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ABSTRACT 

Clustering nodes in a graph is a useful general technique in data mining of large network data 

sets. In this context, Newman and Girvan [9] recently proposed an objective function for graph 

clustering called the Q function which allows automatic selection of the number of clusters. In 

this paper we propose an efficient clustering algorithm for large-scale graph data using spectral 

methods. The key idea is to repeatedly generate a small number of “super nodes” connected to 

the regular nodes, in order to compress the original graph into a sparse bipartite graph. By 

clustering the bipartite graph using spectral methods, we are able to greatly improve efficiency 

without losing considerable clustering power. Extensive experiments show the effectiveness and 

efficiency of our approach. The proposed method first generates two-layer representative points 

successively by BKHK (balanced k-means-based hierarchical k-means). Then it constructs the 

hierarchical bipartite graph and performs spectral analysis on the graph. Specifically, we 

construct the similarity matrix using the parameter-free neighbor assignment method, which 

avoids the need to tune the extra parameters. Furthermore, we perform the co clustering on the 

final similarity matrix. Co clustering mechanism takes advantage of the co-occurring cluster 

structure among the representative points and the original data to strengthen the clustering 

performance. As a result, the computational complexity can be significantly reduced and the 

clustering accuracy can be improved. Extensive experiments on several large-scale data sets 

show the effectiveness, efficiency, and stability of the proposed method. 

 

1. INTRODUCTION 

Clustering is one of the fundamental topics 

in unsupervised learning. It has been widely 

and successfully applied in data mining, 

pattern recognition, and many other fields. 

Spectral clustering is one of the most 

popular methods used in unsupervised 

clustering tasks [1–4]. Especially, it  

 

 

performs well in nonconvex pattern and 

linear nonseparable clusters and converges 

to the global optimal solution [5]. However, 

spectral clustering is limited in its 

applicability to large-scale problems. Its 

bottleneck is the high computational 

complexity [6–8]. Many approaches have 
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been proposed to speed up spectral 

clustering. Unfortunately, these methods 

usually sacrifice a lot of information of the 

raw data, resulting in performance 

degradation. -e traditional spectral clustering 

needs two independent steps: constructing 

similarity graph and performing spectral 

analysis. Both the steps are computational 

expensive for large-scale data, and their 

computational complexity is o(n2) and 

o(n3), respectively. -e 𝜀  conventional 

spectral clustering has three methods to 

construct the similarity graph which is 

constructed by pairwise similarities or 

pairwise distances. -e goal is to model the 

local neighborhood relationships between 

the data points. 𝜀 first method is to construct 

the 𝜀- neighborhood graph in which ε is the 

pairwise distance. All points whose pairwise 

distances are smaller than ε can be 

connected. In this method, a large amount of 

information between sample points is 

discarded because of this single and rough 

criterion.   

      Graph clustering aims to partition the 

nodes into densely connected subgraphs 

such that nodes within the same cluster have 

more connections than those in different 

clusters. Discovering clusters in graph not 

only helps to visualize and define 

hierarchies [Herman et al., 2000], but is also 

meaningful for many real world problems, 

such as community detection [Fortunato, 

2010; Smyth and White, 2005] and outlier 

detection [Gupta et al., 2012]. In addition, 

clustering results can be used as building 

blocks for many other algorithms to reduce 

graph and model complexity [Song et al., 

2008; Dalvi et al., 2008]. Using and 

interpreting such methods without some 

form of summarization becomes difficult as 

graphs grow in size. However, actually 

discovering clusters becomes quite 

challenging as graphs balloon in size, a 

common phenomenon in today’s era of “big 

data.” Thus, there is a pressing need to 

develop efficient and effective clustering 

algorithms that can be adapted for large-

scale graphs. In this paper, we propose such 

an algorithm using spectral methods, which 

have been widely used for effective graph 

clustering [Shi and Malik, 1997]. Many 

previous studies have examined accelerating 

spectral clustering. Most of these [Shinnou 

and Sasaki, 2008; Yan et al., 2009; Sakai 

and Imiya, 2009; Chen and Cai, 2011] have 

been devoted to data 

represented in a feature space instead of a 

graph. Other approaches are designed to 

achieve efficiency by finding numerical 

approximations to eigenfunction problems 

[Fowlkes et al., 2004; Chen et al., 2006; Liu 

et al., 2007] or adapting standard 

eigensolvers to distributed architecture 

[Chen et al., 2011; Miao et al., 2008]. In 

contrast, we aim to mitigate the 

computational bottleneck by reducing the 

size of the graph, while still providing high-

quality clustering results, as compared to 

standard spectral methods. Specifically, we 

generate meaningful supernodes which are 

connected to the original graph. 

Correspondingly, we obtain a bipartite 

structure which preserves the links between 

original graph nodes and the new 

supernodes. In this representation, we expect 

these supernodes to behave as cluster 

indicators that may guide the clustering of 
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nodes in the original graph. Furthermore, the 

super node clustering and regular node 

clustering should mutually help induce each 

other. In this way, the clustering of the 

original graph can be solved by clustering 

the bipartite graph. By controlling the 

number of super nodes and enforcing the 

sparsity of the generated bipartite graph, we 

are able to efficiently achieve this goal. 

2. RELATED WORK 

The general spectral clustering method [Ng 

et al., 2001; Shi and Malik, 1997] was first 

shown to work on data represented in 

feature space. As we are mainly interested in 

graph data, we need one more step to 

construct an adjacency matrix which takes 

O(n2p) time where n and p represent 

number of data points and features 

respectively. Calculating the eigen 

decomposition of the corresponding 

Laplacian matrix is the real computational 

bottleneck, requiring O(n3) time in the worst 

case. Therefore, applying spectral clustering 

for largescale data becomes impossible for 

many applications. In recent years, many 

works have been devoted to accelerating the 

spectral clustering algorithm. 

Among them, [Fowlkes et al., 2004] adopts 

the classical Nystr¨om method, which was 

originally proposed to find numerical 

approximations to eigenfunction problems. 

It chooses samples randomly to obtain 

small-size eigenvectors and then 

extrapolates these solutions. [Shinnou and 

Sasaki, 2008] reduces the original data set to 

a relatively small size before running 

spectral clustering. Similar to this idea, in 

[Yan et al., 2009], all data points are 

collapsed into centroids through k-means or 

random projection trees so that eigen-

decomposition only needs to be applied on 

the centroids. [Sakai and Imiya, 2009] uses 

random projection in order to reduce data 

dimensionality. Random sampling 

has also been applied to reduce the size of 

data points within the eigen-decomposition 

step. [Chen et al., 2006; Liu et al., 2007] 

introduce early stop strategies to speed up 

eigen-decomposition based on the 

observation that wellseparated data points 

will converge to the final embedding more 

quickly. In [Chen and Cai, 2011], landmark 

points are first selected among all the data 

points to serve as a codebook. After 

encoding all data points based on this 

codebook, acceleration can be achieved 

using the new representation. The authors in 

[Khoa and Chawla, 2012] work on 

resistance distance embedding, which 

employs a similar idea to spectral clustering 

and exhibits comparable clustering 

capability. 

To tackle the problem, a novel and efficient 

representative point-based spectral 

clustering method is proposed to deal with 

large-scale data sets. -ree main contributions 

of this paper are listed as follows: 

(1) The two-layer bipartite graph is 

constructed using the generated 

representation points by BKHK. BKHK has 

low computational complexity and high 

performance compared with k-means. (2) 

We construct the similarity matrix between 

adjacent layers using the parameter-free 

neighbor assignment method, which avoids 

extra parameters. Furthermore, the final 

similarity matrix is easily obtained by 
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multiplying the similarity matrix between 

adjacent layers. 

(3) We perform the coclustering on the final 

similarity matrix. The coclustering 

mechanism takes advantage of the 

cooccurring cluster structure among the 

representative points and the original data to 

strengthen the clustering performance. 

(4) Extensive experiments on several large-

scale data sets demonstrate the effectiveness, 

efficiency, and stability of the proposed 

method. 

3. LARGE-SCALE SPECTRAL 

CLUSTERING ON GRAPHS 

Now we introduce our Efficient Spectral 

Clustering on Graphs (ESCG) for large-

scale graph data. The basic idea of our 

approach is designing an efficient way to 

coarsen the graph by generating supernodes 

linked to the nodes in the original graph. A 

bipartite graph between nodes in G and 

generated supernodes is then constructed to 

replace G, so that the original high-

dimensional EVD can be avoided. 

3.1 Generation of Supernodes 

Given the initial graph G of n nodes, we 

want to generate a set of d supernodes to 

coarsen the graph under the condition that d ≪ n. Inspired by the intuition behind 

simultaneous or co-clustering [Dhillon, 

2001], which says that clustering results of 

two related object types can be mutually 

enhanced, we expect that a partition of 

supernodes can induce a partition of the 

observed nodes, while a partition of the 

observed nodes can imply a partition of 

supernodes. Therefore, we first develop a 

simple and efficient algorithm to establish 

an initial clustering on graph G. Then we 

generate supernodes based on this initial 

clustering. 

Our proposed approach works as follows: 

given the graph G, we randomly pick d 

seeds in the graph and compute shortest 

paths from these seeds to the rest of the 

nodes. We then partition all the nodes into d 

disjoint subsets represented by the seeds: 

each node chooses the representative seed 

with the shortest distance. 

To solve the shortest path problem, we first 

transform the edge weight demonstrating the 

similarity into distance: 

 
where ε is a very small number that 
functions as the additional decay along the 

path. We incorporate the decay in order to 

prevent the possible distance between two 

nodes from being 0. The logarithmic 

transformation is adopted because the 

summation of Mij ’s along the paths in the 

graph can be viewed as the multiplication of 

the edge weights, which makes sense for 

estimating the distance for any pair of nodes.  

After this step, the range of the distance 

value on each edge should be within [ε,+∞). 
Dijkstra’s algorithm is then adopted to 

compute the shortest paths from seeds to the 

rest of the graph, which takes O(md + nd log 

n) time. After running Dijkstra’s algorithm, 

we are able to partition all nodes in G into d 

disjoint subsets by comparing their shortest 

paths to the seeds. We assign each node to 

the partition with the closest seed. Note that 

this step can be implemented in parallel. 

Spectral Clustering on Reduced Graphs 

Through the transformation to the bipartite 

graph, we significantly reduce the size of the 
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full edge weight matrix of G from n × n to d 

× n. In this section, we introduce how to 

convert the EVD of the graph Laplacian 

mentioned in the previous section into a 

singular value decomposition (SVD) 

problem, such that the overall time 

complexity is O(md + nd log n + nd2), 

which is a significant reduction from O(n3) 

since d≪ n. 

To begin, we give the adjacency matrix of 

the bipartite graph described above:  

 
Here, we use the “prime” notation to denote 

the adjacency 

matrix, which is a square matrix of size (n + 

d) × (n + d). 

Hence we also have representations for L𝐿′ 

and 𝐷′in this bipartite 

model: 

 
where D1 and D2 are two diagonal matrices 

whose entries are column and row sums of 

ˆW , respectively. 

3.2 Regeneration of Supernodes 

In the aforementioned approach, supernodes 

are connected to regular nodes according to 

the shortest paths to randomly selected 

seeds. The supernodes thus behave like 

cluster indicators responsible for 

propagating knowledge of the original 

graph. However, once we get the clustering 

result using spectral techniques discussed 

above, we may use this knowledge to form 

non-random supernodes and improve the 

final results. 

We therefore propose an iterative way to 

regenerate the supernodes based on the 

current clustering results, aiming to 

repeatedly improve the clustering. In 

particular, it is natural to require each 

supernode to link to a set of densely 

connected nodes, which themselves form a 

better local cluster than the random 

sampling method discussed in Sec. 4.1. Also 

the process of discovering such local 

clusters must be efficient. Inspired by the 

fact that the column vectors of the 

embedding matrix U can be used to indicate 

partitions of nodes in the graph [Shi and 

Malik, 1997], supernodes can be guided to 

connect to nodes which form local clusters 

that are inferred from the element values in 

the column vectors of U. 

4. COCLUSTERING ON SIMILARITY 

MATRIX 

4.1 Similarity Matrix 

Similar to conventional similarity graph 

construction, the similarity graph 

construction between the obtained 

representative points and raw points also has 

the problem of selecting the neighbor 

assignment strategy. -e kernel-based 

neighbor assignment strategy usually is sued 

in conventional methods, but it always 

brings extra parameters [13]. A parameter-

free method is adopted in this paper [35]. 

Let U ∈ Rm×d denote the generated 

representative points, and U〈i〉 is the set of 

k-nearest representative points for the i-th 

sample. 

As the same as document data, duality exists 

between the raw data points and the 

representative points. -e representative 

points can be clustered based on their 
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relations with the corresponding raw data 

clusters, while the raw data clusters are 

obtained according to their associations with 

distinct representative point clusters. In 

order to make full use of the duality 

information and strengthen the clustering 

performance, the coclustering method is 

adopted on the similarity matrix between the 

raw data points and the second-layer 

representative points. 

4.2. Graph Partitioning. A signifies 

association between an original point, and a 

representative point signifies an edge in 

bipartite graph. It is easy to verify that the 

adjacency matrix of the bipartite graph can 

be written as follows: 

 

 

 
CONCLUSIONS 

In this paper, we proposed a novel 

representative point-based spectral 

clustering approach, named RPSC, based on 

the twolayer bipartite graph. First, two-layer 

representative points are generated 

successively by BKHK. -en, the similarity 

matrices between adjacent layers are 

constructed. Although graph compression 

naturally induces inaccuracy, empirical 

studies demonstrate that our method can 

considerably decrease the necessary runtime 

while posting a tolerably small loss in 

accuracy. We propose a method to reduce 

graph size, based on effectively compressing 

the graph information into a smaller number 

of “supernodes”. Clustering supernodes with 

spectral methods is less expensive, and the 

clustering results can also be propagated 

back to the original graph with low cost. 
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