

Vol 06 Issue10, Oct 2017 ISSN 2456 – 5083 Page 814

CONTRIBUTORY BROADCAST ENCRYPTION PLAN WITH SHORT

CIPHER TEXTS

KV RAGHAVENDER
1
, CH.JYOTHI

2
, B.KALYANI DEVI

3
, ANABATHULA UMESH KUMAR

4
, B

SAI TEJA
5
 BONABOYANA MANASWINI

6

1
Associate Professor, Department of CSE, Malla Reddy Engineering College (Autonomous), Hyderabad,

India
2

 Assistant Professor, Department of CSE, Malla Reddy Engineering College (Autonomous), Hyderabad,

India
3
 Assistant

Professor, Department of CSE, Malla Reddy Engineering College (Autonomous), Hyderabad,

India
4 ,5,6

UG Student, Department of CSE, Malla Reddy Engineering College (Autonomous), Hyderabad, India

 Abstract: Customary telecast encryption (TE) plans permit a sender to safely show to any

subset of individuals yet require a trusted gathering to disseminate unscrambling keys. Bunch

key understanding (BKU) conventions empower a gathering of individuals to arrange a typical

encryption key by means of open systems so that lone the gathering individuals can decode the

ciphertexts encoded under the common encryption key, yet a sender can't reject a specific part

from unscrambling the ciphertexts. In this paper, we connect these two thoughts with a half and

half primitive alluded to as contributory show encryption (ConBE). In this new primitive, a

gathering of individuals arrange a typical open encryption key while every part holds an

unscrambling key. A sender seeing people in general gathering encryption key can confine the

unscrambling to a subset of individuals from his decision. Tailing this model, we propose a

ConBE plan with short ciphertexts. The plan is ended up being completely plot safe under the

choice n-Bilinear Diffie-Hellman Exponentiation (BDHE) supposition in the standard model. Of

autonomous interest, we introduce another BE plan that is aggregately. The aggregatability

property is appeared to be valuable to build propelled conventions.

Keywords: Broadcast Encryption, Group Key Agreement, Contributory Broadcast Encryption,

Provable Security.

 I. INTRODUCTION

With the increase in technology

advancement in communication

technologies, there is an increasing demand

of versatile cryptographic primitives to

protect group communications and

computation platforms. These new platforms

include instant-messaging tools,

collaborative computing, mobile ad hoc

networks and social networks. These new

applications call for cryptographic

primitives allowing asunder to securely

encrypting to any subset of the users of the

services without relying on a fully trusted

dealer. Broadcast encryption (BE) is a well-

studied primitive intended for secure group-

Vol 06 Issue10, Oct 2017 ISSN 2456 – 5083 Page 815

oriented communications. It allows a sender

to securely broadcast to any subset of the

group members. Nevertheless, a BE system

heavily relies on a fully trusted key server

who generates secret decryption keys for the

members and can read all the

communications to any members. Group key

agreement (GKA) is another well-

understood cryptographic primitive to secure

group-oriented communications. A

conventional GKA allows a group of

members to establish a common secret key

via open networks. However, whenever a

sender wants to send a message to a group,

he must first join the group and run a GKA

protocol to share a secret key with the

intended members more recently, and to

overcome this limitation, with the

introduction of asymmetric GKA, in which

only a common group public key is

negotiated and each group member holds a

different decryption key. However, neither

conventional symmetric GKA nor the newly

introduced asymmetric GKA allow the

sender to unilaterally exclude any particular

member from reading the plaintext. Hence,

it is essential to find more flexible

cryptographic primitives allowing dynamic

broadcasts without a fully trusted dealer.

This paper investigates a close variation of

the above mentioned problem of one-round

group key agreement protocols and focuses

on “how to establish a confidential channel

from scratch for multiple parties in one

round”. We provide a short overview of

some new ideas to solve this variation.

Asymmetric GKA Observe that a major goal

of GKAs for most applications is to

establish a confidential broadcast channel

among the group. We investigate the

potentiality to establish this channel in an

asymmetric manner in the sense that the

group members merely negotiate a common

encryption key (accessible to attackers) but

hold respective secret decryption keys. We

introduce a new class of GKA protocols

which we name asymmetric group key

agreements (ASGKAs), in contrast to the

conventional GKAs. A trivial solution is for

each member to publish a public key and

withhold the respective secret key, so that

the final ciphertext is built as a

concatenation of the underlying individual

ones. However, this trivial solution is highly

inefficient: the ciphertext increases linearly

with the group size; furthermore, the sender

has to keep all the public keys of the group

members and separately encrypt for each

member.We are interested in nontrivial

solutions that do not suffer from these

limitations. Group key agreement (GKA) is

another well-understood cryptographic

primitive to secure group-oriented

communications. A conventional GKA

allows a group of members to establish a

common secret key via open networks.

However, whenever a sender wants to send a

message to a group, he must first join the

group and run a GKA protocol to share a

secret key with the intended members. More

recently introduced asymmetric GKA in

which only a common group public key is

negotiated and each group member holds a

different decryption key. However, neither

conventional symmetric GKA nor the newly

Introduced asymmetric GKA allow the

Vol 06 Issue10, Oct 2017 ISSN 2456 – 5083 Page 816

sender to unilaterally exclude any particular

member from reading the plaintext1. Hence,

it is essential to find more flexible

cryptographic primitives allowing dynamic

broadcasts without a fully trusted dealer.

 II. EXISTING AND PROPOSED

SYSTEMS

A. Existing System Group key agreement

(GKA) is another well-understood

cryptographic primitive to secure group-

oriented communications. A conventional

GKA allows a group of members to

establish a common secret key via open

networks. However, whenever a sender

wants to send a message to a group, he must

first join the group and run a GKA protocol

to share a secret key with the intended

members. More recently, and to overcome

this limitation, Wu et al. introduced

asymmetric GKA, in which only a common

group public key is negotiated and each

group member holds a different decryption

key. However, neither conventional

symmetric GKA nor the newly introduced

asymmetric GKA allow the sender to

unilaterally exclude any particular member

from reading the plaintext. Hence, it is

essential to find more flexible cryptographic

primitives allowing dynamic broadcasts

without a fully trusted dealer.

Disadvantages of Existing System:

the system.

sender/ member changes efficiently.

B. Proposed System

We present the Contributory Broadcast

Encryption (ConBE) primitive, which is a

hybrid of GKA and BE. This full paper

provides complete security proofs, illustrates

the necessity of the aggregatability of the

underlying BE building block and shows the

practicality of our ConBE scheme with

experiments. First, we model the ConBE

primitive and formalize its security

definitions. ConBE incorporates the

underlying ideas of GKA and BE. A group

of members interact via open networks to

negotiate a public encryption key while each

member holds a different secret decryption

key. Using the public encryption key,

anyone can encrypt any message to any

subset of the group members and only the

intended receivers can decrypt. We

formalize collusion resistance by defining an

attacker who can fully control all the

members outside the intended receivers but

cannot extract useful information from the

ciphertext. Second, we present the notion of

aggregately broadcast encryption (AggBE).

Coarsely speaking, a BE scheme is

aggregately if its secure instances can be

aggregated into a new secure instance of the

BE scheme. Specifically, only the

aggregated decryption keys of the same user

are valid decryption keys corresponding to

the aggregated public keys of the underlying

BE instances. Finally, we construct an

efficient ConBE scheme with our AggBE

scheme as a building block. The ConBE

construction is proven to be semi-adaptively

secure under the decision BDHE assumption

in the standard model.

Vol 06 Issue10, Oct 2017 ISSN 2456 – 5083 Page 817

Advantages of Proposed System:

tightly proven to be fully collusion-resistant

under the decision BDHE assumption.

efficient encryption/decryption and short

ciphertexts.

sh

the public group encryption key and set up

the ConBE system.

III. SYSTEM ARCHITECTURE

Fig.1. System Architecture. At the high-

level, two main methods of this group

encryption service are Encrypt (set, m) c:

where set is a set of participant identifiers to

which message m is to be encrypted. This

method returns the corresponding ciphertext

c Decrypt (c) (m or error status): where c

is the ciphertext and m is the resulting

decryption. If decryption fails, an

appropriate error code is returned.

Depending on the implementation,

ciphertext c may have certain structure, such

as include the identity of the sender, the key

encapsulation block, the encryption of the

message under the encapsulated key, the

signature block, etc.

In addition to these two main methods, other

methods can be exposed to the application,

such as AddUserCertificate and

RemoveUserCertificate. It may also be

convenient to allow the application to use

named groups instead of sets in Encrypt

(group, m); if this method is provided it

needs to be accompanied with the following

group management methods: NewGroup,

AddMember, and RemoveMember.

Security Properties:

Confidentiality: Communicated data is

protected from non-members.

Sender authentication and non-

repudiation: Participants can authenticate

message senders.

Membership dynamism: It is possible to

form groups and to add/remove participants.

Perfect Forward Security: Compromise

of long term keys of a member does not

compromise earlier communication of that

member.

Group Forward and Backward

Secrecy: Secrecy of new communication

from revoked members, and old

communication from new members.

A. Modules Description

t Module

Network Environment Setup Module: In

the first module, we create the network

environment setup with nodes, certificate

authority as shown in Fig.1. Network

environment is set up with nodes connected

with all and using socket programming in

java.

Vol 06 Issue10, Oct 2017 ISSN 2456 – 5083 Page 818

Certificate Authority Module: In this

module, each receiver has a public/secret

key pair. The public key is certified by a

certificate authority, but the secret key is

kept only by the receiver. A remote sender

can retrieve the receiver’s public key from

the certificate authority and validate the

authenticity of the public key by checking

its certificate, which implies that no direct

communication from the receivers to the

sender is necessary. Then, the sender can

send secret messages to any chosen subset

of the receivers.

Key Broadcast Module: In this module

formally define the model of group key

agreement based broadcast encryption. The

definition incorporates the up-to-date

definitions of group key agreement and

public-key broadcast encryption. Since the

core of key management is to securely

distribute a session key to the intended

receivers, it is sufficient to define the system

as a session key encapsulation mechanism.

Then, the sender can simultaneously encrypt

any message under the session key, and only

the intended receivers can decrypt. The new

paradigm seems to require a trusted third

party as its counterpart in traditional

broadcast encryption systems. A closer look

shows there is a difference. In a traditional

broadcast encryption system, the third party

has to be fully trusted, that is, the third party

knows the secret keys of all group members

and can read any transmission to any

subgroup of the members. This kind of fully

trusted third party is hard to implement in

open networks. In contrast, the third party in

our key management model is only partially

trusted. In other words, the third party only

knows and certifies the public key of each

member. This kind of partially trusted third

party has been implemented and is known as

public key infrastructure (PKI) in open

networks.

Group Key Management: The new key

management paradigm ostensibly requires a

sender to know the keys of the receivers,

which may need communications from the

receivers to the sender as in traditional

group key agreement protocols. However,

some subtleties must be pointed out here. In

traditional group key agreement protocols,

the sender has to simultaneously stay online

with the receivers and direct

communications from the receivers to the

sender are needed. This is difficult for a

remote sender. On the contrary, in our key

management paradigm, the sender only

needs to obtain the receivers’ public keys

from a third party, and no direct

communication from the receivers to the

sender is required, which is implementable

with exactly the existing PKIs in open

networks. Hence, this is feasible for a

remote sender. In our scheme, it is almost

free of cost for a sender to exclude a group

member by deleting the public key of the

member from the public key chain or,

similarly, to enroll a user as a new member

by inserting that user’s public key into the

proper position of the public key chain of

the receivers. After the deletion/addition of

certain member, a new logical public-key

ring naturally forms. Hence, a trivial way to

enable this change is to run the protocol

independently with the new key ring. If the

Vol 06 Issue10, Oct 2017 ISSN 2456 – 5083 Page 819

sender would like to include a new member,

the sender just needs to retrieve the public

key of this user and insert it into the public

key chain of the current receiver set. By

repeatedly invoking the member addition

operation, a sender can merge two receiver

sets into a single group. Similarly, by

repeatedly invoking the member deletion

operation, a sender can partition one

receiver set into two groups. Both merging

and partitioning can be done efficiently. In

this module shows the deletion of member

from the receiver group. Then, the sender

and the remaining receivers need to apply

this change to their subsequent encryption

and decryption procedures.

IV. PERFORMANCE ANALYSIS

 A. Theoretical Analysis

We first examine the online complexity that

is critical for the practicality of a ConBE

scheme. When evaluating the performance,

we use the widely adopted metrics for

regular BE schemes. In these metrics, the

costs of simple operations (e.g., read the

indices of receivers and perform some

simple quantification of group elements

associated to these indices) and

communication (e.g., the binary

representation of the receivers’ set) are not

taken into consideration. After the CBSetup

procedure, a sender needs to retrieve and

store the group public key PK consisting of

n elements in G and n elements in GT.

Moreover, for encryption, the sender needs

only two exponentiations and the ciphertext

merely contains two elements in G. This is

about n times more efficient than the trivial

solution. At the receiver’s side, in addition

to the description of the bilinear pair which

may be shared by many other security

applications, a receiver needs to store n

elements in G for decryption. For

decryption, a receiver needs to compute two

single-base bilinear pairings (or one double

base bilinear pairing). The online costs on

the sides of both the sender and the receivers

are really low. We next discuss the

complexity of the CBSetup procedure to set

up a ConBE system. The overhead incurred

by this procedure is O (n2). This procedure

needs to be run only once and this can be

done offline before the online transmission

of secret session keys. For instance, in the

social networks example, a number of

friends exchange their CBSetup transcripts

and establish a ConBE system to secure

their subsequent sharing of private

picture/videos. Since ConBE allows

revoking members, the members do not

need to reassemble for a new run of the

CBSetup procedure until some new friends

join. From our personal experience, the

group lifetime usually lasts from weeks to

months. These observations imply that our

protocol is practical in the real world.

Furthermore, if the initial group is too large,

an efficient trade-off can be employed to

balance the online and offline costs.

Suppose that n is a cube, i.e., n = n3
1, and

the initial group has n members. We divide

the full group into n2
1 subgroups, each of

which has n1 members. By applying our

basic ConBE to each subgroup, we obtain a

ConBE scheme with O (n2
1)-size transcripts

per member during the offline stage of

group key establishment; a sender needs to

Vol 06 Issue10, Oct 2017 ISSN 2456 – 5083 Page 820

do O (n2
1) encryption operations of the basic

ConBE scheme, which produces O (n2
1)-size

ciphertexts. Consequently, we obtain a semi-

adaptive ConBE scheme with O (n2/3)

complexity. This is comparable to up-to-date

public-key BE systems whose complexity is

O (n1/2).

Fig.2. Execution time of Group Key

Agreement, Group Encryption Key

Derivation, Member Decryption Key

Derivation, CB Encrypt, and CBDecrypt

for AES-80 and AES-128 levels. B.

Experimental Analysis

In this section we present experimental

results on our ConBE scheme. The

experiments were run on a PC with Intel

Core i7-2600 CPU at 3.4GHz, using the C

programming language. The cryptographic

operations were implemented using the

Pairing-Based Cryptography library2.

Following the NIST-2012 key size

recommendation3, we realized our protocol

for a moderate AES-80 level and a more

usual AES-128 level, corresponding to the

security level of an ideal symmetric cipher

with 80-bit and 128-bit secret keys,

respectively. We used Type A pairings

constructed on the curve y2 = x3 + x with

embedding degree 2. Accordingly, in the

first case for AES-80 level, G has 512-bit

elements of a 160-bit prime order and GT

has 1024-bit/128-byte elements; and in the

second case for AES-128 level, G has 1536-

bit elements of a 256-bit prime order and GT

has 3072-bit/386-byte elements,

respectively. We performed experiments on

the offline procedures including Group Key

Agreement, Group Encryption Key

Derivation and Member Decryption Key

Derivation, and the online procedures

including CBEncrypt and CBDecrypt for

different group sizes n = 6, 30, 60, 90, 120,

150, 180. The values for CBEncrypt and

CBDecrypt consider the worst case, i.e., |S|

= 1. Also, we did not optimize the

underlying pairing-related parameters or

operations, e.g., by choosing a large prime

characteristic of the base field and the prime

order p with most bits 0 (or 1), and by

accelerating multi-base

exponentiations/multi-base pairings. Hence,

the practical performance of our protocol

can be better than the illustrated

experimental results. In Fig.2, the security

level of our protocol is measured by the

secret key size of AES (assumed to be an

ideal symmetric cipher), i.e., AES with a

truncated 80-bit key and AES with a

standard 128-bit key. The leftmost graph in

the figure illustrates the group key

agreement time for different group sizes and

different security levels. The execution time

grows almost quadratically with the group

size, and also grows with the security level.

This is consistent with our theoretical

analysis, because the pairings and the

exponentiations dominate the computation

costs. To achieve a moderate 128-bit

Vol 06 Issue10, Oct 2017 ISSN 2456 – 5083 Page 821

security, the execution time is about 3

minutes for a group of 180 users. This is

realistic as the GKA procedure only needs to

be run once and then one can broadcast to

any subset of the users, without re-running

the protocol or any extra revocation sub

protocol. The central graph in Fig.2 shows

the time to extract the group encryption key

and the decryption key for different group

sizes and different security levels. Similarly

to the group key agreement time, the key

extraction time also grows with the security

level and the group size. However, even in

the worst case, only about 3 seconds are

required, which is affordable in practice.

The rightmost graph in Fig.2 illustrates the

online session key encryption/decryption

time. It can be seen that the time is almost

constant for different group sizes, which is

consistent with the theoretical analysis. Both

the session key encryption and decryption

take less than 10ms for a 80-bit security

level, and less than 80ms for a 128-bit

security level. After the system is set up, the

session key transmission is really efficient,

which is user-friendly and definitely makes

our ConBE scheme practical.We also

performed experiments on cost tradeoff

between set-up and online encryption. For n

= 180 and AES-128 level, the execution

times for Group Key Agreement, Group

Encryption Key Derivation, Member

Decryption Key Derivation, CBEncrypt and

CBDecrypt are 101s, 2.20s, 1.86s, 55.3ms,

and 57.6ms, respectively. However, using

the trade-off described in the previous

section, specifically taking subgroups of 6

users, the times become 410ms, 2.05ms,

1.63ms, 1.33s, and 57.6ms. The set-up

efficiency was significantly improved, at the

cost of a

1.33s encryption time, to be compared to a

55.3ms encryption time without tradeoff.

V. CONCLUSION

In this paper, we formalized the ConBE

primitive. In ConBE, anybody can send

mystery messages to any subset of the

gathering individuals, and the framework

does not require a trusted key server. Neither

the change of the sender nor the dynamic

decision of the planned beneficiaries

requires additional rounds to arrange bunch

encryption/ unscrambling keys. Taking after

the ConBE model, we instantiated and

productive ConBE plan that is secure in the

standard model. As a flexible cryptographic

primitive, our novel ConBE idea opens

another boulevard to set up secure telecast

stations and can be relied upon to secure

various developing circulated calculation

applications.

 VI. REFERENCES

[1] Qianhong Wu, Member, IEEE, Bo Qin,

Lei Zhang, Member, IEEE, Josep Domingo-

Ferrer, Fellow, IEEE Oriol Farr`as, and

Jes´us A. Manj´on, “Contributory Broadcast

Encryption with Efficient Encryption and

Short Ciphertexts”, IEEE Transactions On

Computers, Vol. Xxx, No. Xxx, Xxx 2015.

[2] A. Fiat and M. Naor, “Broadcast

Encryption,” in Proc. Crypto 1993, 1993,

vol. LNCS 773, Lecture Notes in Computer

Science, pp. 480-491. [3] I. Ingemarsson,

D.T. Tang and C.K. Wong, “A Conference

Key Distribution System,” IEEE

Transactions on Information Theory, vol.

Vol 06 Issue10, Oct 2017 ISSN 2456 – 5083 Page 822

28, no. 5, pp. 714-720, 1982. [4] Q. Wu, Y.

Mu, W. Susilo, B. Qin and J. Domingo-

Ferrer, “Asymmetric Group Key

Agreement,” in Proc. Eurocrypt 2009, 2009,

vol. LNCS 5479, Lecture Notes in Computer

Science, pp. 153-170. [5]

http://en.wikipedia.org/wiki/PRISM

%28surveillance program%29, 2014. [6] Q.

Wu, B. Qin, L. Zhang, J. Domingo-Ferrer

and O. Farr`as, “Bridging Broadcast

Encryption and Group Key Agreement,” in

Proc. Asiacrypt 2011, 2011, vol. LNCS

7073, Lecture Notes in Computer Science,

pp. 143-160. [7] D. H. Phan, D. Pointcheval

and M. Strefler, “Decentralized Dynamic

Broadcast Encryption,” in Proc. SCN 2012,

2011, vol. LNCS 7485, Lecture Notes in

Computer Science, pp. 166-183. [8] M.

Steiner, G. Tsudik and M. Waidner, “Key

Agreement in Dynamic Peer Groups,” IEEE

Transactions on Parallel and Distributed

Systems, vol. 11, no. 8, pp. 769-780, 2000.

[9] A. Sherman and D. McGrew, “Key

Establishment in Large Dynamic Groups

Using One-way Function Trees,” IEEE

Transactions on Software Engineering, vol.

29, no. 5, pp. 444-458, 2003. [10] Y. Kim,

A. Perrig and G. Tsudik, “Tree-Based Group

Key Agreement,” ACM Transactions on

Information System Security, vol. 7, no. 1,

pp. 60-96, 2004. [11] Y. Mao, Y. Sun, M.

Wu and K.J.R. Liu, “JET: Dynamic Join-

Exit-Tree Amortization and Scheduling for

Contributory Key Management,”
IEEE/ACM Transactions on Networking,

vol. 14, no. 5, pp. 1128-1140, 2006.

[12] C. Boyd and J.M. Gonz´alez-Nieto,

“Round-Optimal Contributory Conference

Key Agreement,” in Proc. PKC 2003, 2003,

vol. LNCS 2567, Lecture Notes in Computer

Science, pp. 161-174.

