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Abstract: This paper introduces two novel architectures for parallel decimal multipliers. Our 

multipliers are based on a new algorithm for decimal carry–save multioperand addition that uses 

a novel TCSD  recoding for decimal digits. It significantly improves the area and latency of the 

partial product reduction tree with respect to previous proposals. We also present three schemes 

for fast and efficient generation of partial products in parallel. The recoding of the TCSD 

multiplier operand into minimally redundant signed–digit radix–10, radix–4 and radix–5 

representations using new recoders reduces the complexity of partial product generation. In 

addition, SD radix–4 and radix–5 recodings allow the reuse of a conventional parallel binary 

radix–4 multiplier to perform combined binary/decimal multiplications.  

Key words: Radix-10 multiplier, redundant representation, sign-magnitude signed digits 

(SMSDs), VLSI design. 

 

I.INTRODUCTION 

Decimal computer arithmetic[1] is preferred 

in decimal data processing environments 

such as scientific, commercial, financial, 

internet-based applications in monetary, 

web-based, and human interactive 

applications. Ever growing needs for 

processing power, required by applications 

with intensive decimal arithmetic, cannot be 

met by conventional slow software 

simulated decimal arithmetic units. 

However, their hardware counterparts as an 

integral part of recently commercialized 

general purpose processors are gaining 

importance. Binarycoded decimal (BCD) 

encoding of decimal digits has  

 

conventionally dominated decimal 

arithmetic algorithms, whether realized by 

hardware or in software. The research for 

hardware realization of decimal arithmetic is 

not matured yet and there are rooms for 

improvements in hardware algorithms and 

designs. For example, the state-of-the-art 

BCD multipliers[2], for computing X Y, use 

iterative multiplication algorithms, where 

the partial products (i.e. the product of one 

BCD digit of the multiplier Y times the 

multi-BCD-digit multiplicand X) are 

generated one at a time and added to the 

previously accumulated result. Each partial 

product may be directly generated as one 
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BCD number in [0, 9] X, or may be 

composed of few easy multiples of the 

multiplicand (e.g. 7X ¼ 4X þ 2X þ X). The 

latter approach tends to increase the depth 

(measured by the maximum number of 

equally weighted BCD digits) of partial 

product tree per each BCD digit of 

multiplier, which in general leads to slower 

partial product accumulation. But, by using 

possibly fast and low-cost BCD digit by 

BCD-digit multipliers, the former approach 

may lead to less costly BCD multipliers. 

Erle et al. have enumerated three reasons for 

using decimal digit-by-digit multipliers for 

partial product generation, which leads to 

less number of cycles, less wiring and no 

need for registers to store multiples of the 

multiplicand. With the rapid advances in 

VLSI technology, semi(fully)-parallel BCD 

multipliers will soon be attractive, where 

more than one (all) partial product(s) are 

generated at once and accumulated in 

parallel.  

2.LITERATURE SURVEY 

Dynamic negation of pre computed X 

multiples reduces their selection cost at the 

penalty of one XOR gate per each bit of the 

selected positive multiple. This negation 

cost is replicated n times for parallel n×n 

multiplication. Moreover, the n inserted 1s 

for 10’s complementation in and n× (n+1) 1s 

for digit wise two’s complementation in 

have a negative impact on area and power 

saving. The same is true for the correction 

constant, and more complex recoding due to 

zero handling, for [0, 15] partial products. 

One way to save these costs, as we do in 

Section III, is to generate the SD pre 

computed X multiples with sign magnitude 

format, so as to reduce the XOR gates to one 

per digit (roughly 75% savings in the 

number of negating XOR gates) and remove 

the aforementioned negative impacts. 

However, besides slowing down the PPG[3] 

to some extent (e.g., in comparison with 

radix-5 implementation of [4]), new 

problems are introduced in PPR, which are 

explained and solved in the next section, 

where we also reduce the depth of IPP 

matrix to n = 16, effectively prior to 

termination of PPG. 

3. EXISTING SYSTEM 

Fast radix-10 multiplication, in particular, 

can be achieved via parallel partial product 

generation (PPG) and partial product 

reduction (PPR), which is, however, highly 

area consuming in VLSI implementations. 

Therefore, it is desired to lower the silicon 

cost, while keeping the high speed of 

parallel realization. Let P = X × Y represent 

an n × n decimal multiplication, where 

multiplicand X, multiplier Y , and product P 

are normal radix-10 numbers with digits in 

[0, 9]. Such digits are commonly represented 

via binary-coded decimal (BCD) encoding. 

However, intermediate partial products 

(IPPs) are represented via a diversity of 

often redundant decimal digit sets. The 

choice of alternative IPP representations is 

influential on the PPG, which is of particular 

importance in decimal multiplication from 

two points of view: one is fast and low cost 

generation of IPPs and the other is its impact 

on representation of IPPs, which is 

influential on PPR efficiency. 

Straightforward PPG via BCD digit-by-digit 

multiplication [5], [6] is slow, expensive, 

and leads to n double-BCD IPPs for n×n 

multiplication (i.e., 2n BCD numbers to be 

added). 
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However, the work of recodes both the 

multiplier and multiplicand to sign 

magnitude signed digit (SMSD) 

representation and uses a more efficient 3-b 

by 3-b PPG. Nevertheless, following a long 

standing practice, most PPG schemes use 

pre computed multiples of multiplicand X 

(or X multiples). Pre computation of the 

complete set0, 1, . . . 9} × X, as normal 

BCD numbers, and the subsequent selection 

are also slow and costly. A common 

remedial technique is to use a smaller less 

costly set that can be achieved via fast carry-

free manipulation (e.g., 0, 1, 2, 4, 5} × X) at 

the cost of doubling the count of BCD 

numbers to be added in PPR; that is, n 

double-BCD IPPs are generated, such as 3X 

= (2X, X), 7X = (5X, 2X), or 9X = (5X, 

4X). 

IV.PROPOSED SYSTEM 

We aim to take advantage of [−5, 5] SMSD 
recoding of multiplier and dynamic negation 

of X multiples, while reducing the number 

of XOR gates via generating [−6, 6] SMSD 
pre-computed X multiples (i.e., just one 

XOR gate per 4-b digit). Other contributions 

of this paper are highlighted below. 

 
Fig. 1: Block diagram of the proposed 

multiplier. 

1) Starting the PPR with 16 Partial Products: 

An especial on the fly augmentation of two 

middle SMSD digits leads to reducing the 

depth of partial product matrix by 1, such 

that the PPR starts with 16 operands right at 

the end of PPG, with no delay penalty for 

the latter.  

2) Special 4-in-1 SMSD Adder with TCSD 

Sum: To avoid the challenging addition of 

SMSD IPPs, we design a novel carry-free 

adder that represents the sum of two [−6, 6] 
SMSD operands in [−7, 7] two’s 

complement signed-digit (TCSD) format, 

where one unified adder is utilized for all the 

four possible sign combinations. 

 3) Improved TCSD Addition: The rest of 

the reduction process[7] uses special TCSD 

adders that are actually an improved version 

of the fast TCSD adder. Such 2:1 reduction 

promotes the VLSI regularity of the PPR 

circuit, especially for n = 16.  

4) Augmenting the Final Redundant to Non 

redundant Conversion with the Last PPR 

Level: The last PPR level would normally 

lead to TCSD product, which should be 

converted to BCD. However, to gain more 

speed and reduce costs, we device a special 

hybrid decimal adder with two TCSD inputs 

and a BCD output. 

Recoding of Multiplier’s Digits: Original 

BCD digits of multiplier require[0,9]×X 

precom- puted multiples, which include hard 

multiples {3,6,7,9}×X that unlike 

{2,4,5,8}×X are not derivable without carry 

propagation. On the other hand, BCD-to-

redundant [−5,5] SMSD recoding of 
multiplier’s digits with dynamic negation of 

IPPs reduces the required X multiples to 

[0,5]×X that include only one hard multiple 

(i.e., 3X). However, this recoding produces 
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a carry as the (n+1)th digit of multiplier, 

which increases the numberof IPPs by 1. 

This is especially not desirable for n = 16 

(i.e., the recommended IEEE754-2008 word 

size for decimal operands [12]). 

Partial Product Reduction The overall 

PPR for n = 16 is illustrated by Fig. 2, where 

a bar, triangle, square, and diamond 

represent a BCD, [−6, 6] SMSD, [−7, 7] 
TCSD, and binary signed digit (BSD), 

respectively. The choice of SMSD 

representation for the firstlevel IPPs, while 

facilitating the PPG, bears no extra 

complexity for PPR, since all reduction 

levels use TCSD adders, except for the first 

one that requires a special SMSD+SMSD-

to-TCSD adder.We reduce the matrix depth 

to n (e.g., 5 → 4 forn = 4, and 17 → 16 for n 
= 16), with no delay between the 

termination of PPG and start of PPR. Here is 

how it works: we compute sum of the two 

gray digits (see Fig. 3) independent of (and 

in parallel with) normal PPG as follows. If 

Yn−1 ≤4, the value of 10n-weighted carry of 

recoded multiplier is zero, so the bottom 

gray digit has to be zero. Therefore, no 

addition is required. For Yn−1 > 4, let H 
denote the most significant digit of Xn−1 
×Y0 (e.g., the top gray digit in Fig. 3), 

where Xn−1 and Y0 represent the most 
significant BCD digit of multiplicand[8] and 

the least significant recoded digit of 

multiplier, respectively. 

 

 
Fig. 2. Partial Product Reduction. 

 

Special 4-in-1 SMSD Adder: A digit slice 

of the aforementioned SMSD+SMSD-

toTCSD adder for four different cases 

corresponding to all possible combinations 

of the input signs is depicted by Fig. 3. (A 

posibit is a normal bit whose arithmetic 

value equals its logical status, and the 

arithmetic value of a nega bit with logical 

status x equals x − 1 [9].) The sum of two 

[−6, 6] SMSD digits (e.g., P = sp p2 p1 p0 
and Q = sqq2q1q0), and a signed carry in 

(e.g., Cin) is produced as one [−7, 7] TCSD 
digit (e.g., S = s3s2s1s0), and a signed carry 

out (e.g., Cout). This is a two-stage process. 

In the stage I, the sign bits are applied to the 

magnitudes, such that a negative sign 

changes the polarity of magnitude posibits to 

negabits and inverts their logical states. 

Subsequently, in the same stage, the bit 

collection U is decomposed, and the bit 

collection V is recoded. In the second stage, 

however, as will be explained shortly, only 

one 4-b adder takes care of all the four 

cases, which explains the rationale for 

designation of the adder. 
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Fig. 3. Digit slice of the 4-in-1 

SMSD+SMSD → TCSD adder. 
To speed up the latter two steps (i.e., 2:1 

reduction and TCSD-to-BCD conversion), 

the actual BCD product generation of Fig. 5 

uses a more efficient method which is 

described below. The final 2:1 reduction 

level that is required for positions 8 to 22 

and the subsequent TCSD-to-BCD 

conversion can be actually augmented as a 

TCSD + TCSD addition with BCD result. 

The 4-in-1 Design: Other encodings are also 

possible for Z and V values. For example, an 

alternative encoding for both Z ∈[− 2,3] and 
V ∈[− 3,1] of Fig. 3 is ◦••∈[− 4,3] which 
covers the latter two intervals. However, the 

proposed encodings  are so chosen to allow 

for unified treatment of the bit collections 
that are obtained after the decomposition 

and recoding. That is, a simplified 4-b adder  

can take care of all the four cases. This is 

actually possible via the standard full adders 

that are capable of handling all the 3-b 

posibit/negabit collections of inputs [10]. 

Note that the normally required leftmost 

Half Adder is reduced to an OR gate since 

no carry out is expected. 

The aforementioned decomposition and 

recoding can be furtherjustified byclose 
examination of the content, where the range 

of P + Q determines the possible values for 

Cout, which always lead to S =2Z +V+Cin 

∈[− 7,7],as shown in the rightmost column. 

The (cin,cin) pair represents the incoming 

signed carry Cin from the less significant 
position. Representations of Z, V, and Cin 

are so determined as to lead to two’s 

complement representation for S in all the 

four cases (see below for more explanations, 

and the following numerical example). 

Example 1: (Fig. 3 by numerical values): 

where two SMSDs P =sp101 (|P|=5) and Q 

=sq100 (|Q|=4) are added. Fig. 3 with 

numerical values, where signs (i.e., sp and 

sq) are explicitly shown as was the case in 

Fig. 3, and negabits are inversely encoded as 

1−(0−), which represent the arithmetic value 
0(−1). The incoming signed carry Cin = 0 is 
represented by the posibit cin = 0 and 

inversely encoded negabit c in = 1−. 
Therefore, the Full Adder in position 0 

receives two negabits and one posibit and 

produces a posibit sum 1 and a negabit carry 

0−, such that 2× (−1)+1 =−1, as there was 
only one arithmetically nonzero input 0− 
(i.e., −1). The 4-in-1 adder is slightly more 

efficient than [−7,7] TCSD adder (i.e., less 

latency with no area overhead), as can be 

verified by inspecting (4) and (5) for the 
preprocessing logic boxes in 4-in-1 adder 

and that of TCSD adder [i.e., (6)]. 

V. SIMULATION RESULTS 

5.1 EXISTING METHOD RESULTS 

 
Figure 5.1:- Design summary 
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Figure 5.2:- RTL schematic 

 

 
Figure 5.3:- Simulation results  

 
Figure 5.4:- Time Summary 

5.2 PROPOSED RESULTS 

 
Figure 5.5:- one hot recoder output 

 
Figure 5.6:- SMSD multiplier output 

 
Figure 5.7:- one hot mux output 
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Figure 5.8:- partial products reduction 

output 

 
Figure 5.9:- double sd to bcd converter 

output 

 
Figure 5.10:- multiplier output 

5.3 EXTENSION RESULTS 

 
Figure 5.11:- RTL schematic output 

 
Figure 5.12:- design summary output 

 
Figure 5.13:- time summary output 
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Figure 5.14:- extension simultiuon output 

Conclusion In this paper we have presented 

several techniques to implement decimal 

parallel multiplication in hardware. We 

propose three different SD encodings for the 

multiplier that lead to fast parallel and 

simple generation of partial products. For 

partial product reduction we have developed 

a decimal carry–save algorithm based on a 

BCD–4221 representation of decimal digit 

operands. It makes possible the construction 

ofp:2decimal CSA trees that outperform the 

area–delay figures of existing proposals. 

Moreover, proposed techniques also allow 

the computation of combined binary/decimal 

multiplications with a moderate overhead. 

We have proposed an architecture for 

decimal SD radix–10 parallel multiplication 

and two combined architectures for 

binary/decimal SD radix– 4 and binary SD 

radix–4/decimal SD radix–5 multiplication. 

The area–delay figures from a comparative 

study including conventional binary parallel 

multipliers and other representative decimal 

proposals show that our decimal SD radix–
10 multiplier is an interesting option for 

high performance with moderate area.  
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