
 
 

Vol 09 Issue01, Jan 2020                          ISSN 2456 – 5083                                        www.ijiemr.org 

  

COPY RIGHT  

 

2020 IJIEMR.Personal use of this material is permitted. Permission from IJIEMR must 

be obtained for all other uses, in any current or future media, including 

reprinting/republishing this material for advertising or promotional purposes, creating new 

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted 

component of this work in other works. No Reprint should be done to this paper, all copy 

right is authenticated to Paper Authors   

IJIEMR Transactions, online available on 6th 
 
Feb 2020. Link 

:http://www.ijiemr.org/downloads.php?vol=Volume-09&issue=ISSUE-02 

Title: INTIGRATION OF ANEKA FOR APPLICATION OF MULTITHREADING0 

 

Volume 09, Issue 01, Pages: 6-15. 

Paper Authors  

V.SHOBHA RANI1, DEEPTHI KOTHAPETA 

Chaitanya Deemed to be University  

 

 

 

 

 

                                         

                                                                                    USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER  

To Secure Your Paper As Per UGC Guidelines We Are Providing A Electronic 

Bar Code 



Vol 09 Issue02, Feb 2020                                       ISSN 2456 – 5083 Page 6 

 

 

INTIGRATION OF ANEKA FOR APPLICATION OF 

MULTITHREADING 

*V.SHOBHA RANI
1
, **DEEPTHI KOTHAPETA

2
 

* Assistant Professor, Dept. Of Computer Science, Chaitanya Deemed to be University  

** Assistant Professor, Dept. Of Computer Science, Chaitanya Deemed to be University, 

shobhareddy19@gmail.com, deepthivaishu18@gmail.com 

 

ABSTRACT: 

For higher processing and computing power, chip multiprocessors (CMPs) have become the new 

mainstream architecture. This shift to CMPs has created many challenges for fully utilizing the 

power of multiple execution cores. One of these challenges is managing contention for shared 

resources. Most of the recent research address contention for shared resources by single-threaded 

applications. However, as CMPs scale up to many cores, the trend of application design has 

shifted towards multi-threaded programming and new parallel models to fully utilize the 

underlying hardware. There are differences between how single- and multi-threaded applications 

contend for shared resources. Therefore, to develop approaches to reduce shared resource 

contention for emerging multi-threaded applications, it is crucial to understand how their 

performances are affected by contention for a particular shared resource. In this research, we 

propose and evaluate a general methodology for characterizing multi-threaded applications by 

determining the effect of shared-resource contention on performance. Multithreading is 

becoming increasingly important, both as a program structuring mechanism and to support 

efficient parallel computations. This paper surveys research in analysis for multithreaded 

programs, focusing on ways to improve the efficiency of analyzing interactions between threads 

and to detect data races. 

 

 

1. INTRODUCTION  

Aneka allows different kind of applications 

to be executed on the same Grid/Cloud 

infrastructure. In order to support such 

flexibility it provides different abstractions 

through which it is possible to implement 

distributed applications. These abstractions 

map to different execution models. 

Currently Aneka supports three different 

execution models:  

  

  

 Task Execution Model  

 Thread Execution Model  

 MapReduce Execution Model  

 Parameter Sweep Model  

Each execution model is composed by three 

different elements: the WorkUnit, the 

Scheduler, the Executor, and the Manager. 

The WorkUnit defines the granularity of the 

model; in other words, it defines the smallest 

computational unit that is directly handled 

by the Aneka infrastructure. Within Aneka, 

mailto:shobhareddy19@gmail.com
mailto:deepthivaishu18@gmail.com


Vol 09 Issue02, Feb 2020                                       ISSN 2456 – 5083 Page 7 

 

a collection of related work units define an 

application. The Scheduler is responsible for 

organizing the execution of work units 

composing the applications, dispatching 

them to different nodes, getting back the 

results, and providing them to the end user. 

The Executor is responsible for actually 

executing one or more work units, while the 

Manager is the client component which 

interacts with the Aneka system to start an 

application and collect the results. A view of 

the system is given in the figure below.

  

 
 

 Figure 1. System Components View.  

 

Hence, for the Thread Model there will be a 

specific WorkUnit called AnekaThread, a 

Thread Scheduler, a Thread Executor, and a 

Thread Manager. In order to develop an 

application for Aneka the user does not have 

to know all these components; Aneka 

handles a lot of the work by itself without 

the user's contribution. Only few things the 

users are required to know:  

 how to define AnekaThread 

instances specific to the application that is 

being defined;  

 

 how to create a AnekaApplication 

and starts the execution of threads;  

 

 how to control the AnekaApplication 

and collect the results.  

 

Aneka is a .NET-based application 

development Platform-as–a-Service (PaaS), 

which offers a runtime environment and a 

set of APIs that enable developers to build 

customized applications by using multiple 

programming models such as Task 

Programming, Thread Programming and 

MapReduce Programming, which can 

leverage the compute resources on either 

public or private Clouds [1]. Moreover, 

Aneka provides a number of services that 

allow users to control, auto-scale, reserve, 

monitor and bill users for the resources used 

by their applications. One of key 



Vol 09 Issue02, Feb 2020                                       ISSN 2456 – 5083 Page 8 

 

characteristics of Aneka PaaS is to support 

provisioning of resources on public Clouds 

such as Windows Azure, Amazon EC2, and 

GoGrid, while also harnessing private Cloud 

resources ranging from desktops and 

clusters, to virtual datacentres when needed 

to boost the performance of applications, as 

shown in Figure 2. Aneka has successfully 

been used in several industry segments and 

application scenarios to meet their rapidly 

growing computing demands.

 

 
Figure 2: Aneka Cloud Application Development Platform. 

Multithreading is a widely used structuring 

technique for modern software. 

Programmers use multiple threads of control 

for a variety of reasons: to build responsive 

servers that interact with multiple clients, to 

run computations in parallel on a 

multiprocessor for performance, and as a 

structuring mechanism for implementing 

rich user interfaces. In general, threads are 

useful whenever the software needs to 

manage a set of tasks with varying 

interaction latencies, exploit multiple 

physical resources, or execute largely 

independent tasks in response to multiple 

external events. Developing parallel 

applications requires an understanding of the 

problem and its logical structure. 

Understanding the dependencies and the 



Vol 09 Issue02, Feb 2020                                       ISSN 2456 – 5083 Page 9 

 

correlation of tasks within an application is 

fundamental for designing the right program 

structure and to introduce parallelism where 

appropriate. Decomposition is a useful 

technique that helps to understand whether a 

problem is divided into components (or 

tasks) that can be executed concurrently. 

The two main decomposition/partitioning 

techniques used area: domain and functional 

decompositions. 

2. BACKGROUND  

In this section, we present the architecture of 

Aneka PaaS, and then depict the overall 

view on Windows Azure Platform and 

Windows Azure Service Architecture. We 

also discuss the advantages brought by the 

integration, along with the limitations and 

challenges faced.  

2.1 Overview of Aneka Cloud Application 

Development Platform  

Figure 2 shows the basic architecture of 

Aneka. The system includes four key 

components, including Aneka Master, 

Aneka Worker, Aneka Management 

Console, and Aneka Client Libraries [1].  

The Aneka Master and Aneka Worker are 

both Aneka Containers which represents the 

basic deployment unit of Aneka based 

Clouds. Aneka Containers host different 

kinds of services depending on their role. 

For instance, in addition to mandatory 

services, the Master runs the Scheduling, 

Accounting, Reporting, Reservation, 

Provisioning, and Storage services, while 

the Workers run execution services. For 

scalability reasons, some of these services 

can be hosted on separate Containers with 

different roles. For example, it is ideal to 

deploy a Storage Container for hosting the 

Storage service, which is responsible for 

managing the storage and transfer of files 

within the Aneka Cloud. The Master 

Container is responsible for managing the 

entire Aneka Cloud, coordinating the 

execution of applications by dispatching the 

collection of work units to the compute 

nodes, whilst the Worker Container is in 

charge of executing the work units, 

monitoring the execution, and collecting and 

forwarding the results.

 

 
Figure 3: Basic Architecture of Aneka.  



Vol 09 Issue02, Feb 2020                                       ISSN 2456 – 5083 Page 10 

 

The Management Studio and client libraries 

help in managing the Aneka Cloud and 

developing applications that utilize 

resources on Aneka Cloud. The 

Management Studio is an administrative 

console that is used to configure Aneka 

Clouds; install, start or stop Containers; 

setup user accounts and permissions for 

accessing Cloud resources; and access 

monitoring and billing information. The 

Aneka client libraries, are Application 

Programming Interfaces (APIs) used to 

develop applications which can be executed 

on the Aneka Cloud. Three different kinds 

of Cloud programming models are available 

for the Aneka PaaS to cover different 

application scenarios:: Task Programming, 

Thread Programming and MapReduce 

Programming These models represent 

common abstractions in distributed and 

parallel computing and provide developers 

with familiar abstractions to design and 

implement applications. 

Map-Reduce on the virtualized 

environment:  

As a leading framework for big data 

analytics that is  pioneered by Google and 

popularized by the open-source        Hadoop, 

MapReduce is leveraged by a large number 

of  enterprises to parallelize their data 

processing on distributed computing 

systems. It decomposes a job into a number 

of parallel map tasks, followed by reduce 

tasks that                   merge all intermediate 

results generated by map tasks to  produce 

the final results. The MapReduce test app 

was                 written in Python in this 

study. MapReduce jobs are usually executed 

on clusters of commodity PCs, which 

require a                 large investment in 

hardware and management. GIL in Python:  

Parallel execution is forbidden in python 

because there is   Global Interpreter Lock. 

The GIL ensures that only one  thread runs 

in the interpreter at once. Simplifies many 

low-level details (memory management, 

callouts to C             extensions, etc.). It's not 

a simple mutex lock. It's a binary semaphore 

constructed from a pthreads mutex and a               

condition variable. The GIL is an instance of 

this lock.  

Multithreading/Multiprocessing in Java:  

Concurrency refers to things happening in 

some unspecified order. Multitasking- 

executing multiple         programs by 

interleaving instructions via time slicing - is  

good way to think about this sense of 

concurrency. Parallelism (or "true" 

parallelism) refers to things happening at 

literally the same time. This requires  

hardware support (coprocessors, multi-core 

processors, networked machines, etc.). All 

parallelism is concurrent, but not all 

concurrency is parallel. We ran multiple 

threads in Java but couldn’t do so in  python 

due to GIL lock. 

Map-Reduce on the virtualized 

environment: 

As a leading framework for big data 

analytics that is pioneered by Google and 

popularized by the open-source Hadoop, 

MapReduce is leveraged by a large number 

of enterprises to parallelize their data 

processing on distributed computing 

systems. It decomposes a job into a number 

of parallel map tasks, followed by reduce 

tasks that merge all intermediate results 

generated by map tasks to produce the final 



Vol 09 Issue02, Feb 2020                                       ISSN 2456 – 5083 Page 11 

 

results. The MapReduce test app was written 

in Python in this study. MapReduce jobs are 

usually executed on clusters of commodity 

PCs, which require a large investment in 

hardware and management. 

GIL in Python: 

Parallel execution is forbidden in python 

because there is Global Interpreter Lock. 

The GIL ensures that only one thread runs in 

the interpreter at once. Simplifies many low-

level details (memory management, callouts 

to C extensions, etc.). It's not a simple mutex 

lock. It's a binary semaphore constructed 

from a pthreads mutex and a condition 

variable. The GIL is an instance of this lock. 

 

3. ANEKA THREAD MODEL 

SAMPLES  

 

The examples directory in the Aneka 

distribution contains some ready to run 

applications that show how is it possible to 

use the services provided by Aneka to build 

non-trivial applications. The examples 

concerning the Thread Execution Model are 

the following:  

 Mandelbrot  

 ThreadDemo (within the Tutorials 

folder)  

 

The ThreadDemo has been fully explored in 

this tutorial. For what concerns the 

Mandelbrot example we will simply give 

some hints on how to explore the Visual 

Studio Projects related to the sample and see 

how the Thread Model has been used to 

distributed the application.  

3.1 Mandelbrot  

3.1.1 Mandelbrot Set  

 

The Mandelbrot set is a set of complex 

numbers for which the following iteration: 

 

does not diverge to infinity. This means that 

there exist a number N that can be 

considered the upper bound of the previous 

iteration. What makes interesting the 

Mandelbrot set is the fact that when applied 

to complex numbers it generates a bi-

dimensional figure whose border does not 

simplify if magnified. In other word 

Mandelbrot set creates very interesting and 

fascinating fractals. These fractals can be 

easily generated by a computer program by 

using the following algorithm:

 



Vol 09 Issue02, Feb 2020                                       ISSN 2456 – 5083 Page 12 

 

 

The Escape Time algorithm is based on the 

assumption that no complex number with a 

modulus bigger than 2 can be part of the 

Mandelbrot set. This can be used as a quick 

condition to check whether the sequence of 

numbers generated for each c diverges or 

not. For those complex numbers that belong 

to the Mandelbrot set this condition will 

always hold and the iterations will continue 

indefinitely. The algorithm then imposes a 

maximum number of iterations after which 

the given number can be reasonably 

considered part of the Mandelbrot set. The 

algorithm presented does not guarantee a 

perfect drawing of the Mandelbrot set but 

the bigger it is the number of iterations the 

more precise is the resulting Mandelbrot set.  

4. APPLICATION THREADING 

This chapter covers general topics in 

application threading, particularly with 

respect to parallel performance. The topics 

occasionally refer to API-specific issues but 

much of the advice applies to any parallel 

programming method. The chapter begins 

with a discussion of data vs. functional 

decomposition. The opening topic gives 

advice on choosing the most appropriate 

threading method for either parallel model. 

This is followed by topics on granularity and 

load balance. These are critical issues in 

parallel programming because they directly 

affect the efficiency and scalability of a 

multithreaded application. 

Tailoring thread behavior to a particular 

runtime environment is often overlooked in 

multithreaded programs. On a single-user 

system, for example, allowing idle threads to 

spin may be more efficient than putting 

them to sleep. On shared systems, however, 

forcing idle threads to yield the CPU may be 

more efficient. The issues involved in 

threading for high turnaround vs. high 

throughput are discussed. Many algorithms 

contain optimizations that benefit serial 

performance but inadvertently introduce 

dependencies that inhibit parallelism. It is 

often possible to remove such dependencies 

through simple transformations. Techniques 

for exposing parallelism by avoiding or 

removing artificial dependencies are 

discussed. 

The next two topics describe how to choose 

an appropriate number of threads and how to 



Vol 09 Issue02, Feb 2020                                       ISSN 2456 – 5083 Page 13 

 

minimize overhead due to thread creation. 

Creating too many threads hurt performance 

for many reasons, including increased 

system overhead, decreased granularity, 

increased lock contention, etc. Therefore, it 

is a good idea to control the number of 

threads through runtime heuristics and 

thread pools. Heuristics allow the 

programmer to create threads based on 

workload requirements that may not be 

known until runtime. Thread pools to limit 

the overhead of thread creation is described. 

The advice in this topic is primarily for 

applications threaded with Pthreads or the 

Win32 thread API. Thread pools are already 

used in the Intel OpenMP implementation. 

The chapter closes with techniques for 

handling order-dependent output and loop 

optimizations designed to boost OpenMP 

performance.   

5. METHODOLOGY 

 

Figure 4. Producer and consumer with a 

blocking queue. 

The model shown in the figure above uses a 

blocking queue. The producer reads a large 

file which is the dataset and divides the file 

into chunks. Each chunk are inserted to 

chunk queue. The consumer pool consisting 

of a number of worker threads consumes the 

chunk of data and process them. When the 

worker threads in the consumer pool are 

done with processing the main thread 

aggregates the result and writes to an output 

file. 

 

Figure 5. Mapreduce programming model. 

In MapReduce Programming Model 

implementation, we read the data file and 

split the data in each line using mapper 

function. The output of mapper is passed to 

partitioner which aggregates the values 

associated with the key. The Reducer 

function then uses that output from the 

partitioner to merge and aggregate the 

overall result. 

6.  CONCLUSION 

In this tutorial we have introduced the 

Thread Model for developing distributed 

applications based on remotely executable 

threads with Aneka. The Thread Model 

allows developers to quickly virtualize 

multi-threaded applications with Aneka. It 



Vol 09 Issue02, Feb 2020                                       ISSN 2456 – 5083 Page 14 

 

introduces the concept of AnekaThread that 

represents a thread that is executed on a 

remote computing node in the Aneka 

network. The AnekaThread class exposes a 

subset of the operations offered by the 

System.Threading.Thread class, this makes 

the transition from a local multi-threaded 

application to a distributed multi-threaded 

application straightforward.  We have 

implemented two different programming 

models, multithreading and map reduce. 

Multithreading outperforms the MapReduce 

model in our case. MapReduce is basically a 

programming model with an associated 

implementation for processing and 

generating big data sets with a parallel , 

distributed algorithm on a cluster . 

REFERENCES  

[1] Christian Vecchiola, Xingchen Chu, and 

Rajkumar Buyya, Aneka: A Software 

Platform for .NET-based Cloud Computing, 

High Speed and Large Scale Scientific 

Computing, 267-295pp, W. Gentzsch, L. 

Grandinetti, G. Joubert (Eds.), ISBN: 978 -

1-60750-073-5, IOS Press, Amsterdam, 

Netherlands, 2009.  

[2] Rajkumar Buyya, Chee Shin Yeo, 

Srikumar Venugopal, James Broberg, and 

Ivona Brandic, Cloud Computing and 

Emerging IT Platforms: Vision, Hype, and 

Reality for Delivering Computing as the 5th 

Utility, Future Generation Computer 

Systems, 25(6):599-616, Elsevier Science, 

Amsterdam, The Netherlands, June 2009.  

[3] David Chappell, Introducing the 

Windows Azure Platform. David Chappell & 

Associates, October 2010.  

[4] David Chappell, Introducing Windows 

Azure. David Chappell & Associates, 

October 2010.  

[5] Henry Li, Introducing Windows Azure, 

ISBN: 978-1-4302-2469-3, Apress, 2009.  

[6] Sriram Krishnan, Programming 

Windows Azure: Programming the 

Microsoft Cloud, ISBN: 978-0-596-80197-7, 

O’REILLY, Sebastopol, CA, USA, May 

2010.  

[7] Dariusz Rafał Augustyn and Łukasz 

Warchał, Cloud Service Solving N-Body 

Problem Based on Windows Azure Platform, 

Proceedings of the 17th Conference on 

Computer Networks, Communications in 

Computer and Information ScienceUstron, 

Poland, June 15-19, 2010.  

[8] Wei Lu, Jared Jackson, and Roger Barga, 

AzureBlast: A Case Study of Developing 

Science Applications on the Cloud, 

Proceedings of the 19th ACM International 

Symposium on High Performance 

Distributed Computing, Chicago, Illinois, 

USA, June, 2010. 

AUTHOR 1: 

 

NAME: V.SHOBHA RANI 

QUALIFICATIONS: M.Sc(CS).,M.Tech. 

DESIGNATION: Assistant Professor 

DEPARTMENT: Computer Science 

Chaitanya Deemed to be University 



Vol 09 Issue02, Feb 2020                                       ISSN 2456 – 5083 Page 15 

 

AUTHOR 2: 

 

NAME: DEEPTHI KOTHAPETA 

QUALIFICATIONS: M.Sc(CS).,M.Tech 

DESIGNATION: Assistant Professor 

DEPARTMENT: Computer Science 

Chaitanya Deemed to be University 


