

Vol 08 Issue07, Jul 2019 ISSN 2456 – 5083 www.ijiemr.org

COPY RIGHT

2019IJIEMR.Personal use of this material is permitted. Permission from IJIEMR must

be obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted

component of this work in other works. No Reprint should be done to this paper, all copy

right is authenticated to Paper Authors

IJIEMR Transactions, online available on 15
th

Jul 2019. Link

:http://www.ijiemr.org/downloads.php?vol=Volume-08&issue=ISSUE-07

Title: ANALYSIS OF IMAGE DETECTION

Volume 08, Issue 07, Pages: 121–128.

Paper Authors

PRANEEL KUMAR PERURU, Dr. G. K. VENKATA NARASIMHA REDDY

 USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER

To Secure Your Paper As Per UGC Guidelines We Are Providing A Electronic

Bar Code

Vol 08 Issue07, Jul 2019 ISSN 2456 – 5083 Page 121

ANALYSIS OF IMAGE DETECTION
1
PRANEEL KUMAR PERURU, 2Dr. G. K. VENKATA NARASIMHA REDDY

1
Research Scholar, Department of CSE, JNTUA College of Engineering, Ananthapuramu.

2
Head & Professor dept of CSE, Srinivasa Ramanujan Institute of technology,Anantapuramu.

ABSTRACT

Modern technology makes it easier to manipulate images. It is important to detect image forgery

effectively since it can be malicious and has severe consequences. Different algorithms have

been designed to detect various image tampering operations. We construct a dataset from the

available raw images and benchmark the algorithms. Moreover, we conduct preliminary fusion

according the output maps of the algorithms.

1. INTRODUCTION

As growing of media communication and

video on demand is desired, image data

compression has received an increasing

interest. The main purpose of image

compression is to gain a very low bit rate

and achieve a high visual quality of

decompressed images. Image compression

are used all fields of media communication

such as multimedia, medical image

recognition, digital image processing. The

fundamental techniques of video

compression are based on the schemes of

still gray level image compression and

colored image compression.Images can be

manipulated in various ways. Different

touch-ups and image manipulation

techniques are applied to augment or

enhance a given image. For instance, mobile

applications such as Instagram are very

popular where users apply “filters” to

improve the presentation of their images.

Furthermore, images are regularly re-sized

and recompressed, such that they can be

more easily exchanged over the Internet due

to the proliferation of cloud-based photo

sharing and editing websites like Flickr and

Picasa, spurred by the social media

applications like WhatsApp, Instagram and

Snapchat. These manipulations are typically

not recognized as Image Tampering as the

intent to manipulate the information content

of the images is minimal. However, there

exists many instances where nefarious intent

is the sole purpose of manipulating images,

such as manipulating the dollar amount on

receipt images. Figure 1 illustrates an

example of a forged image: the left picture is

a manipulated picture showing a dent on a

car, while the testing result on the right

shows that it is highly possible that the dent

is not authentic.The proliferation of image

processing software, such as Photoshop and

GIMP, provides the necessary tools to

(a) The manipulated image

Vol 08 Issue07, Jul 2019 ISSN 2456 – 5083 Page 122

(b) The likelihood map

Figure 1: Manipulated image of a car and

testing result achieve malicious

manipulation of images with ease.

This makes the reliable detection of

tampering instances an important task. The

process of detecting such manipulations is

termed Image Forensics. An image forensics

algorithm shall output information

indicating whether the image hasBeen

tampered with, as well as more importantly,

identify the portions of the image that have

been altered.

 Achieve malicious manipulation of

images with ease. This makes the reliable

detection of tampering instances an

important task. The process of detecting

such manipulations is termed Image

Forensics. An image forensics algorithm

shall output information indicating whether

the image has been tampered with, as well

as more importantly, identify the portions of

the image that have been altered. Image

tampering and manipulation is typically

detected with two kinds of techniques. First,

active techniques which involve embedding

a watermark to an image when it is taken

and authenticating the image by checking

the watermark. These techniques have not

gained much momentum as they require

sophisticated hardware Birajdar and Mankar

[1]. Second, passive techniques that asses

the integrity of the image based on the

content and structure of the data

representing the image.

 The image processing parts of Java are

buried within the java. Awt .image package.

The package consists of three interfaces and

eleven classes, two of which are abstract.

They are as follows:

• The Image Observer inter face provides the
single method necessary to support the

asynchronous loading of images. The

interface implementers watch the production

of an image and can react when certain

conditions arise. We briefly touched on

Image Observer when we discussed the

Component class (in Chapter 5,

Components), because Component

implements the interface.

• The Image Consumer and Image Producer
inter faces provide the means for low level

image creation. The Image Producer

provides the source of the pixel data that is

used by the Image Consumer to create an

Image.

• The Pixel Grabber and Image Filter
classes, along with the Area Averaging

Scale Filter, Crop Image Filter, RGB Image

Filter, and Replicate Scale Filter subclasses,

provide the tools for working with images.

Pixel Grabber consumes pixels from an

Image into an array. The Image Filter

classes modify an existing image to produce

another Image instance. Crop Image Filter

makes smaller images; RGB Image Filter

alters pixel colors, while Area Averaging

Scale Filter and Replicate Scale Filter scale

images up and down using different

algorithms. All of these classes implement

Vol 08 Issue07, Jul 2019 ISSN 2456 – 5083 Page 123

Image Consumer because they take pixel

data as input.

2. LITERATURE REVIEW

 CASIA Image Tampering Detection

Evaluation Database is a widely used

standard dataset for evaluating forgery

detection. It consists of uncompressed

images with various resolution as well as

JPEG images with different compression

quality factors. The images involve splicing

(with arbitrary contour) and also post-

processing (blurring and filtering). However,

this dataset does not provide the ground

truth masks for localization of the tampering

operations. Furthermore, the authors argue

that there exist statistical artifacts in the way

the dataset is built, and might produce unfair

results for many forgery detection

algorithms. MICC Image Databases is a

dataset which aimed at copy move forgery

detection and localization. The databases

can be further divided into there datasets:

F2000, F600, F220, which all contains high

resolution images. In each of these datasets,

around half of the images are tampered.

Only the F600 provides ground truth masks

for the tampered images. The type of

processing on the copy-move forgeries is

limited to rotation and scaling. Dresden

Image Database is constructed with the aim

of evaluating and developing methods for

detecting image tampering as well as

identifying the type of device for the

acquisition of an image. It contains images

taken using 73 digital cameras in 25

different models. They use various camera

settings when the authors take the pictures.

Columbia Uncompressed Image Splicing

Detection Evaluation Dataset [26] provides

tampered and original images with image

splicing without various post processing

techniques applied. It also provides edge

ground truth masks for evaluation of the

localization of the tampered images.

However, the resolution is low and the size

of the set is small (e.g., 363 images with 180

tampered and 183 authentic.

 RAISE Raw Image Dataset consists of 8156

high resolution uncompressed images. The

images contain various categories, including

outdoor images, indoor images, Landscape

and Nature scenes along with People,

Objects and Buildings. They have also

provided smaller subsets, RAISE-1k,

RAISE-2k,

RAISE-4k and RAISE-6k. Uncompressed

Colour Image Database [28] was originally a

benchmark dataset for image retrieval with

the goal of understanding the effects of

compression on content based image

retrieval (CBIR).

3. PASSIVE AND BLIND

LOCALIZATION TECHNIQUES

Passive detection techniques normally do

not involve the study of the contents of the

image and only concentrate on various

image statistics that can be used to discern

from non-tampered regions from tampered

regions. Some of the techniques involve

exploiting the artifacts and inconsistencies

that are created due to JPEG compression

used widely as an Image format. Some

techniques exploit the inherent noise present

in the image due to difference in Color Filter

array interpolation in different cameras or

inconsistencies in the local noise pattern

caused due to splicing. Yet another class of

algorithm looks at the lighting

inconsistency, but as these are primarily

semi-automatic techniques, we will not be

Vol 08 Issue07, Jul 2019 ISSN 2456 – 5083 Page 124

evaluating them. The biggest defining

characteristics of the algorithms we review

is that they do not involve any prior

knowledge about the content of the image

and only try to detect tampering through

statistical means. For a list of algorithms that

work only for copy-move operations, [4]

provides a survey and benchmark. In

general, a copy-move tampering does not

need sophisticated techniques. We thus

focus more heavily on splicing. For the

names of the algorithms, we will use

abbreviations according to Zampoglou et al.

[21] for convenience.

4. IMAGE PRODUCER AND COLOR

MODEL

4.1 Image Producer

The ImageProducer inter face defines the

methods that ImageProducer objects must

implement. Image producers serve as

sources for pixel data; they may compute the

data themselves or interpret data from some

external source, like a GIF file. No matter

how it generates the data, an image

producer’s job is to hand that data to an

image consumer, which usually renders the

data on the screen. The methods in the

ImageProducer inter face let

ImageConsumer objects register their

interest in an image. The business end of an

ImageProducer—that is, the methods it uses

to deliver pixel data to an image

consumer—are defined by the

ImageConsumer inter face. Therefore, we

can summarize the way an image producer

works as follows: • It waits for image
consumers to register their interest in an

image. • As image consumers register, it
stores them in a Hashtable, Vector, or some

other collection mechanism. • As image data

becomes available, it loops through all the

registered consumers and calls their methods

to transfer the data. There’s a sense in which

you have to take this process on faith; image

consumers are usually well hidden. If you

call createImage(), an image consumer will

eventually show up. Ever y Image has an

ImageProducer associated with it; to acquire

a reference to the producer, use the

getSource() method of Image. Because an

ImageProducer must call methods in the

ImageConsumer inter face, we won’t show

an example of a full-fledged producer until

we have discussed ImageConsumer.

4.2 Color Model

A color model determines how colors are

represented within AWT. Color Model is an

abstract class that you can subclass to

specify your own representation for colors.

AWT provides two concrete subclasses of

Color Model that you can use to build your

own color model; they are Direct Color

Model and Index Color Model. These two

correspond to the two ways computers

represent colors internally. Most modern

computer systems use 24 bits to represent

each pixel. These 24 bits contain 8 bits for

each primary color (red, green, blue); each

set of 8 bits represents the intensity of that

color for the particular pixel. This

arrangement yields the familiar “16 million

colors” that you see in advertisements. It

corresponds closely to Java’s direct color

model. However, 24 bits per pixel, with

something like a million pixels on the

screen, adds up to a lot of memory. In the

dark ages, memory was expensive, and

devoting this much memory to a screen

buffer cost too much. Therefore, designers

used fewer bits — possibly as few as three,

Vol 08 Issue07, Jul 2019 ISSN 2456 – 5083 Page 125

but more often eight—for each pixel.

Instead of representing the colors directly in

these bits, the bits were an index into a color

map. Graphics programs would load the

color map with the colors they were

interested in and then represent each pixel

by using the index of the appropriate color

in the map. For example, the value 1 might

represent fuschia; the value 2 might

represent puce. Full information about how

to display each color (the red, green, and

blue components that make up fuschia or

puce) is contained only in the color map.

This arrangement corresponds closely to

Java’s indexed color model. Because Java is

platform-independent, you don’t need to

worry about how your computer or the

user’s computer represents colors. Your

programs can use an indexed or direct color

map as appropriate. Java will do the best it

can to render the colors you request. Of

course, if you use 5,000 colors on a

computer that can only display 256, Java is

going to have to make compromises. It will

decide which colors to put in the color map

and which colors are close enough to the

colors in the color map, but that’s done

behind your back. Java’s default color

model uses 8 bits per pixel for red, green,

and blue, along with another 8 bits for alpha

(transparency) level. However, as I said

earlier, you can create your own Color

Model if you want to work in some other

scheme. For example, you could create a

grayscale color model for black and white

pictures, or an HSB (hue, saturation,

brightness) color model if you are more

comfortable working with this system. Your

color model’s job will be to take a pixel

value in your representation and translate

that value into the corresponding alpha, red,

green, and blue values. If you are working

with a grayscale image, your image

producer could deliver grayscale values to

the image consumer, plus a Color Model

that tells the consumer how to render these

gray values in terms of ARGB components.

5. BLUNDER LEVEL ANALYSIS

Error level analysis is another method

proposed by Krawets. It works by

intentionally resaving the JPEG image at a

known error rate and then computing the

difference between the images. Any

modification to the picture will alter the

image such that stable areas become

unstable. Differently compressed versions of

the image are compared with the possibly

tampered one by Farid. When the same

quality factor of the tampered area is

adopted, a spatial local minima, christened

as JPEG ghosts by the author, appear and

can be used to discern tampered regions.

Wang et al. extend the analysis by extracting

the high frequency noise from this noise

map using Principal Component Analysis

and then characterizing the tampered region

based on the high frequency noise.

5.1 Block Artifact Grids

For manipulated images, when the tampered

part is pasted into the background image, the

DCT blocks do not match and some block

artifacts will be left. Li et al. describe a

method that uses second order difference of

pixel values to extract the Block Artifact

Grids and then automatically identify the

regions which are likely to be tampered. Ye

et al. proposes two methods. The first

method uses DCT coefficients to estimate

the block artifacts. The second method is by

first estimating the DCT quantization table

Vol 08 Issue07, Jul 2019 ISSN 2456 – 5083 Page 126

and then checking the uniformity of the

quantization remainders.

5.2. Camera and Local Noise Residuals

5.1.1 Color Filter Array

Image features like Local Noise or Camera

Noise arising from the image acquisition

process or due to the manufacturing or

hardware characteristics of a digital

cameras, provide sufficient information to

determine an image’s authenticity since they

are sensitive to image manipulation as well

as being difficult to forge synthetically. The

methods described in this section are based

on the intuition that image regions of

different origins may have different noise

characteristics introduced by the sensors or

post-processing steps of their original

source.

During acquisition, every pixel receives only

a single color-channel value (red, green or

blue). To produce the final

image, the raw data undergoes an

interpolation process, using Color Filter

Array (CFA) to obtain a color image with

different cameras using slightly different

parameters to perform the interpolation.

Dirik and Memon, Ferrara et al. exploit the

artifacts created by Color Filter Array

processing in most digital cameras. Both of

the techniques involve estimating CFA

interpolation pattern and CFA based noise

analysis as features and training a classifier

based on these features. This line of attack is

more robust than the algorithms mentioned

above as they can be applied to images other

than those saved in JPEG format. A

limitation is that the CFA estimation are

sensitive to strong JPEG recompression and

resizing.

5.3 Genetic algorithm

Genetic Algorithms (GAs) are procedures

that follow the principles of natural selection

and natural genetics code, that have proved

to be very efficient searching for

approximations to global optima in large and

complex spaces in relatively short time. The

basic components of GAs are:

o genetic operators (mating and mutation)

o an appropriate representation of the

problem that is to be solved

o a fitness function

o an initialization procedure

With these basic components of GA, the

procedure as follows. It starts with the

initialization procedure to generate the first

population. The members of the population

are basically the strings of symbols

(chromosomes) that represent possible

solutions to the problem to be solved. Each

members of the population for the given

generation is evaluated, and, according to its

fitness, it is assigned a probability to be

selected for reproduction. By using this

probability distribution, the genetic

operators select some of the individuals.

New individuals are obtained, by applying

these operators. The mating operator selects

two population members and combines their

respective chromosomes to create offspring.

The mutation operator selects a member of

the population and changes some part of its

chromosomes. The elements of the

populations with the worst fitness measure

are replaced by the new individuals.

Vol 08 Issue07, Jul 2019 ISSN 2456 – 5083 Page 127

CONCLUSION

In this paper, we summarized state-of-the-art

algorithms for image forgery detection. We

prepared a dataset for benchmarking

algorithms. For benchmarking, it may

appear anomalous that the detection results

are better than the classification ones.

However, detection curves are computed

only for positive images, i.e. for those

images where manipulations exist. It is

worth noting that our two benchmarks for

detection have different meanings. The one

according to IOU is based on the number of

correctly and incorrectly detected images,

while the one according to the area is based

on the number of correctly and incorrectly

detected pixels. The latter one has much

worse result since the requirement is more

strict.

REFERENCES

[1] Ruey-Feng Chang,Wen-Tsuen Chen,and

Jia-Shung Wang,”A Fast Finite-State

Algorithm for Vector Quantization Design”,

IEEE Transaction on Signal Processing,

Vol.40, No.1, January 1992.

[2] Hong Wong, Ling LU, DA-Shun Que,

Xun Luo,”Image Compression Based on

Wavelet Transform and Vector

Quantization” IEEE proceedings of the First

international Conference on Mchine

Learning and Cybernetics, Beijing,

November 2002.

[3] Y.W. Chen, Vector Quantization by

principal component analysis, M.S. Thesis,

National Tsing Hua University, June, 1998.

[4] M.F. Barnsley and L.P. Hurd, Fractal

Image Compression, AK Peters, Ltd.

Wellesley, Massachusetts, 1993.

[5] A.E. Jacquin, Imagecoding basedon a

fractaltheory of iterated contractive image

transformations. IEEE Trans. on Image

Processing, vol. 1, 18-30, 1992.

[6] H.S. Chu, A very fast fractal

compression algorithm, M.S. Thesis,

National Tsing Hua University, June, 1997.

[7] Y. Fisher, Editor, Fractal Image

Compression: Theory and Applications,

Springer-Verlag, 1994.

[8] Nitesh Kumar More,Sipi Dubey,” JPEG

Picture Compression Using Discrete Cosine

Transform” International Journal of Science

and Research (IJSR), India Online ISSN:

2319-7064

[9] M. Antonini, M. Barlaud, P. Mathieu,

and I. Daubechies, Image coding using

wavelet transform, IEEE Trans. on Image

Processing, vol. 1, 205-220, 1992.

[10] A.S. Lewis and K. Knowles, Image

compression using 2D wavelet transform,

IEEE Trans. on Image Processing, vol. 1,

244-250, 1992. Gibson, D., Spann, M.,

Woolley, S.: A wavelet-based region of

interest encoder for the compression of

angiogram video sequences. IEEE Trans. Inf

Technol. Biomed. 8(2), 103–113 (2004)

12. Pearlman, W.A., Islam, A., Nagaraj, N.,

Said, A.: Efficient lowcomplexity image

coding with a set-partitioning embedded

block code. IEEE Trans. Circuits Syst.

Video Technol. 14, 1219–1235 (2004)

13. Do, M.N., Vetterli, M.: The contourlet

transform: an efficient directional

multiresolution image representation. IEEE

Vol 08 Issue07, Jul 2019 ISSN 2456 – 5083 Page 128

Trans. Image Process. 14(12), 2091–2106

(2005)

14. Eslami, R., Radha, H.: Wavelet-based

contourlet packet image coding. In: 2005

conference on information sciences and

systems.(2005)

15. Eslami, R., Radha, H.: A new family of

nonredundant transforms using hybrid

wavelets and directional filter banks. IEEE

Trans.Image Process. 16(4), 1152–1167

(2007)

16. Singh, S., Kumar, V., Verma, H.K.:

Adaptive threshold-based classification in

medical image compression for

teleradiology. Comput. Biol. Med. 37, 811–
819 (2007)

17. Chikouche, D., Benzid, R., Bentoumi,

M.: Application of the DCT and arithmetic

coding to medical image compression. In:

International conference on information and

communication technologies: from theory to

applications (ICTTA 2008), pp. 1–5 (2008).

doi:10.1109/ICTTA.2008.4530107

18. Sanchez, V., Nasiopoulos, P.,

Abugharbieh, R.: Efficient lossless

compression of 4-D medical images based

on the advanced video coding scheme. IEEE

Trans. Inf. Technol. Biomed. 12(4), 442–
446 (2008)

19. Hearaly, B.C., Viprakasit, D., Johnston,

W.K. III.: The future of teleradiology in

medicine is here today. Springer (2008)

20. Xiu-wei, T., Feng, Z.X., Fu, D.T.:

Wavelet-based contourlet coding using

SPECK algorithm. In: International

conference on signal processing (ICSP

2008), pp. 1203–1206 (2008).

doi:10.1109/ICOSP.2008.4697346

21. Soman, K.P., Ramachandran, K.I.,

Resmi, N.G.: Insight into wavelets-from

theory to practice. PHI Learning Pvt. Ltd

(2010)

22. Sapkal, A.M., Bairagi, V.K.:

Telemedicine in India: a review challenges

and role of image compression. J. Med.

Imaging Health Inf. 1(4), 300–306 (2011)

23. Lalitha, Y.S., Latte, M.V.: Image

Compression of MRI image using planar

coding. Int. J. Adv. Comput. Sci. Appl. 2(7),

23–33(2011)

24. Nguyen, B.P., Chui, C.-K., Ong, S.-H.,

Chang, S.: An efficient compression scheme

for 4-D medical images using hierarchical

vector quantization and motion

compensation. Comput. Biol. Med. 41, 843–
856 (2011)

25. Sevak, M.M., Thakkar, F.N., Kher, R.K.,

Modi, C.K.: CT image compression using

compressive sensing and wavelet transform.

In: international conference on

communication systems and network

technologies (CSNT), pp. 138–142 (2012)

26. Zhu, Z., Wahid, K., Babyn, P., Yang, R.:

Compressed sensingbased MRI

reconstruction using complex double-

density dualtree DWT. Int. J. Biomed.

Imaging 2013, (2013). doi:10.1155/

2013/907501

27. Prabhu, K.M.M., Sridhar, K., Mischi,

M., Bharath, H.N.: 3-D warped discrete

cosine transform for MRI image

compression. Biomed. Signal Process.

Control 8, 50–58 (2013)

