

Vol 08 Issue08, Aug 2019 ISSN 2456 – 5083 www.ijiemr.org

COPY RIGHT

2019IJIEMR.Personal use of this material is permitted. Permission from IJIEMR must

be obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted

component of this work in other works. No Reprint should be done to this paper, all copy

right is authenticated to Paper Authors

IJIEMR Transactions, online available on 6
th

Aug 2019. Link

:http://www.ijiemr.org/downloads.php?vol=Volume-08&issue=ISSUE-08

Title LOW DELAY 4-BIT BURST ERROR CORRECTION CODES WITH QUADRUPLE

ADJACENT ERROR CORRECTION

Volume 08, Issue 08, Pages: 260–266.

Paper Authors

K.E. USHA RANI, E. BALAKRISHNA, EN ROJA

CRIT, AP, INDIA

 USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER

To Secure Your Paper As Per UGC Guidelines We Are Providing A Electronic

Bar Code

Vol 08 Issue08, Aug 2019 ISSN 2456 – 5083 Page 260

LOW DELAY 4-BIT BURST ERROR CORRECTION CODES

WITH QUADRUPLE ADJACENT ERROR CORRECTION
K.E. USHA RANI

1
, E. BALAKRISHNA

2
, EN ROJA

3

1
PG Scholar, Dept of ECE, CRIT, AP, India

2
Assistant Professor, Dept of ECE, CRIT, AP, India

3
Assistant Professor, Dept of ECE, PVKKIT, AP, India

ABSTRACT: The use of error-correction codes (ECCs) with advanced correction

capability is a common system-level strategy to harden the memory against multiple

bit upsets (MBUs). Therefore, the construction of ECCs with advanced error

correction and low redundancy has become an important problem, especially for

adjacent ECCs. Existing codes for mitigating MBUs mainly focus on the correction of

up to 3-bit burst errors. As the technology scales and cell interval distance decrease,

the number of affected bits can easily extend to more than 3 bit. The previous

methods are therefore not enough to satisfy the reliability requirement of the

applications in harsh environments. In this paper, a technique to extend 3-bit burst

error-correction (BEC) codes with quadruple adjacent error correction (QAEC) is

presented. First, the design rules are specified and then a searching algorithm is

developed to find the codes that comply with those rules. The H matrices of the 3-bit

BEC with QAEC obtained are presented. They do not require additional parity check

bits compared with a 3-bit BEC code. By applying the new algorithm to previous 3-

bit BEC codes, the performance of 3-bit BEC is also remarkably improved.

1. INTRODUCTION

Error correction codes are commonly

used to protect memories from so

called Soft Errors, which change the

logical value of memory cells without

damaging the circuit. As technology

scales, memory devices become larger

and more powerful error correction

codes are needed. To this end the use

of more advanced codes has been

recently proposed. These codes can

correct a larger number of errors, but

generally require complex decoders.

To avoid a high decoding complexity,

the use of one-step majority logic

decodable codes was first proposed in

for memory applications. One step

majority logic decoding can be

implemented serially with very simple

circuitry but requires long decoding

times. In a memory this would

increase the access time. Only few

classes of codes can be decoded using

OS-MLD. Among those are some DS-

LDPC codes, EG-LDPC codes and

OLS codes.The use of OLS codes has

gained renewed interest for

interconnections, memories, and

caches. This is due to their modularity

such that the error correction

capabilities can be easily adapted to

the error rate or to the mode of

operation. OLS codes typically require

more parity bits than other codes to

correct the same number of errors.

However, their modularity and the

simple and low delay decoding

Vol 08 Issue08, Aug 2019 ISSN 2456 – 5083 Page 261

implementation (as OLS codes are OS-

MLD), offset this disadvantage in

many applications. An important issue

is that the encoder and decoder circuits

needed to use (ECCs) can also suffer

errors. When an error affects the

encoder, an incorrect word may be

written into the memory. An error in

the decoder can cause a correct word to

be interpreted as erroneous or the other

way around, an incorrect word to be

interpreted as a correct word.A method

was recently proposed in to accelerate

a serial implementation of majority

logic decoding of DS-LDPC codes.

The idea behind the method is to use

the first iterations of majority logic

decoding to detect if the word being

decoded contains errors. If there are no

errors, then decoding can be stopped

without completing the remaining

iterations, therefore greatly reducing

the decoding time. And majority logic

decoding can be implemented serially

with simple hardware but requires a

large decoding time. For memory

applications this increases the memory

access time. The method detects

whether a word has errors in the first

iterations of majority logic decoding,

and when there are no errors the

decoding ends without completing the

rest of the iterations. Since most words

in a memory will be error-free, the

average decoding time is greatly

reduced.

2. Existing Method

As technology scales, memory devices

become larger and more powerful error

correction codes are needed. To this

end, the use of more advanced codes

has been recently proposed. These

codes can correct a larger number of

errors, but generally require complex

decoders. To avoid a high decoding

complexity, the use of one step

majority logic decodable codes was

first proposed in for memory

applications. Further work on this topic

was then presented in. One step

majority logic decoding can be

implemented serially with very simple

circuitry, but requires long decoding

times. In a memory, this would

increase the access time which is an

important system parameter. Only a

few classes of codes can be decoded

using one step majority logic decoding.

Among those are some Euclidean

geometry low density parity check

(EG-LDPC) codes which were used in,

and difference set low density parity

check (DS-LDPC) codes. This method

was proposed to accelerate the

majority logic decoding of difference

set low density parity check codes. this

is useful as majority logic decoding

can be implemented serially with

simple hardware but requires a large

decoding time. for memory

applications, this increases the memory

access time. the method detects

whether a word has errors in the first

iterations of majority logic decoding,

and when there are no errors the

decoding ends without completing the

rest of the iterations. since most words

in a memory will be error-free, the

average decoding time is greatly

reduced. in this brief, we study the

application of a similar technique to a

class of euclidean geometry low

density parity check (EG-LDPC) codes

that are onestep majority logic

decodable. the results obtained show

that the method is also effective for

Vol 08 Issue08, Aug 2019 ISSN 2456 – 5083 Page 262

EG-LDPC codes. extensive simulation

results are given to accurately estimate

the probability of error detection for

different code sizes and numbers of

errors. A method was recently

proposed in to accelerate a serial

implementation of majority logic

decoding of DS-LDPC codes. The idea

behind the method is to use the first

iterations of majority logic decoding to

detect if the word being decoded

contains errors. If there are no errors,

then decoding can be stopped without

completing the remaining iterations,

therefore greatly reducing the decoding

time. For a code with block length N,

majority logic decoding (when

implemented serially) requires N

iterations, so that as the code size

grows, so does the decoding time. In

the proposed approach, only the first

three iterations are used to detect

errors, thereby achieving a large speed

increase when N is large. In it was

shown that for DS-LDPC codes, all

error combinations of up to five errors

can be detected in the first three

iterations. Also, errors affecting more

than five bits were detected with a

probability very close to one. The

probability of undetected errors was

also found to decrease as the code

block length increased. For a billion

error patterns only a few errors (or

sometimes none) were undetected.

This may be sufficient for some

applications. Another advantage of the

proposed method is that it requires

very little additional circuitry as the

decoding circuitry is also used for error

detection. For example, it was shown

in that the additional area required to

implement the scheme was only

around 1% for large word sizes.One

step MLD can be implemented serially

using the scheme in Fig 3.1 which

corresponds to the decoder for the EG

LDPC code with N=15. First the data

block is loaded into the registers. Then

the check equations are computed and

if a majority of them has a value of

one, the last bit is inverted. Then all

bits are cyclically shifted. This set of

operations constitutes a single

iteration: after N iterations, the bits are

in the same position in which they

were loaded. In the process, each bit

may be corrected only once. As can be

seen, the decoding circuitry is simple,

but it requires a long decoding time if

Nis large.

Fig. 1 Serial one-step majority logic

decoder for the EG-LPDC code

The check equations must have the

following properties

1. All equations include the

variable whose value is stored

in the last register (the one

marked as C14).

2. The rest of the registers are

included in at most one of the

check equations.

 If errors can be detected in the

first few iterations of MLD, then

whenever no errors are detected in

those iterations, the decoding can be

stopped without completing the rest of

Vol 08 Issue08, Aug 2019 ISSN 2456 – 5083 Page 263

the iterations. In the first iteration,

errors will be detected when at least

one of the check equations is affected

by an odd number of bits in error. In

the second iteration, as bits are

cyclically shifted by one position,

errors will affect other equations such

that some errors undetected in the first

iteration will be detected. As iterations

advance, all detectable errors will

eventually be detected.In it was shown

that for DS-LDPC codes most errors

can be detected in the first three

iterations of MLD. Based on

simulation results and on a theoretical

proof for the case of two errors, the

following hypothesis was made.

“Given a word read from a memory

protected with DS-LDPC codes, and

affected by up to five bit-flips, all

errors can be detected in only three

decoding cycles”. Then the proposed

technique was implemented in VHDL

and synthesized, showing that for

codes with large block sizes the

overhead is low. This is because the

existing majority logic decoding

circuitry is reused to perform error

detection and only some extra control

logic is needed.

3. IMPLEMENTATION OF

PROPOSED

ARCHITECTURE

OLS codes are based on the concept of

Latin squares. A Latin square of size m

is an m × m matrix that has

permutations of the digits 0, 1,…, m −

1 in both its rows and columns. Two

Latin squares are orthogonal if when

they are superimposed every ordered

pair of elements appears only once.

OLS codes are derived from OLS.

These codes have k = m2 data bits and

2tm check bits, where t is the number

of errors that the code can correct. For

a double error correction code t = 2,

and, therefore, 4m check bits, are used.

As mentioned in the introduction, one

advantage of OLS codes is that their

construction is modular. This means

that to obtain a code that can correct t

+1 errors, simply 2m check bits are

added to the code that can correct t

errors. This can be useful to implement

adaptive error correction schemes. The

modular property also enables the

selection of the error correction

capability for a given word size. As

mentioned before, OLS codes can be

decoded using OS-MLD as each data

bit participates in exactly 2t check bits

and each other bit participates in at

most one of those check bits. This

enables a simple correction when the

number of bits in error is t or less. The

2t check bits are recomputed and a

majority vote is taken. If a value of one

is obtained, the bit is in error and must

be corrected. Otherwise the bit is

correct. As long as the number of

errors is t or less, the remaining t −1

errors can, in the worst case, affect t −1

check bits.

Fig.2. Parity check matrix for OLS

code with k = 16 and t = 1.

 (1) Therefore, still a majority of t + 1

triggers the correction of an erroneous

bit. In any case, the decoding starts by

recomputing the parity check bits and

checking against the stored parity

Vol 08 Issue08, Aug 2019 ISSN 2456 – 5083 Page 264

check bits. The parity check matrix H

for OLS codes is constructed from the

OLS. As an example, the matrix for a

code with k = 16 and 8 check bits that

can correct single errors is shown in

Fig. 1. The modular construction of

OLS codes this matrix forms part of

the H matrix for codes that can correct

more errors. For example, to obtain a

code that can correct two errors, eight

additional rows are added to the H

matrix. For an arbitrary value of k =

m2, the H matrix for a SEC OLS code

is constructed as follows:

where I2m is the identity matrix of size

2m and M1, M2 are matrices of size m

× m2. The matrix M1 has m ones in

each row. For the r th row, the ones are

at positions (r − 1) × m + 1,(r − 1) × m

+ 2,…(r − 1) × m + m − 1, (r − 1) × m

+ m. The matrix M2 is constructed as

follows:

M2 = [Im Im . . . Im].

(2)

For m = 4, the matrices M1 and M2 can

be clearly observed in Fig. 1. The

encoding matrix G is just the H matrix

on which the check bits are removed

. (3)

In summary, the encoder takes k = m2

data bits (di) and computes 2tm parity

check bits (ci) using a matrix G, which

is derived from Latin squares and has

the following properties.

1) Each data bit participates exactly in

2t parity checks.

2) A pair of data bits participates (both

bits) in at most one of the parity

checks.

These properties are used in the next

section to discuss the proposed

technique.

4.Proposed Concurrent Error

Detection Technique

Based on the structure of the parity

check matrix, the check bits are

calculated by the corresponding data

bits. The new encoded codeword, the

combination of check bits and data bits

is stored in the memory. When the

particles hit the memory resulting in

MBUs, the contents of affected

memory cells are flipped. Here, to

elaborate on the correction ability of

QAEC codes, quadruple adjacent bits

are flipped on D2, D3, D4, and D5. In

the decoding process, the syndrome is

calculated using the stored check bits

and data bits and the structure of the

parity check matrix. Through the

corresponding relationship between the

syndrome and the XOR result of the

columns mentioned in Section II, the

flipped bits can be located. With the

flipped bits inverted, the errors from

the storage stage in the memory are

effectively corrected. This is the whole

procedure of encoding and decoding

for the proposed QAEC codes

Vol 08 Issue08, Aug 2019 ISSN 2456 – 5083 Page 265

Fig 3 Implementation Flow

5.RESULTS

Fig 4 Simulation Result for Proposed

Method

6. CONCLUSION AND FUTURE

SCOPE

 CED technique for OLS codes

encoders and syndrome computation

was proposed. The proposed technique

took advantage of the properties of

OLS codes to design a parity

prediction scheme that could be

efficiently implemented and detects all

errors that affect a single circuit node.

The technique was evaluated for

different word sizes, which showed

that for large words the overhead is

small. This is interesting as large word

sizes are used, for example, in caches

for which OLS codes have been

recently proposed. The proposed error

checking scheme required a significant

delay; however, its impact on access

time could be minimized. This was

achieved by performing the checking

in parallel with the writing of the data

in the case of the encoder and in

parallel with the majority voting and

error correction in the case of the

decoder. In a general case, the

proposed scheme required a much

larger overhead as most ECCs did not

have the properties of OLS codes. This

limited the applicability of the

proposed CED scheme to OLS codes.

Vol 08 Issue08, Aug 2019 ISSN 2456 – 5083 Page 266

The availability of low overhead error

detection techniques for the encoder

and syndrome computation is an

additional reason to consider the use of

OLS codes in high-speed memories

and caches.

References

[1] R. C. Baumann, “Radiation-

induced soft errors in advanced

semiconductor technologies,” IEEE

Trans. Device Mater. Reliab., vol. 5,

no. 3, pp. 301–316, Sep. 2005.

[2] M. A. Bajura, Y. Boulghassoul, R.

Naseer, S. DasGupta, A. F.Witulski, J.

Sondeen, S. D. Stansberry, J. Draper,

L. W. Massengill, and J. N.

Damoulakis, “Models and algorithmic

limits for an ECC-based approach to

hardening sub-100-nm SRAMs,” IEEE

Trans. Nucl. Sci., vol. 54, no. 4, pp.

935–945, Aug. 2007.

[3] R. Naseer and J. Draper, “DEC

ECC design to improve memory

reliability in sub-100 nm

technologies,” Proc. IEEE ICECS, pp.

586–589, 2008.

[4] S. Ghosh and P. D. Lincoln,

“Dynamic low-density parity check

codes for fault tolerant nano-scale

memory,” presented at the Foundations

Nanosci. (FNANO), Snowbird, Utah,

2007.

[5] S. Ghosh and P. D. Lincoln, “Low-

density parity check codes for error

correction in nanoscale memory,” SRI

Computer Science Lab., Menlo Park,

CA, Tech. Rep. CSL-0703, 2007.

[6] H. Naeimi and A. DeHon, “Fault

secure encoder and decoder for

memory applications,” in Proc. IEEE

Int. Symp. Defect Fault Toler. VLSI

Syst., 2007, pp. 409–417.

[7] B. Vasic and S. K. Chilappagari,

“An information theoretical framework

for analysis and design of nanoscale

fault-tolerant memories based on low-

density parity-check codes,” IEEE

Trans. Circuits Syst. I, Reg. Papers,

vol. 54, no. 11, pp. 2438–2446, Nov.

2007.

[8] H. Naeimi and A. DeHon, “Fault

secure encoder and decoder for

nanomemory applications,” IEEE

Trans. Very Large Scale Integr. (VLSI)

Syst., vol. 17, no. 4, pp. 473–486, Apr.

2009.

[9] S. Lin and D. J. Costello, Error

Control Coding, 2nd ed. Englewood

Cliffs, NJ: Prentice-Hall, 2004.

[10] S. Liu, P. Reviriego, and J.

Maestro, “Efficient majority logic fault

detection with difference-set codes for

memory applications,” IEEE Trans.

Very Large Scale Integr. (VLSI) Syst.,

vol. 20, no. 1, pp. 148–156, Jan. 2012.

[11] H. Tang, J. Xu, S. Lin, and K. A.

S. Abdel-Ghaffar, “Codes on finite

geometries,” IEEE Trans. Inf. Theory,

vol. 51, no. 2, pp. 572–596, Feb. 2005.

