

Vol 12 Issue 01, Jan 2023 ISSN 2456 – 5083 www.ijiemr.org

COPY RIGHT

2023 IJIEMR. Personal use of this material is permitted. Permission from IJIEMR must

be obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted

component of this work in other works. No Reprint should be done to this paper, all copy

right is authenticated to Paper Authors

IJIEMR Transactions, online available on 11
th

 Jan 2023. Link

:http://www.ijiemr.org/downloads.php?vol=Volume-12&issue=Issue 01

DOI: 10.48047/IJIEMR/V12/ISSUE 01/67

Title Yet Another Log Parser - Effective System for Pattern Recognition and Parsing of

Large Log Files

Volume 12, ISSUE 01, Pages: 703-716

Paper Authors

Srikari Rallabandi, Akash Singh

 USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER

To Secure Your Paper As Per UGC Guidelines We Are Providing A Electronic

Bar Code

http://www.ijiemr.org/

Volume 12, Issue 01, Jan 2023 ISSN 2456 – 5083 Page 703

Yet Another Log Parser - Effective System for Pattern

Recognition and Parsing of Large Log Files
Srikari Rallabandi1∗and Akash Singh2†

1 Vidya Jyothi Institute of Technology, Hyderabad, India
sreeku.ralla@gmail.com

2 InvenioLSI Hyderabad, India
akkiind4@gmail.com

Abstract

Software logs are the crucial cogs in software systems analysis, as such, Log files are

responsible for providing useful information about software running in an organization. It is

seldom suitable to store logs in databases owing to various reasons. Each of these software

uses its own set of logging patterns and thus creates a different set of columnar data. These

logs are often unstructured data items due to frequent changes in log lines at various levels.

However, Analysis of these log messages is crucial in order to present usable information

(e.g., patterns) to system administrators so that managing and monitoring the jobs in an

organization is more effective, such as anomaly detection, alert generation, and event

prediction. Recognizing patterns in the humongous log files from disparate sources without

prior information is a huge task.

The objective of this paper is to propose a design architecture that would help recognize log

patterns from heterogenous log files, thereby providing effective system from DevOPs and

maintenance standpoint. In this paper, we propose a method named YALP - Yet Another Log

Parser, that generates and categorizes logs into high-quality pattern efficiently with high

precision rate. YALP uses map-reduce framework which can be to process millions of log

messages in seconds in distributed framework. String-processing and text- processing method

is applied to organize log events in groups. To identify static and dynamic content of log

events, in same group, Frequency analysis is then applied. This method exploits algorithmic

techniques to minimize the computational overhead since log messages are always

automatically generated. All this process is done dynamically so that no log preprocessing is

required from an end-user perspective. The parser is ready and outputs the structured logs as

soon as it starts receiving log lines or a file containing log lines as input. Performance

evaluation is then done using datasets of LogPai [16] benchmark.

mailto:sreeku.ralla@gmail.com
mailto:akkiind4@gmail.com

Volume 12, Issue 01, Jan 2023 ISSN 2456 – 5083 Page 704

Introduction

Logging in software systems is one of the

most commonly used mechanisms which

helps in maintenance and troubleshooting

by recording the software’s states and

behaviours. The field of IoT(IoT involves

machine-to-machine communications

(M2M)) still has yet to find a standardised

logging features, due to the rapid growth

of the field and presence of diverse variety

of "things", but continunous monitoring of

interconnected devices is important so that

downtime of the system is minimised by

quickly detecting and resolving anomalies

and bugs. Thus, it is incredibly challenging

to parse and analyze log messages from

software systems.

In this paper, the focus is on (semi-

)automatically converting unstructured raw

log events into a structured format that

would facilitate further analysis. The

parser will decide and categorize the log

tokens into static and dynamic tokens. Log

File headers are taken care of in this stage

itself, as they have the same structure as

other log lines. The log analyzer has one

component to recognize patterns from

these processed log messages and another

component to match these patterns with

the inflow of log messages to identify

events and anomalies.

Log Analysis tools are offered by many

companies, such as Splunk [23], Sumo

Logic [5], Loggly [4], LogEntries [3], etc.

Opensource developers have also worked

in the area of log management and analysis

such as ElasticSearch [1], Graylog [2], and

OSSIM [10]. Regular Expressions(RegEx)

is being used by the majority of these tools

and packages to match log messages.

These tools support supervised matching

by definition, as the system administrators

must have prior knowledge/experience of

working with regex expressions.

Furthermore, due to the use of multiple

logging libraries, new log formats are

produced everyday, consequently, new

regular expressions need to be

added/updated on regular basis.It is

impractical to use regular expressions to

parse various logs, which lead researchers

to develop increasingly intelligent log

parsing techniques (see [12] for a good

survey). Existing approaches, however,

have certain drawbacks to them [12]

including their reliance on domain

knowledge, inability to demarcate static

content from dynamic variables for

Volume 12, Issue 01, Jan 2023 ISSN 2456 – 5083 Page 705

O

complex log files, and use of advanced

machine learning algorithms, which

require parameter tuning at various levels.

HLAer [24] is one such methodology

developed in the area of automated log

pattern recognition, which parses

heterogenous log messages automatically..

Owing to high memory requirements and

huge overhead communication in parallel

implementation, HLAer is not efficient

and scalable, despite being unsupervised

and robust to heterogeneity.

We propose, through this paper, YALP, an

end to end framework which is capable of

addressing all the deficiencies with

existing tools and packages. YALP is an

unsupervised framework that scans log

messages only once and can quickly

process hundreds of millions of log

messages with minimal memory. It is a

simple yet powerful approach that

recognizes log structures from any log

files without prior domain knowledge or

using complex machine learning

techniques. It relies on string matching and

regional frequency analysis for data pre-

processing. It begins by grouping similar

log events into groups using the clustering

module. A pattern is then generated for

each cluster by our pattern recognition

module. It then uses frequency analysis on

instances of each group to distinguish

between static and dynamic log message

tokens. YALP works in an iterative

manner that generates a hierarchy of

patterns (regexes), one level at every

iteration. The hierarchy allows users to

select the right patterns that satisfy their

needs. We implement a map-reduced

version of YALP to deploy in a massively

parallel data processing system.

We have organised the paper in the

following different subsections: Section 2

talks about related work and background

with respect to YALP. Section 3 described

the proposed approach that is followed.

Section 4 discusses the experimentation

results and analysis. In the following

Section 5, we conclude the paper,

providing future scope, and work that can

be done on top of YALP for complete end-

to-end logging feature.

Literature Review and background

Due to the need of understanding and

maintain systems during runtime, it has

become increasingly important to analyze

logs with better precision. As such, a

lot of researchers and practitioners have

started working in this area. [25] talks

about the use of archived log messages to

Volume 12, Issue 01, Jan 2023 ISSN 2456 – 5083 Page 706

identify and troubleshoot components and

system failures in High Performance

Computing (HPC) and other large-scale

systems. El-Masri et al. [12] shows a

survey of log parsing techniques where

they define a model of a classification

technique and examined 17 log parsing

tools existing in the area. [33] proposes a

method of clustering weblogs without

providing any user-defined parameters.

However, because the time complexity of

their algorithm is (n3), makes their

method not scalable and unsuitable for

large datasets. Authors of [9] propose a

system where users’ search logs are used

to create a website’s search index. [26]

discusses an algorithm which does pre-

processing on weblogs and extracts a set of

fields from it. Similar to [9], Authors of

[13] proposes a method that goes through

user navigation and extracts useful

information for website admins.

Vaarandi et al. [30] [31] proposed SLCT

(Simple Logfile Clustering Tool), where

log templates are identified using

clustering techniques. SLCT analyzes

frequently used terms in logs and groups

them together. Dynamic tokens are

analyzed and identified using density-

based clustering algorithm. [32] can be

considered SCLT version 2.0 written by

same authors, where all the frequent terms

are extracted and arranged into tuples.

Then, clusters are created based on the log

lines containing minimum number of

tuples.

Makanju et al. [22] proposed IPLOM

(Iterative Partitioning Log Mining), a log

clustering approach, which uses heuristic-

based hierarchical clustering. First, Log

messages are partitioned based on the size

of log events, which is then further

subdivided based on the highest number of

similar terms. Fu et al. [14] proposed LKE

(Log Key Extraction), which uses a

distance-based clustering technique in

which weighted edit distance method are

used to group log together such that if the

terms appear at the beginning of events, it

is given more weight. Then, LKE does

the clustering of logs by providing log key

to each raw log level, which is then

extracted to get the common parts out and

is used to generate event types.

Hamooni et al. proposed LogMine

[15], where log messages generated are

subjected to MapReduce algorithm to

which uses MapReduce to abstract

heterogeneous log messages generated

from various systems. The LogMine

algorithm consists of a hierarchical

Volume 12, Issue 01, Jan 2023 ISSN 2456 – 5083 Page 707

clustering module combined with pattern

recognition. It uses regular expressions

based on domain knowledge to detect

dynamic variables. Then, it replaces the

real value of each field with its name. It

then clusters similar log messages with the

friends-of-friends clustering algorithm.

Dai et al. [8] proposed Logram, which uses

Natural Language Processing (NLP)

Techniques, specifically n-gram dictionary

to combat the need of log analysis tools

which can parse large

 log sizes with low parsing time. N-gram

dictionary is used to differentiate between

static and dynamic tokens by storing the

frequencies of n-gram in logs. The biggest

advantage of Logram is that it can be

easily deployed in multiple core to achieve

parallel processing and achieve scalability,

since multiple n-gram dictionaries can be

used concurrently. Template extraction

from log lines can be considered as

labeling sequential data problem, which is

what Kobayashi et al. proposes in NLP-

LTG (Natural Language Processing–Log

Template Generation) [19]. Log messages

are classified into static and dynamic terms

using Conditional Random Fields (CRF)

[20], and then build the ground truth data

using regular expressions. NLM-

FSE(Neural language Model-For Signature

Extraction), proposed by Thaler et al. [29],

classifies static and dynamic tokens by

training a character-based neural network.

He et al. [16] proposed Drain, which

utilizes parse tree to generate event types

from log messages. First, to pick out

dynamic tokens, raw log messages are pre-

processed using regular expressions. Then,

using the number of tokens, a parse tree is

built. A similarity metric is then used

which compares leaf nodes to event types,

assuming that the tokens which are at the

start of each log line are most likely to be

static tokens.

Spell (Streaming Parser for Event Logs

using an LCS) [11] proposes the idea that

if same logging statement is used to

produce log messages, then the Longest

common subsequence of a pair of logs is a

static field, and can be used as a group

defining that particular cluster of logs.

Map reduce has become the go-to

framework for log processing instead of

storing it in DBMS, as shown in [7], where

join processing techniques are

demonstrated extensively using map-

reduce. [21] describes how heterogeneous

application logs can also exploit map-

reduce framework for effective logging,

Volume 12, Issue 01, Jan 2023 ISSN 2456 – 5083 Page 708

and have described an architecture for it as

well.

Approach followed

YALP consists of the following steps: pre-

processing, grouping of similar log events,

and the generation of log templates using

static and dynamic tokens, which get

refined as we generate a hierarchy of

patterns by iteration. In the first pre-

processing step, header information such

as log level, timestamp and IP address is

identified. We also detect trivial dynamic

tokens such as IP and MAC addresses

based on common regular expressions. In

the second step of YALP, we identify log

events that are similar and group them

together using the distance function

referencing LogMine [15]. This method

creates a tree-like hierarchy of patterns,

with general patterns being the root, and

specific patterns being the child/node.

Such hierarchy is useful for the system

administrators to pick the right level of

detail they want to track in the log

messages as opposed to writing regular

expressions manually. We discuss each

step of breaking the log in general and

specific patterns in the following

subsections.

Pre-processing and Tokenization

In the first step of log parsing, log lines

undergo pre-processing, where header

information such as timestamp, log level

and process ID which are commonly

present in the first line of the log, is

separated from the log. This information is

fairly easy to identify using regular

technical phrases [8]. In the next step of

pre-processing, dynamic variables such as

IP and MAC addresses are identified. As

shown by He et al. [16] and all the tools

studied in this paper (i.e., Drain [17],

SPELL [11], Logram [8] and AEL [18]),

This step is known to increase the

accuracy of log parser. The grouping of

similar events is discussed in more detail

in the next subsection. We referred ULP

[27] that created regular expressions to

detect the following trivial dynamic

variables: Mac addresses, IPV6 addresses,

URLs (beginning with HTTP and

HTTPS), numerical in hexadecimal

format, Dates such as 2002-03-24 and

2002-03-24, Time in the format hh:mm:ss.

All the regular expressions used in this

step are generic in nature, which can cater

to any log file as input.

Volume 12, Issue 01, Jan 2023 ISSN 2456 – 5083 Page 709

1 2022-09-17 10:20:26,788 | WARN |
Transport Connection to:
tcp://172.25.170.139:53160 failed:
java.io.EOFException |
org.apache.activemq.broker.TransportCon
nection.Transport |

ActiveMQ Transport:
tcp:///172.25.170.139:53160@7862

2 2022-09-17 10:20:26,788 | WARN |
Transport Connection to:
tcp://172.25.170.139:53660 failed:
java.io.EOFException |
org.apache.activemq.broker.TransportCon
nection.Transport |

ActiveMQ Transport:
tcp:///172.25.170.139:53660@7862

3 2022-09-17 10:20:26,788 | WARN |
Transport Connection to:
tcp://172.25.170.139:53348 failed:
java.io.EOFException |
org.apache.activemq.broker.TransportCon
nection.Transport |

ActiveMQ Transport:
tcp:///172.25.170.139:53348@7862

4 2022-09-17 10:20:26,788 | WARN |
Transport Connection to:
tcp://172.25.170.139:53368 failed:
java.io.EOFException |
org.apache.activemq.broker.TransportCon
nection.Transport |

ActiveMQ Transport:
tcp:///172.25.170.139:53368@7862

5 2022-09-17 10:20:26,788 | WARN |
Transport Connection to:
tcp://172.25.170.139:53396 failed:
java.io.EOFException |
org.apache.activemq.broker.TransportCon
nection.Transport |

ActiveMQ Transport:
tcp:///172.25.170.139:53396@7862

6 2022-09-17 10:20:26,788 | WARN |
Transport Connection to:
tcp://172.25.170.139:53644 failed:
java.io.EOFException |
org.apache.activemq.broker.TransportCon
nection.Transport |

ActiveMQ Transport:
tcp:///172.25.170.139:53644@7862

7 2022-09-17 10:20:26,788 | WARN |
Transport Connection to:
tcp://172.25.170.139:53808 failed:

java.io.EOFException |
org.apache.activemq.broker.TransportCon
nection.Transport |

ActiveMQ Transport:
tcp:///172.25.170.139:53808@7862
8 2022-09-17 10:51:08,252 | WARN |

Broker localhost not started so using
degtlun5363 instead |
org.apache.activemq.broker.BrokerRegistr
y | qtp1659286984-90273
9 2022-09-17 16:13:48,573 | WARN |

Broker localhost not started so using
degtlun5363 instead |
org.apache.activemq.broker.BrokerRegistr
y | qtp1659286984-91217

10 2022-09-18 00:30:12,139 | INFO |
Apache ActiveMQ 5.15.8

(degtlun5363, ID:degtlun5363-39795-
1662132976013-0:1) is shutting down |
org.apache.activemq.broker.BrokerService
| Thread-358

11 2022-09-18 00:30:13,344 | INFO |
Connector openwire stopped |
org.apache.activemq.broker.TransportCon
nector | Thread-358

12 2022-09-18 00:30:13,351 | INFO |
Connector amqp stopped |
org.apache.activemq.broker.TransportCon
nector | Thread-358

13 2022-09-18 00:30:13,352 | INFO |
Connector stomp stopped |
org.apache.activemq.broker.TransportCon
nector | Thread-358

14 2022-09-18 00:30:13,353 | INFO |
Connector mqtt stopped |
org.apache.activemq.broker.TransportCon
nector | Thread-358

15 2022-09-18 00:30:13,438 | INFO |
Connector ws stopped |
org.apache.activemq.broker.TransportCon
nector | Thread-358

16 2022-09-18 00:30:13,462 | INFO |
PListStore:[/DBA/mule-
home2/activemq515/data/degtlun5363/tm
p_storage] stopped |
org.apache.activemq.store.kahadb.plist.PL
istStoreImpl | Thread-358

Fig: ActiveMQ logs used as an example

Volume 12, Issue 01, Jan 2023 ISSN 2456 – 5083 Page 710

Grouping of log events

The next step after pre-processing is done

is to group the log events together. This

grouping is done so that the processor can

distinguish between static and dynamic

tokens with better accuracy when

frequency analysis is applied to group

members. The Log messages in the above

ActiveMQ logs in lines 1-7 can be grouped

together since all are related to transport

connection. Similarly, 8 and 9 deal with

broker localhost, and 11-15 show the

connector-related logs. Line 16 will be put

in a separate group since it is not matching

with other log lines. The separate group

then undergoes localized frequency

analysis so that static tokens can be

separated from dynamic tokens. Here,

Date-Time, log level, and IP addresses are

deemed dynamic, the rest all are

considered as static tokens. The string

matching technique is applied to separate

log lines into tokens. For each log line, the

number of words is counted in that logline,

words being any set of characters

separated by whitespace. Then, Only those

tokens are identified which have

alphanumeric characters, because others

are most likely to be dynamic tokens. If

there is an exact match between the

number of tokens and the number of

dynamic tokens, the log lines are grouped

together. Now that we have different

groups of logs, w e can now apply local

frequency analysis to determine dynamic

tokens and then generate log templates for

each group.

Generation of tokens using local

frequency analysis

In this step, the log group undergoes

frequency analysis to determine the

number of times a token has appeared in

that group. A frequency threshold is set,

and initially, all tokens are considered

dynamic. If a token appears more times

than the maximum frequency, it is then

deemed static by the processor. To prevent

bias originating from tokens occurring

multiple times in the same log line,

multiple tokens present in the same log

lines are rejected. For example, the word

Transport comes twice in each of lines 1-8,

which is read-only once by the frequency

analyzer.

Following is the table 1 of tokens

generated after local frequency analysis is

done in lines 1-8.

Log Pattern Recognition

After we have our tokens ready and the log

lines are clustered, each cluster is assigned

a pattern. For this process, we employ

two techniques as given in LogMine [15],

and both of them are discussed below.

Volume 12, Issue 01, Jan 2023 ISSN 2456 – 5083 Page 711

Pattern Generation in Pairs

After the lothe pattern recognition

algorithm is deployed only after

clusteringge two log lines. If the two log

lines are 100% match, the log lines are

merged. We start processing the logs

field by field once we have the log lines

of similar length. We use the Smith-

Waterman algorithm [28], one of many

algorithms available for string

alignment, to align two sequences of

length l1 and l2 in O(l1, l2) time, which

causes time complexity of our Merge

function to also be O(l1, l2).

Sequential Pattern Generation

After we have determined the log lines’

tokens, we are essentially going line-by-

line and determining to which cluster that

particular log line fits best. As you can

imagine, ordering plays an important role

in whether the log line will be put on a

new or old cluster will be used. However,

our end goal is to find log lines grouped in

a different cluster, not how those clusters

are arranged one after the other, which is

not affected by the ordering of log lines.

For this reason, we can use another

technique, described in the next section.

Term Frequency Classification
2022-09-17 8 Dynamic Token
warn 8 static token
10:20:26788 7 Dynamic Token
transport 7 static token
connection 7 static token
to: 7 static token
failed: 7 static token
javaio.eofexception 7 static token
orgapache.activemq.broker.tra
nsportconnection.transport

7 static token

|activemq 7 static token
tcp://17225.170.139:53160 1 Dynamic Token
tcp:///17225.170.139:53160@78
62

1 Dynamic Token

tcp://17225.170.139:53660 1 Dynamic Token
tcp:///17225.170.139:53660@78
62

1 Dynamic Token

10:51:08252 1 Dynamic Token
broker 1 static token
localhost 1 static token
degtlun5363 1 static token
instead 1 static token
|orgapache.activemq.broker.br
okerregistry

1 static token

qtp1659286984-90273 1 Dynamic Token

Table 1: Frequency Analysis of tokens

Volume 12, Issue 01, Jan 2023 ISSN 2456 – 5083 Page 712

Figure 1: Flow Diagram of YALP

Improve Scalability via Map-Reduce

Framework

As discussed in 3.4.2, the order of logs

present in the file or the order of merging

of log lines after tokenization is not

important. So, in order to improve

efficiency, we employ a map- reduce

framework and parallelize this merging

process. We know the cluster for every

single log line since only after clustering

the pattern recognition algorithm is

deployed. In this process, whenever a new

cluster is created, we assign a cluster

number to it. In the map function, each log

gets assigned a key-value pair. The cluster

number created in the previous step is used

as the key, and the value is the whole log

line. If the map-reduce framework finds

the same key, it will concatenate the line in

reduce function. In the reduce function,

the merging of two log lines in the same

cluster happens. Consequently, in the final

output, we get a cluster of logs. If we run

this function on m machines, and the

number of log lines is n, and l being the

average number of tokens in each log line,

the time complexity is

Evaluation

We evaluate YALP’s accuracy and

efficiency by parsing logs of 10 log

datasets of the LogPai benchmark [34]

available online. The datasets consist of a

collection of log files from various

systems, including Apache, HPC, HDFS.

The following questions needs to be

answered to quantitatively evaluate YALP:

Volume 12, Issue 01, Jan 2023 ISSN 2456 – 5083 Page 713

1. How precisely does log grouping

occurs in YALP so that each of the

millions of log go into relevant

cluster

2. How efficiently does YALP parse

the cluster when compared to other

parsing tools

Precision

For baseline, we will use the log clusters

generated in OPTICS [6], and then

define a baseline metric that will

calculate how close the clustering of

YALP is to that of OPTICS. Let the

number of logs in the log lines be n, S

= { l1, l2, l3..., ln }, M = { M1, M2,

M3..., Mn } be the cluster you get after

running OPTICS, = { N1, N2, N3..., Nn

} be the set of cluster you get after

running YALP. The agreement metric

is a
 , where a is the number of pairs of

logs lines that are in S and in the same

cluster set of M, and b is the number

of pairs of logs lines that are in S and

in the same cluster set of N .

Following is the table 2 which shows

the accuracy comparison result of

YALP with OPTICS and Logmine.

Table 2: Comparing LogMine and
YALP clustering accuracy with
OPTICS

Efficiency

In section 3.4.2 and 3.4.3, we discussed

the problem of parsing the line one by

one and how we have increased the

efficiency by adding map-reduce

framework as defined in LogMine [15].

We take a dataset having 10 million log

lines. and then run it through sequential

log clustering and then via the map-

reduce algorithm, initially working with

8 workers, each running 1 GB memory

with a single core CPU. Map-reduce

takes up to 5 times less time to cluster

the logs than the sequential algorithm

takes. This time can be further

decreased by using more workers for

clustering. The algorithm doesn’t show

much improvement for 10 million log

lines when the number of workers is

increased beyond 32.

Conclusion

We have presented YALP, which can

take input from the stream, buffer, and

file. It first generates tokens out of log

lines, then classifies them into static and

dynamic tokens. Once tokens are

generated, the log lines are clustered

using the map-reduce function to get log

clusters. Since one log line is needed to

go through processing only once,

pattern generation is done in real-time.

Volume 12, Issue 01, Jan 2023 ISSN 2456 – 5083 Page 714

Future work would be to generate

Regex patterns on top of each cluster so

that those Regex patterns can be used

effectively to filter logs based on users’

needs. A DevOps Engineer could

generate a notification system that

would be triggered when a certain

amount of hits are encountered on that

pattern. This would eliminate the need

for the support services to look for

errors inside the server, as the

notification system can send the logs

pertaining to that pattern directly.

References

[1] Elasticsearch: Store, search, and
analyze.
https://www.elastic.co/guide/index.html
.

[2] Graylog: Data. insights. answers.
https://www.graylog.org.

[3] Logentries by rapid.
https://docs.logentries.com/.

[4] loggly.
https://www.loggly.com/ultimate-
guide/.

[5] Sumo logic: Making the world’s apps
reliable and secure.
https://www.sumologic.com/.

[6] Mihael Ankerst, Markus M Breunig,
Hans-Peter Kriegel, and Jörg Sander.
Optics: Ordering points to identify the
clustering structure. ACM Sigmod

record, 28(2):49–60, 1999.
[7] Spyros Blanas, Jignesh M Patel, Vuk

Ercegovac, Jun Rao, Eugene J Shekita,
and Yuanyuan Tian. A comparison of
join algorithms for log processing in
mapreduce. In Proceedings of the 2010

ACM SIGMOD International

Conference on Management of data,

pages 975–986, 2010.
[8] Hetong Dai, Heng Li, Che Shao Chen,

Weiyi Shang, and Tse-Hsun Chen.
Logram: Efficient log parsing using n-
gram dictionaries. IEEE Transactions

on Software Engineering, 2020.
[9] Chen Ding and Jin Zhou. Log-based

indexing to improve web site search. In
Proceedings of the 2007 ACM

symposium on Applied computing,
pages 829–833, 2007.

[10] Ignacio Cabrera Dominique Karg,
Julio Casal and Alberto Román.
Open source security information
management.
https://en.wikipedia.org/wiki/OSSI
M, 2022.

[11] Min Du and Feifei Li. Spell:
Streaming parsing of system event
logs. In 2016 IEEE 16th International

Conference on Data Mining (ICDM),
pages 859–864. IEEE, 2016.

[12] Diana El-Masri, Fabio Petrillo, Yann-
Gaël Guéhéneuc, Abdelwahab
Hamou-Lhadj, and Anas Bouziane. A
systematic literature review on
automated log abstraction techniques.
Information and Software

Technology, 122:106276, 2020.
[13]Mirghani A Eltahir and Anour FA

Dafa-Alla. Extracting knowledge
from web server logs using web usage
mining. In 2013 INTERNATIONAL

CONFERENCE ON COMPUTING,

ELECTRICAL AND ELECTRONIC

ENGINEERING (ICCEEE), pages
413–417. IEEE, 2013.

[14] Qiang Fu, Jian-Guang Lou, Yi Wang,
and Jiang Li. Execution anomaly
detection in distributed systems
through unstructured log analysis. In
2009 ninth IEEE international

conference on data mining, pages
149–158. IEEE, 2009.

[15] Hossein Hamooni, Biplob Debnath,
Jianwu Xu, Hui Zhang, Guofei Jiang,
and Abdullah Mueen. Logmine: Fast
pattern recognition for log analytics.

https://www.elastic.co/guide/index.html
https://www.elastic.co/guide/index.html
https://www.graylog.org/
https://docs.logentries.com/
https://www.loggly.com/ultimate-guide/
https://www.loggly.com/ultimate-guide/
https://www.sumologic.com/
https://en.wikipedia.org/wiki/OSSIM
https://en.wikipedia.org/wiki/OSSIM

Volume 12, Issue 01, Jan 2023 ISSN 2456 – 5083 Page 715

In Proceedings of the 25th ACM

International on Conference on

Information and Knowledge

Management, pages 1573–1582,
2016.

[16] Pinjia He, Jieming Zhu, Shilin He,
Jian Li, and Michael R Lyu. An
evaluation study on log parsing and
its use in log mining. In 2016 46th

annual IEEE/IFIP international

conference on dependable systems

and networks (DSN), pages 654–661.
IEEE, 2016.

[17] Pinjia He, Jieming Zhu, Zibin Zheng,
and Michael R Lyu. Drain: An online
log parsing approach with fixed depth
tree. In 2017 IEEE international

conference on web services (ICWS),
pages 33–40. IEEE, 2017.

[18] Zhen Ming Jiang, Ahmed E Hassan,
Gilbert Hamann, and Parminder
Flora. An automated approach for
abstracting execution logs to
execution events. Journal of Software

Maintenance and Evolution:

Research and Practice, 20(4):249–
267, 2008.

[19] Satoru Kobayashi, Kensuke Fukuda,
and Hiroshi Esaki. Towards an nlp-
based log template generation
algorithm for system log analysis. In
Proceedings of The Ninth

International Conference on Future

Internet Technologies, pages 1–4,
2014.

[20] John Lafferty, Andrew McCallum,
and Fernando CN Pereira.
Conditional random fields:
Probabilistic models for segmenting
and labeling sequence data. 2001.

[21] Kyong-Ha Lee, Yoon-Joon Lee,
Hyunsik Choi, Yon Dohn Chung, and
Bongki Moon. Parallel data
processing with mapreduce: a
survey. AcM sIGMoD record,
40(4):11–20, 2012.

[22] Adetokunbo Makanju, A Nur Zincir-
Heywood, and Evangelos E Milios.

A lightweight algorithm for message
type extraction in system application
logs. IEEE Transactions on

Knowledge and Data Engineering,
24(11):1921–1936, 2011.

[23] Erik Swan Michael Baum, Rob Das.
Splunk.
https://www.splunk.com/en_us/solu
tions/ it-modernization.html, 2022.

[24] X Ning and G Jiang. Hlaer: A system
for heterogeneous log analysis, 2014.
In SDM Workshop on Heterogeneous

Learning, 2014.
[25] Raghunath Rajachandrasekar, Xavier

Besseron, and Dhabaleswar K Panda.
Monitoring and predicting hardware
failures in hpc clusters with ftb-ipmi.
In 2012 IEEE 26th International

Parallel and Distributed Processing

Symposium Workshops & PhD

Forum, pages 1136–1143. IEEE,
2012.

[26] K Sudheer Reddy, G Partha Saradhi
Varma, and I Ramesh Babu.
Preprocessing the web server logs: an
illustrative approach for effective
usage mining. ACM SIGSOFT

Software Engineering Notes, 37(3):1–
5, 2012.

[27] Issam Sedki, Abdelwahab Hamou-
Lhadj, Otmane Ait-Mohamed, and
Mohammed A Shehab. An effective
approach for parsing large log files.
In ICSME, 2022.

[28] Temple F Smith and Michael S
Waterman. Identification of common
molecular subsequences.Journal of

molecular biology, 147(1):195–197,
1981.

[29] Stefan Thaler, Vlado Menkonvski,
and Milan Petkovic. Towards a neural
language model for signature extraction
from forensic logs. In 2017 5th

International Symposium on Digital

Forensic and Security (ISDFS), pages
1–6. IEEE, 2017.

[30] Risto Vaarandi. A data clustering
algorithm for mining patterns from

https://www.splunk.com/en_us/solutions/it-modernization.html
https://www.splunk.com/en_us/solutions/it-modernization.html
https://www.splunk.com/en_us/solutions/it-modernization.html

Volume 12, Issue 01, Jan 2023 ISSN 2456 – 5083 Page 716

event logs. In Proceedings of the 3rd

IEEE Workshop on IP Operations &

Management (IPOM 2003)(IEEE Cat.

No. 03EX764), pages 119–126. Ieee,
2003.
[31] Risto Vaarandi. Mining event logs

with slct and loghound. In NOMS

2008-2008 IEEE Network

	Log Pattern Recognition

