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Abstract— As an essential and difficult trouble in pc imaginative and prescient, face age 

estimation is typically cast as a classification or regression trouble over a hard and fast of face 

samples with respect to numerous ordinal age labels, which have intrinsically go-age correlations 

across adjacent age dimensions. As a result, such correlations usually result in the age label 

ambiguities of the face samples. Namely, each face pattern is related to a latent label distribution 

that encodes the go-age correlation facts on label ambiguities. Motivated by means of this 

remark, we advocate a totally information-pushed label distribution studying approach to 

adaptively examine the latent label distributions. The proposed approach is capable of 

successfully coming across the intrinsic age distribution patterns for pass-age correlation analysis 

on the basis of the nearby context structures of face samples. Without any prior assumptions at 

the sorts of label distribution learning, our method is capable of flexibly version the pattern-

particular context conscious label distribution homes by solving a multi-challenge problem, 

which mutually optimizes the obligations of age-label distribution mastering and age prediction 

for people. Experimental outcomes display the effectiveness of our technique. 

Index Terms—Age estimation, subspace learning, label distribution learning. 

 

1. INTRODUCTION 

As an important and challenging problem, 

face age estimation has recently attracted 

considerable attentions [1]–[7] as it has a 

wide range of applications such as face 

identification [8] and human-computer 

interaction [9]. Typical approaches to age 

estimation focus on the following three 

issues: I) face feature representation; II) face 

context structure construction; III) age 

prediction modeling. For I), the face 

appearance is usually represented by various 

visual features, such as face texture features 

(LBP, Garbor, and AAM) [10]–[12], 

biologically inspired features (BIF) [13], and  

 

deep learning features [8], [13], [12].  the 

face context structure is often modeled by  

constructing a face affinity graph for 

subspace analysis, which aims to capture the 

intrinsic interactions among face samples in 

the face-related image feature or attribute 

space (e.g., gender and race . The key 

problem of age prediction modeling is how 

to effectively learn the mapping function 

(e.g., non-linear and  hierarchical function) 

from low-level image features to high-level 

age labels.This paper proposes a subspace 

approach named AGES (Aging pattern 

Subspace) for automatic age estimation. 
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Instead of using isolated face images as data 

samples, AGES regards each aging pattern 

as a sample. The basic idea is to model the 

aging patterns by a representative subspace. 

Each point in the subspace corresponds to 

one aging pattern. The proper aging pattern 

for a previously unseen face image is 

determined by the projection in the subspace 

that can best reconstruct the face image. 

Once the proper aging pattern is determined, 

the position of the face in the aging pattern 

will then indicate its age. 

The rest of this paper is organized as 

follows: First, the related work is briefly 

reviewed in Section 2. Then, the concept of 

an aging pattern is introduced in Section 3. 

After that, the AGES algorithm is proposed 

in Section 4. In Section 5, the experimental 

results are reported. Finally, in Section 6, 

conclusions are drawn. 

 
Fig.1: Proposed System for Age Patterns 

2 RELATED WORK 

There are some earlier works aiming to 

simulate the aging effects on human faces, 

which is the inverse procedure of age 

estimation. For example, Burt and Perrett [2] 

simulated aging variations by superimposing 

typical aging changes in shape and color on 

face images. 

Later,Tiddeman et al. [5] extended this work 

by adopting a wavelet based approach to add 

high frequency information to the age 

progressed images. O’Toole et al. [5] 

described how aging variations can be made 

by applying a standard facial caricaturing 

algorithm to the 3D models of faces. Hutton 

et al. [9] proposed a dense surface point 

distribution model for expressing the shape 

changes associated with growth and aging. 

Hill et al. [7] presented a statistical approach 

to age face images along the “aging 

direction” in a face modelspace. Scandrett et 

al. [12] constructed a statistical model in 

which historical, familial, and average 

growth tendencies of a peer group can be 

incorporated. Ramanathan and Chellappa [9] 

proposed a craniofacial growth model that 

characterizes growth related shape variations 

observed in human faces during young ages. 

Although these works did not attempt age 

estimation, they did reveal some of the 

important facts in the relationship between 

age and face. Some other work tried to 

partly reveal the mapping from face to age. 

For example, Ramanathan and Chellappa [8] 

proposed a method for face verification 

across age based on a Bayesian classifier. 

Zana et al. [8] proposed a face verification 

algorithm in polar frequency domain which 

is robust against aging variation. Shi et al. 

[3] studied how effective are landmarks and 

their geometry-based approach for face 

recognition across ages. Kwonand da Vitoria 

Lobo [11] proposed an age classification 

method based on well-controlled high-

quality face images, which can classify faces 
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into one of the three groups (babies, young 

adults, and senior adults). Zhou et al. [11] 

presented a boosting-based algorithm for 

image-based regression (IBR). Although the 

algorithm was designed for the general 

purpose of IBR, it can be well applied to the 

problem of age estimation. The first true age 

estimation algorithm was proposed by 

Lanitis et al. [13]. In their work, the aging 

pattern is represented by the aging function: 

age ¼ fðbÞ, where b is the vector of the face 

model parameters and f is defined as a 

quadratic function. During the training 

process, a quadratic function is fitted for 

each individual in the training set as his/her 

aging function. To determine the suitable 

aging function for a previously unseen face 

image during age estimation, they proposed 

four different ways. Among the methods 

that do not rely on the external “lifestyle 

profiles,” the Weighted Appearance Specific 

(WAS) method achieved the best 

performance. 

Later, Lanitis et al. [12] compared their 

quadratic aging function method with 

several conventional classification methods 

in age estimation. The algorithms were 

tested in the single layer mode as well as in 

three hierarchical modes. As expected, all 

classifiers performed better in the 

hierarchical modes because the hierarchical 

structures handle the face image clusters 

separately according to the age groups or the 

appearance or both. Among them, the 

Appearance and Age Specific (AAS) 

method achieved the best performance. 

However, according to the experimental 

results, the quadratic aging function did not 

show remarkable superiority over the 

conventional classifiers in the overall 

performance. The aging function-based 

approaches regard age estimation as a 

conventional function regression problem 

without special design for the unique 

characteristics of aging variation. This 

limitation prevents them from obtaining 

more satisfying results. In detail, there might 

be four weaknesses in such approaches. 

First, the formula of the aging function is 

empirically determined. There is no 

evidence suggesting that the relationship 

between face and age is as simple as a 

quadratic function. Second, the temporal 

characteristic cannot be well utilized by the 

aging function. The dependent relationship 

among the aging faces is mono directional, 

i.e., the status of a certain face only affects 

those older faces. However, the relationship 

revealed by the aging function is 

bidirectional: Any changes on a particular 

face will change the aging function, hence 

affecting all other faces. Third, the learning 

of one person’s aging pattern is solely based 

on the face images of that person. Although 

people age in different ways, there must be 

some commonality among all aging patterns, 

i.e., the general trend of aging. Such 

commonality is also crucial in age 

estimation, especially when the personal 

training data is insufficient. Fourth, the 

aging function for the previously unseen 

face image is simply a linear combination of 

the known aging functions, rather than being 

generated from a certain model of aging 

patterns. All of these problems can be 

solved, from a new point of view, by the 

AGES algorithm. Changes start from the 

very beginning: data representation. 
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3 AGING PATTERN 

The aging function-based methods regard 

age estimation as a conventional 

classification problem: The data are the face 

images, the target is their age labels. 

According to the personalized characteristic, 

each image I should have one more label 

other than its age label age, i.e., its personal 

identity. If the problem is to be solved by 

supervised techniques like LDA (Linear 

Discriminant Analysis), then the algorithm 

must deal with the multilabel data, which is 

alone a problem in machine learning. 

On the other hand, if all of these labels can 

be integrated into the data representation, 

then the multilabel problem can be 

transformed into an unsupervised learning 

problem. Thus, we propose a data 

representation called Aging Pattern, which is 

the basis of AGES. A formal definition is 

given as follows: 

Definition 1. An aging pattern is a sequence 

of personal face images sorted in time order. 

The keywords are “personal” and “time.” 
All face images in an aging pattern must 

come from the same person and they must 

be ordered by time. Take the aging pattern 

shown in Fig. 1 as an example. Along the t 

axis, each age (0-8) is allocated one 

position. If face images are available for 

certain ages (2, 5, and 8), they are filled into 

the corresponding positions. If not, the 

positions are left blank. 

If all positions are filled, the aging pattern is 

called a complete aging pattern; otherwise, it 

is called an incomplete aging pattern. Before 

the aging pattern can be further processed, 

the face images in it are first transformed 

into feature vectors. Obviously, aging is a 

process related to both the shape and the 

texture of face. Thus, the Appearance Model 

[4] is used as the feature extractor, whose 

main advantage is that the extracted feature 

combines both the shape and the intensity of 

the face images. Fig. 1 gives an example of 

the vectorization of the aging pattern, where 

b2, b5, and b8 represent the feature vectors 

of the face images at the ages 2, 5, and 8, 

respectively. 

By representing aging patterns in this way, 

the two labels ageðIÞ and idðIÞ are naturally 

integrated into the data without any 

preassumptions. Each aging pattern implies 

one ID, each age is fixed into a position in 

the aging pattern, and the position is ordered 

according to time. Consequently, the 

personalized and temporal characteristics 

can be well utilized. As long as the aging 

patterns are well sampled, a proper model of 

aging patterns can be learned and the 

learning process is unsupervised. However, 

this brings two other challenges: 1) During 

training, the learning algorithm applied to 

the aging patterns must be able to handle 

highly incomplete training samples and 2) 

during age estimation on test data, the most 

suitable aging pattern as well as the most 

suitable position in that aging pattern must 

be selected for an unknown face image. The 

next section mainly tackles these two 

problems.  

4 THE AGES ALGORITHM 

4.1 Aging Pattern Subspace 

A representative model for the aging 

patterns can be built up by the information 

theory approach of coding and decoding. 

One  widely adopted technology is using 

PCA [10] to construct a subspace that 

captures the main variation in the data set. 
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The projection in the subspace is computed 

by 

 
where _ is the mean vector of x andWT 

¼W_1 is the transpose of  W, which is 

composed by the orthogonal eigenvectors of 

the covariance matrix of x. The difficulty is 

that the aging pattern vector x is highly 

incomplete. Based on the characteristics of 

aging patterns, an EM-like algorithm is 

proposed here to learn a representative 

subspace. 

Suppose the training set has N aging pattern 

vectors D={x1; . . . ; xN}. Any sample in 

this set can be written as xk ¼ {xak; 

xm},where xak are the available features 

and xmk are the missing features 

of xk. Suppose the transformation matrix 

isW, the projection yk of xk in the subspace 

can be calculated by (1) and the 

reconstruction of xk is calculated by 

 
It is well known that standard PCA can be 

derived by minimizing the mean 

reconstruction error (residuals) of the data 

set D in the subspace [10]. With the 

presence of the missing features xmk , the 

goal is changed into finding aWthat 

minimizes the mean reconstruction error of 

the available features 

 
 In case the number of missing features in 

different instances is highly uneven, (3) 

should be normalized by the dimensionality 

of the missing part. This is equivalent to a 

preprocess of dividing each instance by its 

missing dimensionality. The FG-NET Aging 

database used in this paper has a similar 

number of missing features in each aging 

pattern; thus, there is no significant 

difference observed in the experiments 

with/without the normalization. 

When initializing, xmk is replaced by the 

mean vector  calculated from other samples 

whose corresponding features are available. 

Then, standard PCA is applied to the full-

filled data set to get the initial 

transformation matrix W0 and mean vector 

_0. In the iteration i, the projection of xk in 

the subspace spanned byWi is estimated 

first. Since there are many missing features 

in xk, the projection cannot be computed 

directly by (1). Note that the aging patterns 

are highly redundant; it is possible to 

estimate yk only based on part of xk [4], say 

xak . Instead of using inner product, yk is 

solved as the least squares solution of  

 
. Then, standard PCA is applied to the 

updated data set to get the new 

transformation matrix Wiþ1 and mean 

vector _iþ1. The whole process repeats until 

the maximum iteration _ is exceeded or "a is 

smaller than a predefined threshold _. The 

convergence of this algorithm is proven in 

the Appendix.   

During the training process of AGES, the 

missing faces in the training aging patterns 

can be simultaneously learned by 

reconstructing the whole aging pattern 

vectors through (2). Fig. 2 shows some 

typical examples of the “full-filled” aging 

patterns when AGES is applied to the FG-

NET Aging Database [4]. For clarity, only 

the faces in the most changeable age range 

from 0 to 18 with two year increments are 

shown. Since remarkable variations other 
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than the aging effects exist in the FG-NET 

Aging Database and the feature extractor 

does not treat them separately, some 

generated faces present noticeable variations 

in expression, pose, or  llumination. These 

variations can be dealt with, as will be 

discussed in Section 5, by applying LDA to 

the Appearance Model parameters. It can be 

seen that the learned faces inosculate with 

those real faces very well in the aging 

patterns. Thus, this learning algorithm can 

also be used to simulate aging effects on 

human faces. The process of the learning 

algorithm is actually a process of interaction 

between the global aging pattern model and 

the personalized aging patterns. As 

mentioned in Section 2, although different 

people age in different ways, the 

commonality (modeled by the subspace) of 

all aging patterns is also crucial for age 

estimation, especially when the aging 

patterns are highly incomplete. 

In each iteration, the missing part of the 

personal aging pattern is first estimated by 

the current global aging pattern model. 

Then, the global model is further refined by 

the updated personal aging patterns. In this 

way, the commonality and the personality of 

the aging patterns are alternately utilized to 

learn the final subspace. 

4.2 Age Estimation 

The aging pattern subspace is a global 

model for aging patterns, each of which 

corresponds to a sequence of age labels. But, 

the task of age estimation is based on a 

single face input and expects a single age 

output. This section will describe how this 

can be done with the aging pattern subspace. 

Given a previously unseen face image I, its 

feature vector b is first extracted by the 

feature extractor. Recall the two steps of age 

estimation mentioned in Section 1. The first 

step is to find a proper aging pattern for I. 

Note that each point in the subspace 

corresponds to one aging pattern. Thus, the 

proper aging pattern for I can be selected 

through finding a point in the subspace that 

can best reconstruct b, i.e., minimizing the 

reconstruction error. However, without 

knowing the position of I in the aging 

pattern, which should be determined in the 

second step, the reconstruction error cannot 

actually be calculated. Thus, I is placed at 

every possible position in the aging pattern, 

getting p aging pattern vectors zjðj ¼ 1 . . . 

pÞ by placing b at the position j in zj. Noting 

that b is the only available feature in zj, the 

projection yj can be estimated by (4), and 

the reconstruction error can be calculated by  

 
where µj is the part in µand Wj is the part in 

W that corresponds to the position j. Then, 

the projection yr that can reconstruct b with 

minimum reconstruction error over all of the 

p possible positions is determined by  

 
Thus, the suitable aging pattern for I is zr. 

Step 2 afterward becomes trivial because r 

also indicates the position of I in zr. Finally, 

the age associated to the position r is 

returned as the estimated age of I. As a 

byproduct of age estimation, the whole 

aging pattern vector can be reconstructed as 

Wyr, which can be used to simulate faces at 

different ages of the subject in I. During the 

age estimation process of AGES, the proper 

aging pattern for the test image is generated 

based on both the aging pattern subspace 

and the face image feature. The subspace 
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defines the general trend of aging, and the 

face image feature represents the 

personalized factors. By placing the feature 

vector at different positions, candidate aging 

patterns specified to the test face are 

generated. Among these candidates, only 

one is consistent with the general aging 

trend, which can be detected viaminimum 

reconstruction error by the aging pattern 

subspace. At the same time, the position of 

the test image in that aging pattern can be 

determined. 

5.AGING EFFECTS SIMULATION 

AND FACE RECOGNITION 

As mentioned in Section 4.2, given a face 

image, AGES can be used to simulate face 

images at different ages. Besides the direct 

applications of aging effects simulation, 

such as aging missing children, it can be 

used for face recognition systems across 

ages.For each subject in the FG-NET Aging 

Database, 10 pairs of face images are 

randomly selected, the first one as “gallery” 
face and the second one as “probe” face. 

Usually, there is remarkable age difference 

between them. Given a probe face, the 

objective of aging effects simulation is to 

generate a face image at the age of the 

gallery face. Some typical results of the 

simulation by AGES are shown in Fig. 6. As 

can be seen that the simulated faces look 

quite similar to thereal faces (the gallery 

faces), only with slight difference in pose, 

illumination, or expression. It is noteworthy 

that, for the first probe face, the simulated 

face looks relatively more different from the 

gallery face. This might be because the 

gallery face wears glasses, which is 

impossible to predict based on the 4-year-

old probe face. To evaluate the simulation 

quantitatively, the difference between 

images is calculated as the Mahalanobis 

Distance (MD) between the Appearance 

Model parameters. The average MD from 

the original probe faces to the gallery faces 

is 18.83, while that between the simulated 

faces to the gallery faces is 11.92, which 

reveals that the simulation makes the probe 

faces more similar to the gallery faces.If one 

gallery face from each subject (82 subjects 

in the FG-NET Aging Database) is selected 

and composes a database, then each probe 

face can be recognized by this database. The 

most common implementation is to calculate 

the similarity between a probe face and each 

gallery face in the database, then recognize 

the probe as the person in the most similar 

gallery image. Here, the Mahalanobis 

Distance is used again as the similarity 

measure. Also, we use the same 10 gallery-

probe pairs selected from each subject in the 

aging simulation experiment. Note that the 

gallery set and the probe set are both 

selected randomly and they do not have 

intersection. Each time, the gallery face in 

one pair from each subject is used to build a 

database and the probe face in that pair is 

used to constitute a test set corresponding to 

the database. In total, 10 gallery databases 

and 10 corresponding probe sets are 

composed. One face recognition test is 

performed on each pair of them. The 

average recognition rate of the 10 tests 

without aging simulation is 14.39 percent. If 

the probe face is first simulated by AGES to 

the age of the gallery face, then the average 

recognition rate can be improved to 38.05 

percent. Of course, the assumption that the 

ages of both the probe and the gallery faces 

are known before the recognition is 
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sometimes unsatisfactory. One possible way 

to solve this problem is to simulate the 

whole aging pattern from the gallery/probe 

face and recognize the “probe aging pattern” 
based on the database of the “gallery aging 

patterns.” 

 
Fig. 2. Typical examples of aging effects 

simulation by AGES. The ages are marked 

at the right-bottom corner of the images. 

6 CONCLUSION 

This paper proposes an automatic age 

estimation method named AGES, which 

improves our earlier work [5]. It is 

interesting to note that, at least under the 

experimental configuration in this paper, the 

performance of AGES is not only 

significantly better than that of the state-of-

the-art algorithms, but also comparable to 

that of the human observers. 

The current preprocessing method in AGES 

relies on many landmark points in the face 

images, eventually these landmarks should 

be determined by applying automatic land 

marking algorithms like [3]. Moreover, the 

current preprocess does not retain the 

information about the outer contour size of 

the face. However, face size varies across 

ages, especially during formative years.  

Hence, as future work, taking the size and 

shape of the face contour into consideration 

might significantly improve the accuracy of 

AGES, especially for age estimation on 

children’s faces. Besides age estimation, 

AGES can be utilized in other computer 

vision tasks. For example, with the ability to 

simulate facial aging effects, AGES can be 

used for face recognition across ages, which 

has been tested in the experiment. More 

generally, pose and illumination variations 

are always troublesome in computer vision 

systems. 

Similar to AGES dealing with images at 

different ages, images under different pose 

and illumination conditions can be treated as 

a whole (analogous to an aging pattern). 

This idea has been explored in face 

recognition, known as the “Eigen Light-

field” [6], [30]. In order to model the light-

field, a “generic training data set” is required 

in such works, which contains face images 

under all possible pose and illumination 

conditions. But, this is not always available 

in reality.  
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