

Vol 11 Issue 10, Oct 2022 ISSN 2456 – 5083 www.ijiemr.org

COPY RIGHT

2022 IJIEMR. Personal use of this material is permitted. Permission from IJIEMR must

be obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted

component of this work in other works. No Reprint should be done to this paper, all copy

right is authenticated to Paper Authors

IJIEMR Transactions, online available on 28
th

 Oct 2022. Link

:http://www.ijiemr.org/downloads.php?vol=Volume-11&issue=Issue 10

DOI: 10.48047/IJIEMR/V11/ISSUE 10/13

Title CI/CD Pipeline using Jenkins to Implement Quality Gates for Static Code Analysis,

Static Unit Testing, Quality Gates for Code Coverage

Volume 11, ISSUE 10, Pages: 108-117

Paper Authors

Dr.A.Radhika, M. Anith

 USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER

To Secure Your Paper As Per UGC Guidelines We Are Providing A Electronic

Bar Code

http://www.ijiemr.org/

Volume 11 Issue 10, Oct 2022 ISSN 2456 – 5083 Page : 1

CI/CD Pipeline using Jenkins to Implement Quality Gates for
Static Code Analysis, Static Unit Testing, Quality Gates for

Code Coverage

Dr.A.Radhika, Associate Professor, Dept of Computer Science and Engineering

SRK Institute of Technology

M. Anitha, Assistant Professor, Dept of Master of Computer Applications,

SRK Institute of Technology

ABSTRACT

Agile methodology was playing a major role a few years back when the software was deployed in monthly,
quarterly or annual basis which was time consuming. But now a days software can be deployed multiple times a day
using Devops. In current era, delivering creative ideas in a steady and rapid manner is eminently significant for all
organizations. In addition to that, organizations need to delivery the products fastly as per the market requirements,
As there are frequent delivery of products there is more interaction with the customer and there will be decrease in
failure rate. All these can be achieved with the help of Devops methodology. To quickly produce and deploy the
software product across multiple platforms and environment, DevOps methodology extends the agile to gain high
performance and quality assurance products. Continuous integration/Continuous deployment (CI/CD) is the
backbone of DevOps environment. By automating the validation, build, testing, installing and deployment of
software, CI/CD bridges the gap between development and operation teams.CI/CD pipeline is implemented using
Jenkins not only for building the product,but also to perform static code analysis, static unit testing and quality gates
to test the quality of code in the form of reliability, security, maintainability.

 Keywords: Git, Maven, Jenkins, Sonar Qube, CI/CD deployment pipeline

I. Introduction

A pipeline is a concept that introduces a
series of events or tasks that are connected
in a sequence to make quick software
releases. If there exist a task and that task
has got five different stages, and each stage
has got several steps. All the steps in phase
one must be completed, to mark the .

later stage to be complete, consider the
CI/CD pipeline [1] as the backbone of the
DevOps approach. This Pipeline is
responsible for building codes, running tests,
and deploying new software versions.
Continuous Integration (CI) [2]is a practice
that integrates code into a shared repository.
It uses automated verifications for the early
detection of problems. Continuous
Integration doesn't eliminate bugs but helps
in finding and removing them quickly.

Continuous Delivery (CD): It is the phase
where the changes are made in the code
before deploying. The team in this phase
decides what is to be deployed to the
customers and when. The final goal of the
pipeline is to make deployments.When both

Volume 11 Issue 10, Oct 2022 ISSN 2456 – 5083 Page : 2

these practices come together, all the steps
are considered automated, resulting in the

process we know as CI/CD.

Implementation of CI/CD enables the team
to deploy codes quickly and efficiently.
The Process makes the team more agile,
productive and confident. Jenkins is an open
source automation tool written in Java with
plugins built for Continuous Integration
purpose.Jenkins is used to build and test
your software projects continuously making
it easier for developers to integrate changes
to the project, and making it easier for users
to obtain a fresh build. It also allows you to
continuously deliver your software by
integrating with a large number of testing
and deployment technologies. Jenkins is the
DevOps tool that is most used for CI/CD
pipelines. Jenkins is a tool to build the
pipeline.

II. Building CI/CD Pipeline for Jenkins
 There are six steps to building a pipeline
with Jenkins[3]

1) Download Jenkins from the Jenkins
downloads page

‘https://www.jenkins.io/download/’.
2) Download the file ‘Generic Java
package(.war)’.
 3)Open the terminal window and enter
 cd <yourpath>. Use the command java
–jar ./Jenkins. war to run the WAR file.
 4) Open the web browser and open
localhost:8080.

 5)The Jenkins dashboard opens creates
new jobs there.

Create FreeStyle Projects in Jenkins[2]

 1)Set Global Tool Configuration
(Java,Maven)
 2)Select Free Style Project
 3)Check ‘use Custom workspace’ and pass
the project path
4)Build select ‘ Invoke top-level Maven
Tarhet” option
5)pass goal-clean test option to test the
maven code application
6)Apply and save and the build the maven
application using Jenkins

Create Pipeline Job in Jenkins

 Create a Pipeline Job

 Select and define what Jenkins job
that is to be created.

 Select Pipeline, give it a name and
click OK.

 Scroll down and find the pipeline
section.

 Retrieve the Jenkins file from SCM
(Source Code Management) Either
or directly write a pipeline script

Configure and Execute a Pipeline Job With a
Direct Script
 Choose Pipeline script as the Destination

and paste the Jenkins file content in the
Script from the GitHub.To keep the

changes save the file.Click on the Build
Now to process the build.

 To check the output, click on any stage
and click Log; a message will appear on
the screen.

https://www.jenkins.io/download/

Volume 11 Issue 10, Oct 2022 ISSN 2456 – 5083 Page : 3

 Configure and Execute a Pipeline With

SCM

 Copy the GitHub RepositoryURL by
clicking on Clone or download and then
click on Configure to modify the existing
job.

 Scroll to the Advanced Project Options
setting and select Pipeline script from the
SCM option.Paste the GitHub repository
URL.

 Type Jenkins file in the Script, and then
click on the Save button.

 Next, click on Build Now to execute the
job again.

 There will be an additional stage, in this
case, i.e., Declaration: Checkout SCM.

 Click on any stage and click on Log.

III.SonarQube

 SonarQube [4]checks code quality and
code security to enable the writing of cleaner
and safer code. It currently supports code
analysis in 27 programming languages using
different plugins available for the default
standard rule set. SonarQube is an automatic
code analysis tool to find bugs,
vulnerabilities and code smells in your
source code. It can be integrated with the
existing development workflow to enable
continuous code analysis across project
branches and pull requests. It can also be
integrated directly into IDEs (Eclipse, VS
Code, Visual Studio and Intellij) to find
code related issues while developing code.

The workflow which should be followed for
continuous static code analysis is

 Figure 2: Standard development
process with SonarQube
In the figure, the standard development
process is shown through the following
steps:
1. The developer should use SonarLint to
receive immediate feedback in the IDE
while coding, and then commit the code to
the source code repository (GitHub, GitLab,
Azure DevOps, Bit bucket).
 2. Continuous integration (CI) pipeline
should be triggered to produce builds, run
unit tests and to analyse the source code
with the help of the SonarQube scanner. CI
tools that can be easily integrated with
SonarQube analysis are Jenkins, GitLab,
Azure DevOps, Bitbucket, and others.
3. Once the pipeline executes the analysis,
the scanner publishes the results to the
SonarQube server. Then the latter provides
feedback to developers via the SonarQube
interface, email, in-IDE notifications (via
SonarLint), and decoration on pull requests.

Integrating SonarQube analysis with the
Jenkins pipeline
The following Jenkins plugins are required
to be installed:
1. Blue Ocean
2. GitHub
3. Maven Integration
4. Pipeline Maven Integration
5. Cobertura

https://www.opensourceforu.com/wp-content/uploads/2021/06/Figure-1-Standard-development-process-with-SonarQube.jpg

Volume 11 Issue 10, Oct 2022 ISSN 2456 – 5083 Page : 4

6. SonarQube Scanner for Jenkin’s.To do so,

go to Jenkins home page >Manage

Jenkins >Manage Plugins >Available

>Search for each plugin, and click Install
without clicking the Restart button at the
bottom of the page.

 Creating a token in SonarQube:
1. Go to the SonarQube dashboard. Click
on My Account.

2. Then go to Security tab >Token

section >Generate Tokens section, give
an appropriate name to the token, and
click on the Generate button to its right.

 Creating Webhook in SonarQube for
connection with Jenkins:
1. Go to SonarQube dashboard

>Administration >Configuration

>Webhooks and click the Create button
on the right side to create a webhook.
2. Provide name, URL as ‘JENKINS-
URL/sonarqube-webhook/’ and a secret
for connection with Jenkins.
3. Click on the Create button to save.

Connecting SonarQube with Jenkins:
1. Go to Manage Jenkins >Configure

System >SonarQube servers. Click on Add

SonarQube.
2. Enter the name and the URL of the
SonarQube server; for
example, https://test.sonarqube-url.com/.

3. Server authentication token: Add the
created token to Jenkins.
4. Select the Secret text from the drop down
of Kind.

5. Copy and paste the generated token from
SonarQube and provide an ID to a token.
Click the Add button to save the token in
Jenkins.
6. Select Secret from the drop down in
SonarQube authentication token using the
same ID.
7. Now click on the Advanced button to
provide advanced settings.
8. Add the SonarQube webhook token to
Jenkins just like we added the SonarQube
authentication token as secret text.
9. Select the webhook secret from the drop-
down in ‘Webhook secret’ for advanced
configuration of SonarQube Server in
Jenkins.
10. Save the configuration. It should look
like what is shown in Figure 3.

 Figure 3: SonarQube server configuration to manage Jenkins

https://www.opensourceforu.com/wp-content/uploads/2021/06/FIGURE-2-SONARQUBE-SERVER-CONFIGURATION-IN-MANAGE-JENKINS.jpg

Volume 11 Issue 10, Oct 2022 ISSN 2456 – 5083 Page : 5

IV. Unit test, Maven Java code and
publishing the code coverage report
inJenkins:
 SonarQube is not capable of generating the
units and code coverage results by itself .It
usually imports the reports executed by the
test framework used in the application.Junit
is the test framework.Jacoco [5] and
Cobertura are the plugins for the generation
of code coverage.
 Add the plugins in Maven pom.xml file.
Below is the pom.xml code for unit test and
code coverage of Java applications.

<build>
<plugins>
<plugin>
<groupId>org.jacoco</groupId>
<artifactId>jacoco-maven-plugin</artifactId>
<version>0.7.5.201505241946</version>
<executions>
<execution>
<goals>
<goal>prepare-agent</goal>
</goals>
</execution>
<execution>
<id>report</id>
<phase>prepare-package</phase>
<goals>
<goal>report</goal>
</goals>
</execution>
<execution>
<id>jacoco-check</id>
<goals>
<goal>check</goal>
</goals>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.codehaus.mojo</groupId>
<artifactId>cobertura-maven-plugin</artifactId>

<version>${cobertura.version}</version>
<configuration>
<formats>
<format>xml</format>
</formats>
</configuration>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>cobertura</goal>
</goals>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.sonarsource.scanner.maven</groupId>
<artifactId>sonar-maven-plugin</artifactId>
<version>3.6.0.1398</version>
</plugin>
</plugins>
</build>
Now, to create a Jenkins pipeline, create
a Jenkins file in the source code repository.
Add the script below to implement unit test
cases and code coverage:

pipeline {
agent {
node {
label ‘master’
}
}
stages {
stage(‘Continuous Integration’) {
steps {
withMaven(jdk: ‘JAVA_HOME’, maven:
 ‘MAVEN_HOME’) {
bat ‘mvn clean’
bat(script: ‘mvn test cobertura:cobertura install’,
label: ‘Unit Testing and Code Coverage’)
cobertura(autoUpdateHealth: true,
 autoUpdateStability: true, classCoverageTargets:
‘target/site/cobertura/’, coberturaReportFile:

Volume 11 Issue 10, Oct 2022 ISSN 2456 – 5083 Page : 6

 ‘target/site/cobertura/*.xml’, failUnstable: true, zoomCoverageChart: true)
}
}
}
}
}
The Jenkinsfile in the code above includes
the steps given below in the pipeline:
1. Execute unit test result and Cobertura
code coverage. Get the reports in a

SonarQube acceptable format (SonarQube
supports JUnit, Cobertura and Jacoco
reports).

2. Publish the unit test and coverage reports
to the Jenkins dashboard. Save and run the
pipeline in Jenkins again. On successful
execution of unit testing, it will publish the
results shown in Figure 4.

Figure 4: Unit test report on Jenkins dashboard

The code coverage report looks like what is shown in Figure 5.

https://www.opensourceforu.com/wp-content/uploads/2021/06/FIGURE-3-UNIT-TEST-REPORT-ON-JENKINS-DASHBOARD.jpg

Volume 11 Issue 10, Oct 2022 ISSN 2456 – 5083 Page : 7

Figure 5: Cobertura code coverage on Jenkins

V. Implementing SonarQube analysis from
Jenkins pipeline:

First, create the sonar-project.properties file
in the root of the repository. This file is used
to define the analysis parameter, which we

need to provide to the SonarQube scanner
during analysis[6].

The sample sonar-project.properties file for
our Maven application is in the code below:

sonar.projectKey=java-sonar-runner-sample
sonar.projectName=Simple Java project analyzed with the SonarQube Runner
sonar.projectVersion=1.0
Comma-separated paths to directories with sources (required)
sonar.sources=src/main
sonar.tests=src/test
sonar.java.binaries=target/classes
sonar.java.test.binaries=target/test-classes
#Unit Test And Code Coverage
sonar.junit.reportPaths=target/surefire-reports
sonar.java.cobertura.reportPath=target/site/cobertura/coverage.xml
sonar.coverage.jacoco.xmlReportPaths=target/site/jacoco/jacoco.xml
sonar.sourceEncoding=UTF-8
Now, referring to this property file we need
to perform SonarQube analysis from
Jenkins. So update the Jenkinsfile, and add
in it the code given below for the
‘Continuous Integration’ stage to perform
SonarQube analysis (the code below has the
entire Jenkinsfile for unit testing and
SonarQube analysis):

pipeline {
agent {
node {
label ‘master’
}
}
stages {
stage(‘Continuous Integration’) {
steps {

withMaven(jdk: ‘JAVA_HOME’, maven:
‘MAVEN_HOME’) {
bat ‘mvn clean’
bat(script: ‘mvn test cobertura:cobertura install’,
 label: ‘Unit Testing and Code Coverage’)
cobertura(autoUpdateHealth: true,
autoUpdateStability: true, classCoverageTargets:
‘target/site/cobertura/’, coberturaReportFile:
‘target/site/cobertura/*.xml’,
failUnstable: true, zoomCoverageChart: true)
}

https://www.opensourceforu.com/wp-content/uploads/2021/06/FIGURE-4-COBERTURA-CODE-COVERAGE-ON-JENKINS.jpg

Volume 11 Issue 10, Oct 2022 ISSN 2456 – 5083 Page : 8

withSonarQubeEnv(installationName: ‘SonarQube-Server’, credentialsId: ‘SonarToken’) {
bat(script: ‘D://Softwares//sonar-scanner-cli//sonar-scanner-4.3.0.2102-windows//bin//sonar-scanner -Dproject.setti ’ ‘ ’
}
waitForQualityGate(abortPipeline: true, credentialsId: ‘SonarToken’, webhookSecretId:
‘SonarWebHook’)
}
}
}
}

The code has referenced the SonarQube
server (SonarQube-Server), SonarToken and
SonarWebhook, which we configured in the
‘Manage Jenkins with Jenkins and
SonarQube’ setup.

The two steps performing SonarQube
analysis in Jenkinsfile above are:

1. withSonarQubeEnv: SonarQube analysis
using sonar-scanner in batch script and
the sonar-project.properties files we
created.
2. waitForQualityGate: Checking for the
‘quality gate’ status after the SonarQube
analysis is executed.

Save the pipeline and run it again. On its
successful execution, we will be able to find
‘quality gate’ results in the Jenkins pipeline
console, as shown in Figure 6.

Figure 6: SonarQube ‘quality gate’ check in Jenkins pipeline

Figure 7: SonarQube project dashboard after analysis from Jenkins

https://www.opensourceforu.com/wp-content/uploads/2021/06/FIGURE-5-SONARQUBE-QUALITY-GATE-CHECK-IN-JENKINS-PIPELINE.jpg
https://www.opensourceforu.com/wp-content/uploads/2021/06/FIGURE-6-SONARQUBE-PROJECT-DASHBOARD-AFTER-ANALYSIS-FROM-JENKINS.jpg

Volume 11 Issue 10, Oct 2022 ISSN 2456 – 5083 Page : 9

This is the successfully analysation of
Maven Java application using SonarQube
analysis in Jenkins CI pipeline.

VI: Quality gates

 In SonarQube a quality gate [7]is a set of

conditions that must undergo while

evaluating a project.

Set the SonarQube Scanner plugin for

Jenkins. It includes two features that we’re

going to make use of today:

1. SonarQube server configuration –
the plugin lets you set your
SonarQube server location and

credentials. This information is then
used in a SonarQube analysis
pipeline stage to send code analysis
reports to that SonarQube server.

2. SonarQube Quality Gate webhook –
when a code analysis report is
submitted to SonarQube,
unfortunately it doesn’t respond
synchronously with the result of
whether the report passed the quality
gate or not. To do this, a webhook
call must be configured in
SonarQube to call back into Jenkins
to allow our pipeline to continue (or
fail). The SonarQube Scanner
Jenkins plugin makes this webhook
available

Here’s a full breakdown of the interaction
between Jenkins and SonarQube:

1. a Jenkins pipeline is started
2. the SonarQube scanner is run against

a code project, and the analysis
report is sent to SonarQube server

3. SonarQube finishes analysis and
checking the project meets the
configured Quality Gate

4. SonarQube sends a pass or failure
result back to the Jenkins webhook
exposed by the plugin

5. the Jenkins pipeline will continue if
the analysis result is a pass or
optionally otherwise fail.

Volume 11 Issue 10, Oct 2022 ISSN 2456 – 5083 Page : 10

Adding a quality gate

SonarQube comes with its own Sonar

way quality gate enabled by default. If you
click on Quality Gates .Create a new Quality
gate and give any quality gate name as
A.Radhika. Click Save then on the next

screen click Add Condition. Select On
Overall Code. Search for the
metric Maintainability Rating and choose
worse than A. This means that if existing
code is not maintainable then the quality
gate will fail. Click Add Condition to save
the condition.

Finally click Set as Default at the top of the page to make sure that this quality gate will apply to
any new code analysis.

Running Unit test cases

Install Junit plugin to process the result of
JUnit tests.

To install the plugin:

1. Click Manage Jenkins, then Manage
Plugins, then Available.

2. Enter junit in the search box.
3. Select the JUnit option, and click Install

without restart:
4. To create a new pipeline project,

click New Item, enter RandomQuotes-
DotNET for the item name, select
the Pipeline option, and click
the OK button:

5.
6. Paste the following pipeline script into

the Pipeline section, and click
the Save button:

7. pipeline {
8. // This pipeline requires the following

plugins:
9. // * Git: https://plugins.jenkins.io/git/
10. // * Workflow Aggregator:

https://plugins.jenkins.io/workflow-
aggregator/

11. // * MSTest:
https://plugins.jenkins.io/mstest/

12. agent 'any'
13. stages {

https://octopus.com/blog/jenkins-running-unit-tests

Volume 11 Issue 10, Oct 2022 ISSN 2456 – 5083 Page : 11

14. stage('Environment') {
15. steps {
16. echo "PATH = ${PATH}"
17. }
18. }
19. stage('Checkout') {
20. steps {
21.
22. script {

23. checkout([$class: 'GitSCM',
branches: [[name: '*/master']],
userRemoteConfigs: [[url:
'https://github.com/Random

24. amples/RandomQuotes.git']]])
25. }
26. }
27. }
28. stage('Dependencies') {
29. steps {

30. sh(script: 'dotnet restore')
31. }
32. }
33. stage('Build') {
34. steps {
35. sh(script: 'dotnet build --

configuration Release', returnStdout:
true)

36. }
37. }
38. stage('Test') {
39. steps {
40. sh(script: 'dotnet test -l:trx || true')
41. }
42. }
43. }
44. post {
45. always {

46. mstest(testResultsFile: '**/*.trx',
failOnError: false, keepLongStdio: true)

47. }
48. }
49. }
50. The Test stage calls dotnet test to run

the unit tests, passing the argument -
l:trx to write the test results in a Visual
Studio Test Results (TRX) file.

51. This command will return a non-zero
exit code if any tests failed. To ensure
the pipeline continues to be processed in
the event of a failed test, you
return true if dotnet test indicates a
failure:

52. sh(script: 'dotnet test -l:trx || true')

CONCLUSION

Implementing CI/CD pipeline using

jenkins improves the application

development process Significantly. To

improve the productivity of the system as

the release cycle was found to be shorter.

The Goals of the CI, which is to provide

higher quality code by running Unit test

cases against the code and fixing bugs,

issues at the pre-release itself which enables

ability to release the product within earlier

stages of time which in turns compete in the

market place. In the Continuous Integration

process, we were able to identify the failure

pattern and finding the quality of the product

by implementing quality gates. Since the

release are small they are at low risk which

in turn decrease the cognitive load. If any

bug is found in the post deployment , the

fixes can be provided to the customer within

in lesser time. Continuous Delivery can help

overcome this barrier to quick deployments.

Error rates and infrastructure

costs can be quickly and easily measured

once the CICD is implemented. in

Continuous Integration process gives us the

irregular trends found while quality testing

which is useful when exceptions and errors

Volume 11 Issue 10, Oct 2022 ISSN 2456 – 5083 Page : 12

in an application is critical, using these, the

errors can be easily fixed.

REFERENCES

[1] Mphasis Stelligent, Continuous Security

in Continuous Delivery Pipeline. Available

at:https://stelligent.com/2016/04/05/continu

ous-security/ (2016).

[2] Continuous Integration, Continuous

Testing, and Continuous Delivery Mitesh

Soni IGATE Gandhinagar,

Indiamitesh.soni@igate.com

[3]https://towardsdatascience.com/create-

your-first-ci-cd-pipeline-with-jenkins-and-

github-6aefe21c9240

[4]

https://www.jenkins.io/doc/pipeline/steps/so

nar/

[5]https://www.lambdatest.com/blog/reporti

ng-code-coverage-using-maven-and-jacoco-

plugin/

[6]https://www.opensourceforu.com/2021/0

8/static-code-analysis-using-sonarqube-and-

jenkins/

[7]

https://medium.com/automationmaster/sonar

qube-c7df46614012

	Configure and Execute a Pipeline Job With a Direct Script
	Configure and Execute a Pipeline With SCM
	VI: Quality gates
	In SonarQube a quality gate [7]is a set of conditions that must undergo while evaluating a project. Set the SonarQube Scanner plugin for Jenkins. It includes two features that we’re going to make use of today:
	Adding a quality gate

