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Abstract 
 

A multi-objective, reliability-based design optimization technique of acompressor blade is 

proposed using response surface methods and geneticalgorithms. The design objectives are to 

maximize the stage pressure ratio and to minimize the weight of the NASA rotor67 transonic blade, 

whilesatisfying both aerodynamic constraint and structural reliability constraint.Thirty two 

deterministic design variables are used to deny the shape ofthe blade, while two random variables are 

used to characterize the uncertainties in material properties. Reliability analysis is performed using 

thesecond-order response surface and Monte Carlo simulation. The probabilistic suciency factor, 

which is superior to the probability of failure andsafety factor in terms of accuracy in the regions of 

low probability of failure when calculated using Monte Carlo simulation, is used as an 

alternativemeasure of safety in reliability-based design optimization. Quadratic designresponse 

surfaces are utilized to later the noise from the Monte Carlo simulation and also facilitate the 

multidisciplinary design optimization. Thegenetic algorithm is employed to 
 
¯  nd the Pareto-optimal solutions. To expedite the convergence and ¯  nd a well-converged solution, 

we also use a  
local search. 

 

Introduction 
 

For decades, many researchers have used 

optimization techniques to improve the 

engineperformance. Some focus on a speci¯  

c discipline, others involve in multi-

disciplines. Forinstance, Oyama et al.1 

minimized the entropy generation of the 

NASA rotor67 blade,Benini2 improved the 

total pressure ratio and the adiabatic 

e±ciency of the NASA rotor37blade, 

Mengistu and Ghaly3 performed multi-point 

design of compressor rotors to improvetheir 

aerodynamic performance, Lian and Liou4, 
 

 
 

 

5 performed multidisciplinary and multi-

objective optimization of the NASA rotor67 

blade with a coupled genetic algorithm 

andresponse surface technique. In the 

aforementioned works, the design variables 
 
were assumedknown deterministic 

parameters. For engine design, however, 

uncertainties and randomness exist in the 

material properties and design variables. To 

ensure robust and reliable designs,we need 

to account for these uncertainties or 

randomness in the optimization procedure. 
 
Reliability-based design optimization 
(RBDO) is a technique to consider the 
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uncertaintyof input parameters in the design 

process. It provides not only the 

performance valuebut also the confidence 

range. On the other hand, RBDO involving a 

computationallydemanding model has been 

limited by the relatively high number of 

required analyses foruncertainty propagation 

during the design process. In order to 

overcome this limitation,several alternatives 

with various degrees of complexity, such as 

moment- based methods11, 12and Monte 

Carlo simulation (MCS), have been 

proposed. The moment based-methods 
 

arerelatively e±cient because they 

approximate the performance measure at the 

most probablepoint using linear of quadratic 

functions. However, the accuracy of these 

approximations isa concern when the 

performance function exhibits nonlinear 

behavior. Another drawback ofmoment-

based methods is that they are not well 
 

suited for problems with many 

competingcritical failure modes.13 The 

MCS is a simple form of the basic 

simulation. It provides apowerful tool for 

evaluating the risk of complex engineering 

systems. It is widely used inreliability 

analysis because of its simplicity and 

robustness. Nonetheless, the MCS requires 

alarge amount of analyses for a good 

estimation of the probability of failure, 

especially whenthe failure probability is 

small. And MCS can also produce noisy 

response.13 Responsesurface approximation 

has the capability to handle these two 

problems. In addition, the 
 

use of response surface approach facilitates 
multidisciplinary optimizations, which face  

 
 

 

thechallenges of computational expense and 
organizational complexity. 
 

In this paper, a multi-objective RBDO of a 

NASA rotor67 compressor blade is 

proposedusing response surface techniques 

and genetic algorithms. The objectives are to 

maximize the stagepressure ratio and to 

minimize the blade weight while satisfying 

the constraints onreliability of maximum 

blade stress and mass °ow rate. A real-coded 

genetic algorithm isused to facilitate the 

multi-objective optimization. The limits on 

reliability constraints areset up such that the 

probability of failure is less than 10¡4. 

Thirty two deterministic designvariables are 

used to determine the shape of the blade, 

while two random variables are usedto 

characterize the uncertainties in material 

properties. In order to address the 

aerodynamicperformance as well as the 

structural performance, a sequential analysis 

technique has beenadopted in which 

structural deformation does not in°uence on 

aerodynamic performance. 
 

This assumption is valid when the structural 

deformation is small. The response surface 

isbuilt based on the preselected design 

points. Their aerodynamic and structural 

performancesare evaluated using high- 
 

¯  delity tools. A computational °uid 

dynamics (CFD) tool is usedto compute the 

aerodynamic force, which is then transferred 

from the CFD grid to thestructural ¯  nite 

element grid. To ensure the conservation of 

energy between the °ow and thestructural 

systems, the thin interpolation is used as the 

interpolation technique.7, 23 A+commercial 
 
¯  nite element analysis program, ANSYS, is 

then used to compute the maximumvon 
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Mises stress at the top and bottom surfaces 

of the blade. The RBDO is performed onthe 

response surface using the genetic algorithm 

and MCS. 
 
Proposed method  

The design uncertainty camefrom the 
 
material properties. Our objectives were to 
 

maximize the stage pressure ratio 
 
whileminimize the blade weight. A second- 
 
order  response  surface  model  was  built  to  
make itpossible to perform such a 
 
computationally intensive analysis and 
 
optimization process. 
 
Results and discussion 
 

In the problem described in Eq. (1) there are 

32 design variables and two random 

variables. The objective functions and the 

aerodynamic constraint therein are only 

a®ected bythe designvariables while the 

maximum stress is a®ected by the design 

variables and Poisson's ratio. The random 

variable, endurance limit, which is factored 

into the computation ofprobability su±cient 

factor, does not in°uence the maximum 

stress. Therefore, our samplingof design 

points is based on the 32 design variables 

and random variable Poisson's ratio. 

Wesample 1,024 design points with the 

hypercube Latin sampling. These design 
 

points are evaluated using the 

aforementioned °uid and structure solvers. 

Thereafter, the ARS is built forthe 

maximum von Mises stress based on both 

the design variables and the random 

variable. 
 

The accuracy of the response surface 

approximation is evaluated by statistical 

measures,including the adjusted coincident 

of determination (R2adj) and the root mean 

 
 

 

square error(RMSE) predictor. The adjusted 

coincident of determination is more 

comparable over models with di®erent 

numbers of parameters by using the degrees 

of freedom in its computation. 
 

It measures the proportion of the variation 

accounted for by ¯  tting means to each 

factorlevel. Table 2 shows the test results. 

The value of R2adj for the maximal stress is 

0.8369;the stage pressure rise has a value of 

R2adj larger than 0.98 and a RMSE% close 

to zero,indicating the quadratic response 
 

surface model gives accurate 

representations.Monte Carlo simulation is 

performed based on the built ARS. For a 

problem requiredfailure probability of 

1:0£10¡4, one million simulations are 

performed at each design point. 
 

After the probability of failure and 

probability su±cient factor are extracted, we 

are ready tobuild the DRS based on the 

design variables. The statistical measures are 

shown in Table 2.We can see that the ¯  tting 

of the failure probability is poor in terms of 

the statisticalmeasures. Fig. 4 shows the 

distribution of the failure probability, which 

changes severalorders of magnitude over a 

narrow range. A quadratic response surface 

may not be e±cientto capture the change. A 

high-order response surface model may be 

required to capture thesteep variation. 

However, it demands more design points to 
 
¯  t the coe±cients. In addition,we can see that 

more than 90% of the design has a zero failure 

probability. Not enoughgradient information 

will be provided in the optimization procedure 

if a response surfaceis built based on the 

failure probability. If safety factor is used, we 

still 
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could not avoid the large portion of °at 

region. On the other hand, the design 

response surface for the probability su±cient 

factor has good statistical measures. The 

values of R2 adj and %RMSE are 0.9994 

and 0.002337, respectively. We plot the 

distribution of Psfin Fig. 5, which shows a 

smooth variation. For the studied problem 

with 1 million simulations and a required 

probability of failure less than 10¡4, the 

error associated with the limited size of 

simulation is 2 £ 10¡5, which is much less 

than that the value of 0.002637 due to the 

design response 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4. Distribution of probability of 
 

failure of the 1024 design points. 
 

Our problem described in Eq. 1 is a multi-

objective optimization problem with a set 

ofPareto-optimal solutions. To facilitate the 

optimization, we use a real-coded genetic 
 

 
 

 

algorithm. With the we set the population 

size as 320. Fig. 6 shows the solutions with 

differentgeneration sizes. The convergence 

rate at the beginning is fast and it gradually 

slows down. 
 

This phenomenon is typical for genetic 

algorithms, which usually suffer a slow 

convergencerate when the optimal is 

approach. One remedy is to use a hybrid 

method. The basic ideais to switch to a 

gradient-based method to improve the 

convergence after the genetic algorithm. For 

that purpose we use the Design optimization 

tools (DOT),24 which is softwarebased on 

gradient-based methods. Fig. 6 shows that 

DOT does improve the convergence. 
 

Optimization is also attempted exclusively 

based on gradient-based methods. To do 

that,we transform the original problem in 

Eq. (1) into a single objective optimization 

problemby introducing weight function and 

DOT is employed as the optimizer. We 

notice that eventhough it obtains some 

solutions better that those from the hybrid 

method, the gradient-based method fails to 

identify some regions on the Pareto-optimal 

front. In addition, wenotice that the gradient-

based method is sensitive to the initial 

condition. The solution from 
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Figure 5. Distribution of probability 

suffcient failure of the 1024 design points. 

genetic algorithms is also affected by the 

initial condition. However, the effect 

demolisheswiththe increase of generation 

size. We compare Pareto-optimal fronts with 

different initialconditions and ¯  nd no 

evident difference at the 8000-th generation. 
 

Totally there are 693Pareto-optimal 
solutions lying on the front.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Genetic algorithm convergence 

history and solutions from hybrid method. 
 

We choose 15 representative optimal design 

points from the Pareto-optimal front 

usingthe K-means clustering algorithm to 

 
 

 

verify against the high-¯  delity analysis tools. 

K-meansclustering is a method that chooses a 

set of data points from the Pareto-optimal 

front toaccurate represent the distribution of 

whole date points 4, 25 The distribution of the 

selecteddata points is shown in Fig. 7. We also 

compare the baseline with the optimal 

solutions.Clearly the optimization process 

decreases the blade weight while increasing 

the stage pressure ratio. 
 

To see the impact of the accuracy of ARS, 

we validate the probability sufficient factor 

ofeach representative optimal design using 

MCS by substituting the optimal values into 

the constructed ARS. This calculated PSF is 

compared with that predicted from 

optimizationprocess. The comparison is 

illustrated in Fig. 8. These two set of data 

have a correlationcoefficient of 0.9913, 

indicating that quadratic response surface 
 

¯  fitting of the probabilitysufficient factor is an 

accurate approximation.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 7. Comparison of baseline with 
 

optimal solutions.  
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Figure 8. Correlation of probability su±cient 

factor from MCS and optimization. 
 

Conclusions 
 

In this paper, we demonstrated a reliability-

based design optimization technique 

whenboth aerodynamic and structural 

performances are considered. The design 
 

uncertainty camefrom the material 

properties. Our objectives were to maximize 

the stage pressure ratio whileminimize the 

blade weight. A second-order response 

surface model was built to make itpossible 

to perform such a computationally intensive 

analysis and optimization process. Agenetic 

algorithm was used to facilitate the multi-

objective characteristics of our problem. The 

reliability analysis was performed based on 
 

Monte Carlo simulation. Our 

numericalresults showed that we could 

achieve a new design with lighter weight, 
 

larger pressure ratio,and reliable 
performance.  
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