 

to 14S . 

.14S  The end.  

 Matrix built. 

 4.Example. To illustrate the 

method and process of preparing the initial 

information, as well as the form of the 

results obtained using algorithms, let's look 

at an example. 

 Let the graph shown in Fig. 1 

describe the vehicle under consideration 

.

 
Fig. 1. Graphical representation of the 

vehicle 

 

Solid lines indicate MD arcs, and dotted 

lines indicate chords. In the column: 

11m , 8n , 4k , two sources with 

numbers 7 and 8 are finite; four basic 

contours formed by sets of arcs {2,3,10}, 

{3,4,9}, {2,6,8,9} and {5,6,11}; two routes 

formed by sets of arcs {1,4} and {1,4,6,7}. 

 Information about the graph in 

question is given in table. 1. 

Table 1. 

№ arcs МД arcs (tops 

G ) 

Chords 

1 2 3 4 5 6 7 8 9 10 11 

1M  8 2 4 4 6 6 7 6  1  4  5 

2M  4 1 1 3 5 3 6 2  3  2  3 

3M  4 1 4 8 6 3 6  

1K  0 1 2 0 4 3 0 0  2  1  4 

2K  0 3 1 2 0 4 0 3  3  0  0 

  

 For this example, using the above 

algorithms, the results are obtained in the 

following forms: 
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Algorithms 3 and 2 give the same result 

. 

 Inverse matrix trOA  for the matrix 

truncated by the 8th row trA  and looks 

like: 

 

 On Fig. 2 the same graph is shown, 

which shows the set of fundamental 

contours constructed by the computer itself 

in accordance with the selected MD. The 

fundamental contours are constructed from 

the following sets of arcs {2,3,4,6,8}, 

{3,4,9}, {2,3,10} и {5,6,11}. 

 
Fig. 2. Representation of a graph with a set 

of FC 

The resulting FC matrix has the form 

 

 When calculating the GP of high 

and medium pressure of the radiant 

structure, a much simpler algorithm 

is used, consisting of the following 

steps: 

  by Qi needs and security 

coefficients Коб.i the consumer, 

starting from the end node, is 

determined by the district expenses; 

  according to the section (transit 

and dead-end) costs, taking into 

account the reservation and the 
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range of pipes, section diameters 

are selected to ensure a preferably 

constant pressure drop (or its 

square) to the end points of the 

entire network; 

  based on the lowest allowable 

pressure value in the consumer 

connection nodes, the nodal 

pressures are calculated. 

 In the calculations of gas 

distribution pipelines of high and 

medium pressure, you can use the 

formula [2]  

lP
d

QРР сткн ст5

2

22 62,1  . 

Here Q  – commercial flow rate 

(Nm3 / hour); d  – internal diameter; ст  

– gas density under normal conditions 

Т=273,15 К; стР =0,1013 MPa; l – section 

length. 

When calculating the main gas 

pipeline and gas collection collectors 

(P>1.2 MPa), the formula takes into 

account the super-compressibility of gas Z 

[2] 

Zl
Т
Т

P
d

QРР сткн
0

ст5

2

22 62,1  . 

 The value of the coefficient of 

friction resistance  , according to SNiP 

II-37-76, in the form of a monomial 

approximation is calculated depending on 

the gas flow mode in the gas pipeline: 

1) in the region of the laminar flow regime 

at Re<2000 – according to the Stokes 

formula 

Re

64
 ; 

1) at a critical flow regime 

corresponding to 2000<Re<4000, 

according to the Zaichenko formula 

3 Re0025,0 ; 

2) for turbulent flow modes, when 

Re>4000, the formula 
25,0

Re

68
11,0 






 

d

k , 

where k – equivalent roughness of the 

live section of the gas pipeline. 

If it is necessary to Refine the data in 

turbulent flow regimes, the generalized 

leibenzone formula can be used [7]. 

The Reynolds number Re used in 

calculating the coefficient is defined as 

d

Mwd


4

Re  , 

where  ,   – kinematic and dynamic 

viscosity of the transported gas – w  - mass 

flow rate of the gas, which remains 

constant at variable pressure. 

 The agreement of the pipe range 

with the calculated diameter is made if the 

diameter obtained during the calculation is 

грdd  , then d  you need to round it to a 

smaller standard diameter, and if грdd  , 

up to a large standard diameter. When 

грdd   it is better to round to a larger 

standard diameter. Figure 3 shows the 

values грd  for standard low-pressure 

network diameters used in design practice 

[5]. 

 
Fig. 3. Nomogram for rounding the 

diameters of low-pressure gas pipelines to 

standard ones 
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 With known site indicators, 

hydraulic losses on the site are found, thus, 

by the monomial formula [2] 

i

i

i
l

d

Q
kР





 , (А) 

where the  и   exponents of degrees 

and depend on the gas flow regime and the 

equivalent pipe roughness. 

In this case, the pressure loss has the form 

кiнii
PPР   (В) 

for low pressure network and 
22

кiнii
PPP   (В) 

for high and medium pressure networks. 

In General, the formulas (B) and (B’), as 

well as taking into account other flow 

modes [8], pressure losses can be taken as 

кiнii

PPP  . 

When calculating a branched 

(including radiant) network, each section 

has two unknown dimensions: 
i

d  and 

pressure loss on the site. If the number of 

dead ends is r, then the number of 

unknowns is 2r, which are included in R of 

equations (A). To ensure a given equal 

pressure drop Р  in each niche of the I 

sections that start from the food point and 

end at the dead end point, you must 

complete 





k

i
pi

PP
1

0 .   (C) 

 If there are such points k , then an 

equation of type (C) is composed in the 

number 
i

Р  . In this case, the equation 

has the form (B) or (B’). Let's assume that 

the supply and take-off pressure points are 

set. Then the uniqueness of the solution of 

systems (A), (B) and (C) is ensured by the 

fact that only those equations in which the 

known nodal pressure is not configured are 

included in the system from group (C). The 

only requirement for solving the pressure 

problem is to reduce the nodal pressures in 

the direction of gas movement. When 

calculating a ring network, such a 

condition cannot be imposed, since an 

infinite number of flow distribution options 

can be outlined [2]. This is due to the fact 

that, unlike a distributed network, in a ring 

network, precinct expenses are also 

unknown 
i

Q .. In other words, each section 

of the ring network is characterized by 

three unknowns. 

 Application of the first Kirchhoff 

law with regard to precinct districts 

(
ji

Q
,

)costs and intensity of selection 

and/or paging (
i

Q ) [2] 

  0
, jji

QQ  

for each j-th node, make the first group of 

m-1 equations (m is the number of nodes 

in the network graph, to eliminate the 

linear relationship between the equations, 

remove one equation). 

According to the second Kirchhoff's law in 

each fundamental contour the algebraic 

sum of the pressure drops on the contour 

sections must be zero 

 
контурупо

i
Р 0 . 

 The number of such dependencies 

is equal to n-the number of fundamental 

contours. 

Using the two Kirchhoff laws gives a total 

of r equations, i.e. by the number of 

sections in the network. To these we add 

(B) and (B¢) (total r equations). If we take 

into account k equations of type (C), we 

still do not have enough r-k equations to 

optimize the diameters. It follows that it is 

not possible to find an economically 

optimal solution to the problem taking into 

account the diameters of the ring network 
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pipeline [2]. In this regard, it is proposed to 

select diameters based on the average 

specific pressure drop 
ii

lР / , which 

gives a close to optimal solution of the 

problem. 

For known diameter values, the section in 

the problem is closed: the number of 

unknowns is equal to the number of 

equations. Recall that if there are more 

than two nodes, then more than one 

corresponding number of equation nodes 

are removed from the group of equations 

of the first Kirchhoff law. 

Thus, for the automation of scientific 

research on the design and management of 

vehicles, as a tool for optimal selection of 

the topology of pipeline networks, it is 

compiled in the form of software called 

"Graf" (Fig. 4). 

 Fig. 4. window for building a redundant 

gas pipeline network 

 

In the process of creating a program 

first describes all of the objects together 

with their inherent properties and 

characteristics. Then you define procedures 

and functions that describe in detail all 

possible operations on objects from the 

area of external interactions with the 

environment, as well as internal 

interactions of objects with each other. 

After setting specific values for each of the 

properties of the obtained objects, we 

create a description of the real gas 

network. The objects in it will be 

interconnected with each other, and the 

methods developed for them allow you to 

perform the required network processing 

with the specified input information. 

The proposed ideas and concepts formed 

the basis for the developed system for 

automating the design and management of 

vehicles. 

As a rule, the choice of network scheme is 

performed approximately. The uneven 

distribution of loads, the specific weight of 

the load of each consumer is taken into 

account only intuitively. 

As a result, the quality of the network 

scheme selection depends on the 

experience of the designer, and in complex 

cases, other solutions that may differ from 

the optimal ones are quite possible. 

The task is set in such a way that in the 

original redundant scheme, we select the 

optimal subnet in the form of a tree that 

corresponds to the most profitable trace of 

a branched network [9]. 

The program is a system in which all 

operations for calculating the projected gas 

networks are performed in a certain 

sequence continuously based on one initial 

information with the output of both 

intermediate and final results. 

Since the redundant scheme corresponds to 

a multi-contour non-planar network, 

finding its best tree corresponds to solving 

the problem of the most profitable flow 

distribution. Such a tree is a directed graph 

without cycles. 

The source data for the task is: 

1. locations of sources and consumers; 

2. consumer loads and source performance; 
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3. redundant scheme connecting them, set 

by the designer; 

4. all necessary technical and economic 

characteristics of the network (Fig. 5); 

 
Fig. 5. Technical and economic 

characteristics of the gas network (node 

and pipe labels and corresponding 

coefficients) 

The software product based on the 

proposed conceptual model and 

algorithm is certified By the Agency for 

intellectual property of the Republic of 

Uzbekistan. 

5.The results of the calculations. As an 

example, the gas distribution network of 

the village "Geologist" of the regional 

administration "Samarkand gas" is 

considered [10]. 

The following production technical and 

technological data used in the 

calculations are presented in table 2. [6]. 

The initial pressure at the entrance to 

the gas distribution network was 

assumed to be 300 mm of water. 

column's. 

Table 2. Technological data of the GDS 

of the village " Geologist" 

 
The results of calculations based on 

pressure indicators and optimal gas flow 

rates for network sections obtained by 

the steepest descent method are 

presented in table 3. 

Table 3.Technological data of the GDS of 

the village "Geologist", 

obtained on the basis of a computational 

experiment 

 
Table 4. Technological data of the GDS of 

the village "Geologist", obtained on the 
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basis of a computational experiment using 

the" Graf " program 

Calculation result for laminar mode by 

sections 

 
The calculated pressure drop of the 

results obtained is on average equal to 

1.0292*10-3, which undoubtedly 

allows us to judge the practical 

acceptability of this method. The 

analysis of table 4 shows the minimum 

gas losses in the network sections and, 

accordingly, the savings in its 

consumption. At the same time, due to 

optimization and the required level of 

system reliability, certain material 

resources were saved, including 

savings in daily and annual gas 

consumption. 

6. Conclusion. Thus, the developed 

computational algorithm and 

calculation program can be used to 

optimize the functioning of gas 

pipeline networks in other sparsely 

populated areas, when the network has 

a complex radiant and multi-ring 

structure. 
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