

Vol 08 Issue08, Aug 2019 ISSN 2456 – 5083 www.ijiemr.org

COPY RIGHT

2019IJIEMR.Personal use of this material is permitted. Permission from IJIEMR must

be obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted

component of this work in other works. No Reprint should be done to this paper, all copy

right is authenticated to Paper Authors

IJIEMR Transactions, online available on 3
rd

Aug 2019. Link

:http://www.ijiemr.org/downloads.php?vol=Volume-08&issue=ISSUE-08

Title INTEND AND ACCOMPLISHMENT OF 16-BIT DECIMAL MULTIPLIER USING

SIGN MAGNITUDE ENCODING

Volume 08, Issue 08, Pages: 107–115.

Paper Authors

K.SRIVALLI, Dr.M.KOTI REDDY

KAKINADA INSTITUTE OF ENGINEERING AND

TECHNOLOGY,KORANGI,ANDHRAPRADESH,INDIA,533461

 USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER

To Secure Your Paper As Per UGC Guidelines We Are Providing A Electronic

Bar Code

Vol 08 Issue08, Aug 2019 ISSN 2456 – 5083 Page 107

INTEND AND ACCOMPLISHMENT OF 16-BIT DECIMAL

MULTIPLIER USING SIGN MAGNITUDE ENCODING
1
K.SRIVALLI,

2
Dr.M.KOTI REDDY

1
M.TECH VLSID, DEPT OF E.C.E, KAKINADA INSTITUTE OF ENGINEERING AND

TECHNOLOGY,KORANGI,ANDHRAPRADESH,INDIA,533461
2
ASSOSIATE PROFESSOR, KAKINADA INSTITUTE OF ENGINEERING AND

TECHNOLOGY,KORANGI,ANDHRAPRADESH,INDIA,533461

Abstract: This paper introduces two novel architectures for parallel decimal multipliers. Our

multipliers are based on a new algorithm for decimal carry–save multioperand addition that uses

a novel TCSD recoding for decimal digits. It significantly improves the area and latency of the

partial product reduction tree with respect to previous proposals. We also present three schemes

for fast and efficient generation of partial products in parallel. The recoding of the TCSD

multiplier operand into minimally redundant signed–digit radix–10, radix–4 and radix–5

representations using new recoders reduces the complexity of partial product generation. In

addition, SD radix–4 and radix–5 recodings allow the reuse of a conventional parallel binary

radix–4 multiplier to perform combined binary/decimal multiplications.

Key words: Radix-10 multiplier, redundant representation, sign-magnitude signed digits

(SMSDs), VLSI design.

I.INTRODUCTION

Decimal computer arithmetic[1] is preferred

in decimal data processing environments

such as scientific, commercial, financial,

internet-based applications in monetary,

web-based, and human interactive

applications. Ever growing needs for

processing power, required by applications

with intensive decimal arithmetic, cannot be

met by conventional slow software

simulated decimal arithmetic units.

However, their hardware counterparts as an

integral part of recently commercialized

general purpose processors are gaining

importance. Binarycoded decimal (BCD)

encoding of decimal digits has

conventionally dominated decimal

arithmetic algorithms, whether realized by

hardware or in software. The research for

hardware realization of decimal arithmetic is

not matured yet and there are rooms for

improvements in hardware algorithms and

designs. For example, the state-of-the-art

BCD multipliers[2], for computing X Y, use

iterative multiplication algorithms, where

the partial products (i.e. the product of one

BCD digit of the multiplier Y times the

multi-BCD-digit multiplicand X) are

generated one at a time and added to the

previously accumulated result. Each partial

product may be directly generated as one

Vol 08 Issue08, Aug 2019 ISSN 2456 – 5083 Page 108

BCD number in [0, 9] X, or may be

composed of few easy multiples of the

multiplicand (e.g. 7X ¼ 4X þ 2X þ X). The

latter approach tends to increase the depth

(measured by the maximum number of

equally weighted BCD digits) of partial

product tree per each BCD digit of

multiplier, which in general leads to slower

partial product accumulation. But, by using

possibly fast and low-cost BCD digit by

BCD-digit multipliers, the former approach

may lead to less costly BCD multipliers.

Erle et al. have enumerated three reasons for

using decimal digit-by-digit multipliers for

partial product generation, which leads to

less number of cycles, less wiring and no

need for registers to store multiples of the

multiplicand. With the rapid advances in

VLSI technology, semi(fully)-parallel BCD

multipliers will soon be attractive, where

more than one (all) partial product(s) are

generated at once and accumulated in

parallel.

2.LITERATURE SURVEY

Dynamic negation of pre computed X

multiples reduces their selection cost at the

penalty of one XOR gate per each bit of the

selected positive multiple. This negation

cost is replicated n times for parallel n×n

multiplication. Moreover, the n inserted 1s

for 10’s complementation in and n× (n+1) 1s

for digit wise two’s complementation in

have a negative impact on area and power

saving. The same is true for the correction

constant, and more complex recoding due to

zero handling, for [0, 15] partial products.

One way to save these costs, as we do in

Section III, is to generate the SD pre

computed X multiples with sign magnitude

format, so as to reduce the XOR gates to one

per digit (roughly 75% savings in the

number of negating XOR gates) and remove

the aforementioned negative impacts.

However, besides slowing down the PPG[3]

to some extent (e.g., in comparison with

radix-5 implementation of [4]), new

problems are introduced in PPR, which are

explained and solved in the next section,

where we also reduce the depth of IPP

matrix to n = 16, effectively prior to

termination of PPG.

3. EXISTING SYSTEM

Fast radix-10 multiplication, in particular,

can be achieved via parallel partial product

generation (PPG) and partial product

reduction (PPR), which is, however, highly

area consuming in VLSI implementations.

Therefore, it is desired to lower the silicon

cost, while keeping the high speed of

parallel realization. Let P = X × Y represent

an n × n decimal multiplication, where

multiplicand X, multiplier Y , and product P

are normal radix-10 numbers with digits in

[0, 9]. Such digits are commonly represented

via binary-coded decimal (BCD) encoding.

However, intermediate partial products

(IPPs) are represented via a diversity of

often redundant decimal digit sets. The

choice of alternative IPP representations is

influential on the PPG, which is of particular

importance in decimal multiplication from

two points of view: one is fast and low cost

generation of IPPs and the other is its impact

on representation of IPPs, which is

influential on PPR efficiency.

Straightforward PPG via BCD digit-by-digit

multiplication [5], [6] is slow, expensive,

and leads to n double-BCD IPPs for n×n

multiplication (i.e., 2n BCD numbers to be

added).

Vol 08 Issue08, Aug 2019 ISSN 2456 – 5083 Page 109

However, the work of recodes both the

multiplier and multiplicand to sign

magnitude signed digit (SMSD)

representation and uses a more efficient 3-b

by 3-b PPG. Nevertheless, following a long

standing practice, most PPG schemes use

pre computed multiples of multiplicand X

(or X multiples). Pre computation of the

complete set0, 1, . . . 9} × X, as normal

BCD numbers, and the subsequent selection

are also slow and costly. A common

remedial technique is to use a smaller less

costly set that can be achieved via fast carry-

free manipulation (e.g., 0, 1, 2, 4, 5} × X) at

the cost of doubling the count of BCD

numbers to be added in PPR; that is, n

double-BCD IPPs are generated, such as 3X

= (2X, X), 7X = (5X, 2X), or 9X = (5X,

4X).

IV.PROPOSED SYSTEM

We aim to take advantage of [−5, 5] SMSD
recoding of multiplier and dynamic negation

of X multiples, while reducing the number

of XOR gates via generating [−6, 6] SMSD
pre-computed X multiples (i.e., just one

XOR gate per 4-b digit). Other contributions

of this paper are highlighted below.

Fig. 1: Block diagram of the proposed

multiplier.

1) Starting the PPR with 16 Partial Products:

An especial on the fly augmentation of two

middle SMSD digits leads to reducing the

depth of partial product matrix by 1, such

that the PPR starts with 16 operands right at

the end of PPG, with no delay penalty for

the latter.

2) Special 4-in-1 SMSD Adder with TCSD

Sum: To avoid the challenging addition of

SMSD IPPs, we design a novel carry-free

adder that represents the sum of two [−6, 6]
SMSD operands in [−7, 7] two’s

complement signed-digit (TCSD) format,

where one unified adder is utilized for all the

four possible sign combinations.

 3) Improved TCSD Addition: The rest of

the reduction process[7] uses special TCSD

adders that are actually an improved version

of the fast TCSD adder. Such 2:1 reduction

promotes the VLSI regularity of the PPR

circuit, especially for n = 16.

4) Augmenting the Final Redundant to Non

redundant Conversion with the Last PPR

Level: The last PPR level would normally

lead to TCSD product, which should be

converted to BCD. However, to gain more

speed and reduce costs, we device a special

hybrid decimal adder with two TCSD inputs

and a BCD output.

Recoding of Multiplier’s Digits: Original

BCD digits of multiplier require[0,9]×X

precom- puted multiples, which include hard

multiples {3,6,7,9}×X that unlike

{2,4,5,8}×X are not derivable without carry

propagation. On the other hand, BCD-to-

redundant [−5,5] SMSD recoding of
multiplier’s digits with dynamic negation of

IPPs reduces the required X multiples to

[0,5]×X that include only one hard multiple

(i.e., 3X). However, this recoding produces

Vol 08 Issue08, Aug 2019 ISSN 2456 – 5083 Page 110

a carry as the (n+1)th digit of multiplier,

which increases the numberof IPPs by 1.

This is especially not desirable for n = 16

(i.e., the recommended IEEE754-2008 word

size for decimal operands [12]).

Partial Product Reduction The overall

PPR for n = 16 is illustrated by Fig. 2, where

a bar, triangle, square, and diamond

represent a BCD, [−6, 6] SMSD, [−7, 7]
TCSD, and binary signed digit (BSD),

respectively. The choice of SMSD

representation for the firstlevel IPPs, while

facilitating the PPG, bears no extra

complexity for PPR, since all reduction

levels use TCSD adders, except for the first

one that requires a special SMSD+SMSD-

to-TCSD adder.We reduce the matrix depth

to n (e.g., 5 → 4 forn = 4, and 17 → 16 for n
= 16), with no delay between the

termination of PPG and start of PPR. Here is

how it works: we compute sum of the two

gray digits (see Fig. 3) independent of (and

in parallel with) normal PPG as follows. If

Yn−1 ≤4, the value of 10n-weighted carry of

recoded multiplier is zero, so the bottom

gray digit has to be zero. Therefore, no

addition is required. For Yn−1 > 4, let H
denote the most significant digit of Xn−1
×Y0 (e.g., the top gray digit in Fig. 3),

where Xn−1 and Y0 represent the most
significant BCD digit of multiplicand[8] and

the least significant recoded digit of

multiplier, respectively.

Fig. 2. Partial Product Reduction.

Special 4-in-1 SMSD Adder: A digit slice

of the aforementioned SMSD+SMSD-

toTCSD adder for four different cases

corresponding to all possible combinations

of the input signs is depicted by Fig. 3. (A

posibit is a normal bit whose arithmetic

value equals its logical status, and the

arithmetic value of a nega bit with logical

status x equals x − 1 [9].) The sum of two

[−6, 6] SMSD digits (e.g., P = sp p2 p1 p0
and Q = sqq2q1q0), and a signed carry in

(e.g., Cin) is produced as one [−7, 7] TCSD
digit (e.g., S = s3s2s1s0), and a signed carry

out (e.g., Cout). This is a two-stage process.

In the stage I, the sign bits are applied to the

magnitudes, such that a negative sign

changes the polarity of magnitude posibits to

negabits and inverts their logical states.

Subsequently, in the same stage, the bit

collection U is decomposed, and the bit

collection V is recoded. In the second stage,

however, as will be explained shortly, only

one 4-b adder takes care of all the four

cases, which explains the rationale for

designation of the adder.

Vol 08 Issue08, Aug 2019 ISSN 2456 – 5083 Page 111

Fig. 3. Digit slice of the 4-in-1

SMSD+SMSD → TCSD adder.
To speed up the latter two steps (i.e., 2:1

reduction and TCSD-to-BCD conversion),

the actual BCD product generation of Fig. 5

uses a more efficient method which is

described below. The final 2:1 reduction

level that is required for positions 8 to 22

and the subsequent TCSD-to-BCD

conversion can be actually augmented as a

TCSD + TCSD addition with BCD result.

The 4-in-1 Design: Other encodings are also

possible for Z and V values. For example, an

alternative encoding for both Z ∈[− 2,3] and
V ∈[− 3,1] of Fig. 3 is ◦••∈[− 4,3] which
covers the latter two intervals. However, the

proposed encodings are so chosen to allow

for unified treatment of the bit collections
that are obtained after the decomposition

and recoding. That is, a simplified 4-b adder

can take care of all the four cases. This is

actually possible via the standard full adders

that are capable of handling all the 3-b

posibit/negabit collections of inputs [10].

Note that the normally required leftmost

Half Adder is reduced to an OR gate since

no carry out is expected.

The aforementioned decomposition and

recoding can be furtherjustified byclose
examination of the content, where the range

of P + Q determines the possible values for

Cout, which always lead to S =2Z +V+Cin

∈[− 7,7],as shown in the rightmost column.

The (cin,cin) pair represents the incoming

signed carry Cin from the less significant
position. Representations of Z, V, and Cin

are so determined as to lead to two’s

complement representation for S in all the

four cases (see below for more explanations,

and the following numerical example).

Example 1: (Fig. 3 by numerical values):

where two SMSDs P =sp101 (|P|=5) and Q

=sq100 (|Q|=4) are added. Fig. 3 with

numerical values, where signs (i.e., sp and

sq) are explicitly shown as was the case in

Fig. 3, and negabits are inversely encoded as

1−(0−), which represent the arithmetic value
0(−1). The incoming signed carry Cin = 0 is
represented by the posibit cin = 0 and

inversely encoded negabit c in = 1−.
Therefore, the Full Adder in position 0

receives two negabits and one posibit and

produces a posibit sum 1 and a negabit carry

0−, such that 2× (−1)+1 =−1, as there was
only one arithmetically nonzero input 0−
(i.e., −1). The 4-in-1 adder is slightly more

efficient than [−7,7] TCSD adder (i.e., less

latency with no area overhead), as can be

verified by inspecting (4) and (5) for the
preprocessing logic boxes in 4-in-1 adder

and that of TCSD adder [i.e., (6)].

V. SIMULATION RESULTS

5.1 EXISTING METHOD RESULTS

Figure 5.1:- Design summary

Vol 08 Issue08, Aug 2019 ISSN 2456 – 5083 Page 112

Figure 5.2:- RTL schematic

Figure 5.3:- Simulation results

Figure 5.4:- Time Summary

5.2 PROPOSED RESULTS

Figure 5.5:- one hot recoder output

Figure 5.6:- SMSD multiplier output

Figure 5.7:- one hot mux output

Vol 08 Issue08, Aug 2019 ISSN 2456 – 5083 Page 113

Figure 5.8:- partial products reduction

output

Figure 5.9:- double sd to bcd converter

output

Figure 5.10:- multiplier output

5.3 EXTENSION RESULTS

Figure 5.11:- RTL schematic output

Figure 5.12:- design summary output

Figure 5.13:- time summary output

Vol 08 Issue08, Aug 2019 ISSN 2456 – 5083 Page 114

Figure 5.14:- extension simultiuon output

Conclusion In this paper we have presented

several techniques to implement decimal

parallel multiplication in hardware. We

propose three different SD encodings for the

multiplier that lead to fast parallel and

simple generation of partial products. For

partial product reduction we have developed

a decimal carry–save algorithm based on a

BCD–4221 representation of decimal digit

operands. It makes possible the construction

ofp:2decimal CSA trees that outperform the

area–delay figures of existing proposals.

Moreover, proposed techniques also allow

the computation of combined binary/decimal

multiplications with a moderate overhead.

We have proposed an architecture for

decimal SD radix–10 parallel multiplication

and two combined architectures for

binary/decimal SD radix– 4 and binary SD

radix–4/decimal SD radix–5 multiplication.

The area–delay figures from a comparative

study including conventional binary parallel

multipliers and other representative decimal

proposals show that our decimal SD radix–
10 multiplier is an interesting option for

high performance with moderate area.

REFERENCES

[1] IEEE standard for floating–point

arithmetic. IEEE Standards Committee, Oct.

2006.

[2] F. Y. Busaba, T. Slegel, S. Carlough, C.

Krygowski, and J. G. Rell. The design of the

fixed point unit for the z990 microprocessor.

InProc. ACM Great Lakes14th Symposium

on VLSI, pages 364– 367, Apr. 2004.

[3] M. F. Cowlishaw. Decimal floating-

point: Algorism for computers. InProc.

IEEE16th Symposium on Computer

Arithmetic, pages 104– 111, July 2003.

[4] M. A. Erle and M. J. Schulte. Decimal

multiplication via carry-save addition.

InProc. IEEE Int’l Conference on

Application-Specific Systems,

Architectures, and Processors, pages 348–
358, June 2003.

[5] M. A. Erle, E. M. Schwarz, and M. J.

Schulte. Decimal multiplication with

efficient partial product generation. In Proc.

IEEE17th Symposium on Computer

Arithmetic, pages 21–28, June 2005.

 [6] R. D. Kenney and M. J. Schulte. High-

speed multioperand decimal adders.IEEE

Trans. on Computers, 54(8):953–963, Aug.

2005.

[7] R. D. Kenney, M. J. Schulte, and M. A.

Erle. High-frequency decimal multiplier.

InProc. IEEE Int’l Conference on Computer

Design: VLSI in Computers and Processors,

pages 26–29, Oct. 2004.

[8] T. Lang and A. Nannarelli. A radix-10

combinational multiplier. InProc.40th

Asilomar Conference on Signals, Systems,

and Computers, pages 313–317, Oct. 2006.

 [9] R. H. Larson. High-speed multiply using

four input carrysave adder. IBM Tech.

Vol 08 Issue08, Aug 2019 ISSN 2456 – 5083 Page 115

Disclosure Bulletin, 16(7):2053–2054, Dec.

1973.

[10] N. Ohkubo and M. Suzuki. A 4.4 ns

CMOS 54x54–bit multiplier using pass-

transistor multiplexer. IEEE Journal of Solid

State Circuits, 30(3):251–256, Mar. 1995.

