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 Abstract: Customary telecast encryption (TE) plans permit a sender to safely show to any 

subset of individuals yet require a trusted gathering to disseminate unscrambling keys. Bunch 

key understanding (BKU) conventions empower a gathering of individuals to arrange a typical 

encryption key by means of open systems so that lone the gathering individuals can decode the 

ciphertexts encoded under the common encryption key, yet a sender can't reject a specific part 

from unscrambling the ciphertexts. In this paper, we connect these two thoughts with a half and 

half primitive alluded to as contributory show encryption (ConBE). In this new primitive, a 

gathering of individuals arrange a typical open encryption key while every part holds an 

unscrambling key. A sender seeing people in general gathering encryption key can confine the 

unscrambling to a subset of individuals from his decision. Tailing this model, we propose a 

ConBE plan with short ciphertexts. The plan is ended up being completely plot safe under the 

choice n-Bilinear Diffie-Hellman Exponentiation (BDHE) supposition in the standard model. Of 

autonomous interest, we introduce another BE plan that is aggregately. The aggregatability 

property is appeared to be valuable to build propelled conventions.  

Keywords: Broadcast Encryption, Group Key Agreement, Contributory Broadcast Encryption, 

Provable Security. 

 

 I. INTRODUCTION  

With the increase in technology 

advancement in communication 

technologies, there is an increasing demand 

of versatile cryptographic primitives to 

protect group communications and 

computation platforms. These new platforms 

include instant-messaging tools, 

collaborative computing, mobile ad hoc  

 

networks and social networks. These new 

applications call for cryptographic 

primitives allowing asunder to securely 

encrypting to any subset of the users of the 

services without relying on a fully trusted 

dealer. Broadcast encryption (BE) is a well-

studied primitive intended for secure group-
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oriented communications. It allows a sender 

to securely broadcast to any subset of the 

group members. Nevertheless, a BE system 

heavily relies on a fully trusted key server 

who generates secret decryption keys for the 

members and can read all the 

communications to any members. Group key 

agreement (GKA) is another well-

understood cryptographic primitive to secure 

group-oriented communications. A 

conventional GKA allows a group of 

members to establish a common secret key 

via open networks. However, whenever a 

sender wants to send a message to a group, 

he must first join the group and run a GKA 

protocol to share a secret key with the 

intended members more recently, and to 

overcome this limitation, with the 

introduction of asymmetric GKA, in which 

only a common group public key is 

negotiated and each group member holds a 

different decryption key. However, neither 

conventional symmetric GKA nor the newly 

introduced asymmetric GKA allow the 

sender to unilaterally exclude any particular 

member from reading the plaintext. Hence, 

it is essential to find more flexible 

cryptographic primitives allowing dynamic 

broadcasts without a fully trusted dealer. 

This paper investigates a close variation of 

the above mentioned problem of one-round 

group key agreement protocols and focuses 

on “how to establish a confidential channel 

from scratch for multiple parties in one 

round”. We provide a short overview of 

some new ideas to solve this variation. 

Asymmetric GKA Observe that a major goal 

of GKAs for most applications is to 

establish a confidential broadcast channel 

among the group. We investigate the 

potentiality to establish this channel in an 

asymmetric manner in the sense that the 

group members merely negotiate a common 

encryption key (accessible to attackers) but 

hold respective secret decryption keys. We 

introduce a new class of GKA protocols 

which we name asymmetric group key 

agreements (ASGKAs), in contrast to the 

conventional GKAs. A trivial solution is for 

each member to publish a public key and 

withhold the respective secret key, so that 

the final ciphertext is built as a 

concatenation of the underlying individual 

ones. However, this trivial solution is highly 

inefficient: the ciphertext increases linearly 

with the group size; furthermore, the sender 

has to keep all the public keys of the group 

members and separately encrypt for each 

member.We are interested in nontrivial 

solutions that do not suffer from these 

limitations. Group key agreement (GKA) is 

another well-understood cryptographic 

primitive to secure group-oriented 

communications. A conventional GKA 

allows a group of members to establish a 

common secret key via open networks. 

However, whenever a sender wants to send a 

message to a group, he must first join the 

group and run a GKA protocol to share a 

secret key with the intended members. More 

recently introduced asymmetric GKA in 

which only a common group public key is 

negotiated and each group member holds a 

different decryption key. However, neither 

conventional symmetric GKA nor the newly 

Introduced asymmetric GKA allow the 
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sender to unilaterally exclude any particular 

member from reading the plaintext1. Hence, 

it is essential to find more flexible 

cryptographic primitives allowing dynamic 

broadcasts without a fully trusted dealer. 

 II. EXISTING AND PROPOSED 

SYSTEMS  

A. Existing System Group key agreement 

(GKA) is another well-understood 

cryptographic primitive to secure group-

oriented communications. A conventional 

GKA allows a group of members to 

establish a common secret key via open 

networks. However, whenever a sender 

wants to send a message to a group, he must 

first join the group and run a GKA protocol 

to share a secret key with the intended 

members. More recently, and to overcome 

this limitation, Wu et al. introduced 

asymmetric GKA, in which only a common 

group public key is negotiated and each 

group member holds a different decryption 

key. However, neither conventional 

symmetric GKA nor the newly introduced 

asymmetric GKA allow the sender to 

unilaterally exclude any particular member 

from reading the plaintext. Hence, it is 

essential to find more flexible cryptographic 

primitives allowing dynamic broadcasts 

without a fully trusted dealer. 

Disadvantages of Existing System:  

the system.  

sender/ member changes efficiently.  

B. Proposed System  

We present the Contributory Broadcast 

Encryption (ConBE) primitive, which is a 

hybrid of GKA and BE. This full paper 

provides complete security proofs, illustrates 

the necessity of the aggregatability of the 

underlying BE building block and shows the 

practicality of our ConBE scheme with 

experiments. First, we model the ConBE 

primitive and formalize its security 

definitions. ConBE incorporates the 

underlying ideas of GKA and BE. A group 

of members interact via open networks to 

negotiate a public encryption key while each 

member holds a different secret decryption 

key. Using the public encryption key, 

anyone can encrypt any message to any 

subset of the group members and only the 

intended receivers can decrypt. We 

formalize collusion resistance by defining an 

attacker who can fully control all the 

members outside the intended receivers but 

cannot extract useful information from the 

ciphertext. Second, we present the notion of 

aggregately broadcast encryption (AggBE). 

Coarsely speaking, a BE scheme is 

aggregately if its secure instances can be 

aggregated into a new secure instance of the 

BE scheme. Specifically, only the 

aggregated decryption keys of the same user 

are valid decryption keys corresponding to 

the aggregated public keys of the underlying 

BE instances. Finally, we construct an 

efficient ConBE scheme with our AggBE 

scheme as a building block. The ConBE 

construction is proven to be semi-adaptively 

secure under the decision BDHE assumption 

in the standard model.  
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Advantages of Proposed System:  

tightly proven to be fully collusion-resistant 

under the decision BDHE assumption.  

efficient encryption/decryption and short 

ciphertexts.  

sh 

the public group encryption key and set up 

the ConBE system.  

III. SYSTEM ARCHITECTURE 

 

Fig.1. System Architecture. At the high-

level, two main methods of this group 

encryption service are Encrypt (set, m) c: 

where set is a set of participant identifiers to 

which message m is to be encrypted. This 

method returns the corresponding ciphertext 

c Decrypt (c) (m or error status): where c 

is the ciphertext and m is the resulting 

decryption. If decryption fails, an 

appropriate error code is returned. 

Depending on the implementation, 

ciphertext c may have certain structure, such 

as include the identity of the sender, the key 

encapsulation block, the encryption of the 

message under the encapsulated key, the 

signature block, etc.  

In addition to these two main methods, other 

methods can be exposed to the application, 

such as AddUserCertificate and 

RemoveUserCertificate. It may also be 

convenient to allow the application to use 

named groups instead of sets in Encrypt 

(group, m); if this method is provided it 

needs to be accompanied with the following 

group management methods: NewGroup, 

AddMember, and RemoveMember. 

Security Properties:  

Confidentiality: Communicated data is 

protected from non-members.  

Sender authentication and non-

repudiation: Participants can authenticate 

message senders.  

Membership dynamism: It is possible to 

form groups and to add/remove participants.  

Perfect Forward Security: Compromise 

of long term keys of a member does not 

compromise earlier communication of that 

member.  

Group Forward and Backward 

Secrecy: Secrecy of new communication 

from revoked members, and old 

communication from new members.  

A. Modules Description  

 

 

t Module  

 

Network Environment Setup Module: In 

the first module, we create the network 

environment setup with nodes, certificate 

authority as shown in Fig.1. Network 

environment is set up with nodes connected 

with all and using socket programming in 

java.  
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Certificate Authority Module: In this 

module, each receiver has a public/secret 

key pair. The public key is certified by a 

certificate authority, but the secret key is 

kept only by the receiver. A remote sender 

can retrieve the receiver’s public key from 

the certificate authority and validate the 

authenticity of the public key by checking 

its certificate, which implies that no direct 

communication from the receivers to the 

sender is necessary. Then, the sender can 

send secret messages to any chosen subset 

of the receivers.  

Key Broadcast Module: In this module 

formally define the model of group key 

agreement based broadcast encryption. The 

definition incorporates the up-to-date 

definitions of group key agreement and 

public-key broadcast encryption. Since the 

core of key management is to securely 

distribute a session key to the intended 

receivers, it is sufficient to define the system 

as a session key encapsulation mechanism. 

Then, the sender can simultaneously encrypt 

any message under the session key, and only 

the intended receivers can decrypt. The new 

paradigm seems to require a trusted third 

party as its counterpart in traditional 

broadcast encryption systems. A closer look 

shows there is a difference. In a traditional 

broadcast encryption system, the third party 

has to be fully trusted, that is, the third party 

knows the secret keys of all group members 

and can read any transmission to any 

subgroup of the members. This kind of fully 

trusted third party is hard to implement in 

open networks. In contrast, the third party in 

our key management model is only partially 

trusted. In other words, the third party only 

knows and certifies the public key of each 

member. This kind of partially trusted third 

party has been implemented and is known as 

public key infrastructure (PKI) in open 

networks.  

Group Key Management: The new key 

management paradigm ostensibly requires a 

sender to know the keys of the receivers, 

which may need communications from the 

receivers to the sender as in traditional 

group key agreement protocols. However, 

some subtleties must be pointed out here. In 

traditional group key agreement protocols, 

the sender has to simultaneously stay online 

with the receivers and direct 

communications from the receivers to the 

sender are needed. This is difficult for a 

remote sender. On the contrary, in our key 

management paradigm, the sender only 

needs to obtain the receivers’ public keys 

from a third party, and no direct 

communication from the receivers to the 

sender is required, which is implementable 

with exactly the existing PKIs in open 

networks. Hence, this is feasible for a 

remote sender. In our scheme, it is almost 

free of cost for a sender to exclude a group 

member by deleting the public key of the 

member from the public key chain or, 

similarly, to enroll a user as a new member 

by inserting that user’s public key into the 

proper position of the public key chain of 

the receivers. After the deletion/addition of 

certain member, a new logical public-key 

ring naturally forms. Hence, a trivial way to 

enable this change is to run the protocol 

independently with the new key ring. If the 
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sender would like to include a new member, 

the sender just needs to retrieve the public 

key of this user and insert it into the public 

key chain of the current receiver set. By 

repeatedly invoking the member addition 

operation, a sender can merge two receiver 

sets into a single group. Similarly, by 

repeatedly invoking the member deletion 

operation, a sender can partition one 

receiver set into two groups. Both merging 

and partitioning can be done efficiently. In 

this module shows the deletion of member 

from the receiver group. Then, the sender 

and the remaining receivers need to apply 

this change to their subsequent encryption 

and decryption procedures.  

IV. PERFORMANCE ANALYSIS 

 A. Theoretical Analysis  

We first examine the online complexity that 

is critical for the practicality of a ConBE 

scheme. When evaluating the performance, 

we use the widely adopted metrics for 

regular BE schemes. In these metrics, the 

costs of simple operations (e.g., read the 

indices of receivers and perform some 

simple quantification of group elements 

associated to these indices) and 

communication (e.g., the binary 

representation of the receivers’ set) are not 

taken into consideration. After the CBSetup 

procedure, a sender needs to retrieve and 

store the group public key PK consisting of 

n elements in G and n elements in GT. 

Moreover, for encryption, the sender needs 

only two exponentiations and the ciphertext 

merely contains two elements in G. This is 

about n times more efficient than the trivial 

solution. At the receiver’s side, in addition 

to the description of the bilinear pair which 

may be shared by many other security 

applications, a receiver needs to store n 

elements in G for decryption. For 

decryption, a receiver needs to compute two 

single-base bilinear pairings (or one double 

base bilinear pairing). The online costs on 

the sides of both the sender and the receivers 

are really low. We next discuss the 

complexity of the CBSetup procedure to set 

up a ConBE system. The overhead incurred 

by this procedure is O (n2). This procedure 

needs to be run only once and this can be 

done offline before the online transmission 

of secret session keys. For instance, in the 

social networks example, a number of 

friends exchange their CBSetup transcripts 

and establish a ConBE system to secure 

their subsequent sharing of private 

picture/videos. Since ConBE allows 

revoking members, the members do not 

need to reassemble for a new run of the 

CBSetup procedure until some new friends 

join. From our personal experience, the 

group lifetime usually lasts from weeks to 

months. These observations imply that our 

protocol is practical in the real world. 

Furthermore, if the initial group is too large, 

an efficient trade-off can be employed to 

balance the online and offline costs. 

Suppose that n is a cube, i.e., n = n3
1, and 

the initial group has n members. We divide 

the full group into n2
1 subgroups, each of 

which has n1 members. By applying our 

basic ConBE to each subgroup, we obtain a 

ConBE scheme with O (n2
1)-size transcripts 

per member during the offline stage of 

group key establishment; a sender needs to 
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do O (n2
1) encryption operations of the basic 

ConBE scheme, which produces O (n2
1)-size 

ciphertexts. Consequently, we obtain a semi-

adaptive ConBE scheme with O (n2/3) 

complexity. This is comparable to up-to-date 

public-key BE systems whose complexity is 

O (n1/2). 

 

Fig.2. Execution time of Group Key 

Agreement, Group Encryption Key 

Derivation, Member Decryption Key 

Derivation, CB Encrypt, and CBDecrypt 

for AES-80 and AES-128 levels. B. 

Experimental Analysis  

 

In this section we present experimental 

results on our ConBE scheme. The 

experiments were run on a PC with Intel 

Core i7-2600 CPU at 3.4GHz, using the C 

programming language. The cryptographic 

operations were implemented using the 

Pairing-Based Cryptography library2. 

Following the NIST-2012 key size 

recommendation3, we realized our protocol 

for a moderate AES-80 level and a more 

usual AES-128 level, corresponding to the 

security level of an ideal symmetric cipher 

with 80-bit and 128-bit secret keys, 

respectively. We used Type A pairings 

constructed on the curve y2 = x3 + x with 

embedding degree 2. Accordingly, in the 

first case for AES-80 level, G has 512-bit 

elements of a 160-bit prime order and GT 

has 1024-bit/128-byte elements; and in the 

second case for AES-128 level, G has 1536-

bit elements of a 256-bit prime order and GT 

has 3072-bit/386-byte elements, 

respectively. We performed experiments on 

the offline procedures including Group Key 

Agreement, Group Encryption Key 

Derivation and Member Decryption Key 

Derivation, and the online procedures 

including CBEncrypt and CBDecrypt for 

different group sizes n = 6, 30, 60, 90, 120, 

150, 180. The values for CBEncrypt and 

CBDecrypt consider the worst case, i.e., |S| 

= 1. Also, we did not optimize the 

underlying pairing-related parameters or 

operations, e.g., by choosing a large prime 

characteristic of the base field and the prime 

order p with most bits 0 (or 1), and by 

accelerating multi-base 

exponentiations/multi-base pairings. Hence, 

the practical performance of our protocol 

can be better than the illustrated 

experimental results. In Fig.2, the security 

level of our protocol is measured by the 

secret key size of AES (assumed to be an 

ideal symmetric cipher), i.e., AES with a 

truncated 80-bit key and AES with a 

standard 128-bit key. The leftmost graph in 

the figure illustrates the group key 

agreement time for different group sizes and 

different security levels. The execution time 

grows almost quadratically with the group 

size, and also grows with the security level. 

This is consistent with our theoretical 

analysis, because the pairings and the 

exponentiations dominate the computation 

costs. To achieve a moderate 128-bit 
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security, the execution time is about 3 

minutes for a group of 180 users. This is 

realistic as the GKA procedure only needs to 

be run once and then one can broadcast to 

any subset of the users, without re-running 

the protocol or any extra revocation sub 

protocol. The central graph in Fig.2 shows 

the time to extract the group encryption key 

and the decryption key for different group 

sizes and different security levels. Similarly 

to the group key agreement time, the key 

extraction time also grows with the security 

level and the group size. However, even in 

the worst case, only about 3 seconds are 

required, which is affordable in practice.  

The rightmost graph in Fig.2 illustrates the 

online session key encryption/decryption 

time. It can be seen that the time is almost 

constant for different group sizes, which is 

consistent with the theoretical analysis. Both 

the session key encryption and decryption 

take less than 10ms for a 80-bit security 

level, and less than 80ms for a 128-bit 

security level. After the system is set up, the 

session key transmission is really efficient, 

which is user-friendly and definitely makes 

our ConBE scheme practical.We also 

performed experiments on cost tradeoff 

between set-up and online encryption. For n 

= 180 and AES-128 level, the execution 

times for Group Key Agreement, Group 

Encryption Key Derivation, Member 

Decryption Key Derivation, CBEncrypt and 

CBDecrypt are 101s, 2.20s, 1.86s, 55.3ms, 

and 57.6ms, respectively. However, using 

the trade-off described in the previous 

section, specifically taking subgroups of 6 

users, the times become 410ms, 2.05ms, 

1.63ms, 1.33s, and 57.6ms. The set-up 

efficiency was significantly improved, at the 

cost of a 

1.33s encryption time, to be compared to a 

55.3ms encryption time without tradeoff.  

V. CONCLUSION  

In this paper, we formalized the ConBE 

primitive. In ConBE, anybody can send 

mystery messages to any subset of the 

gathering individuals, and the framework 

does not require a trusted key server. Neither 

the change of the sender nor the dynamic 

decision of the planned beneficiaries 

requires additional rounds to arrange bunch 

encryption/ unscrambling keys. Taking after 

the ConBE model, we instantiated and 

productive ConBE plan that is secure in the 

standard model. As a flexible cryptographic 

primitive, our novel ConBE idea opens 

another boulevard to set up secure telecast 

stations and can be relied upon to secure 

various developing circulated calculation 

applications. 
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