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Abstract 

Software logs are the crucial cogs in software systems analysis, as such, Log files are 

responsible for providing useful information about software running in an organization. It is 

seldom suitable to store logs in databases owing to various reasons. Each of these software 

uses its own set of logging patterns and thus creates a different set of columnar data. These 

logs are often unstructured data items due to frequent changes in log lines at various levels. 

However, Analysis of these log messages is crucial in order to present usable information 

(e.g., patterns) to system administrators so that managing and monitoring the jobs in an 

organization is more effective, such as anomaly detection, alert generation, and event 

prediction. Recognizing patterns in the humongous log files from disparate sources without 

prior information is a huge task. 

The objective of this paper is to propose a design architecture that would help recognize log 

patterns from heterogenous log files, thereby providing effective system from DevOPs and 

maintenance standpoint. In this paper, we propose a method named YALP - Yet Another Log 

Parser, that generates and categorizes logs into high-quality pattern efficiently with high 

precision rate. YALP uses map-reduce framework which can be to process millions of log 

messages in seconds in distributed framework. String-processing and text- processing method 

is applied to organize log events in groups. To identify static and dynamic content of log 

events, in same group, Frequency analysis is then applied. This method exploits algorithmic 

techniques to minimize the computational overhead since log messages are always 

automatically generated. All this process is done dynamically so that no log preprocessing is 

required from an end-user perspective. The parser is ready and outputs the structured logs as 

soon as it starts receiving log lines or a file containing log lines as input. Performance 

evaluation is then done using datasets of LogPai [16] benchmark. 
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Introduction 

Logging in software systems is one of the 

most commonly used mechanisms which 

helps in maintenance and troubleshooting  

by  recording  the  software’s  states  and  

behaviours.  The field of IoT(IoT involves 

machine-to-machine communications 

(M2M)) still has yet to find a standardised 

logging features, due to the rapid growth 

of the field and presence of diverse variety 

of "things", but continunous monitoring of 

interconnected devices is important so that 

downtime of the system is minimised by 

quickly detecting and resolving anomalies 

and bugs. Thus, it is incredibly challenging 

to parse and analyze log messages from 

software systems. 

 

In this paper, the focus is on (semi-

)automatically converting unstructured raw 

log events into a structured format that 

would facilitate further analysis. The 

parser will decide and categorize the log 

tokens into static and dynamic tokens. Log 

File headers are taken care of in this stage 

itself, as they have the same structure as 

other log lines. The log analyzer has one 

component to recognize patterns from 

these processed log messages and another 

component to match these patterns with 

the inflow of log messages to identify 

events and anomalies. 

 

Log Analysis tools are offered by many 

companies, such as Splunk [23], Sumo 

Logic [5], Loggly [4], LogEntries [3], etc. 

Opensource developers have also worked 

in the area of log management and analysis 

such as ElasticSearch [1], Graylog [2], and 

OSSIM [10]. Regular Expressions(RegEx) 

is being used by the majority of these tools 

and packages to match log messages. 

These tools support supervised matching 

by definition, as the system administrators 

must have prior knowledge/experience of 

working with regex expressions. 

 

Furthermore, due to the use of multiple 

logging libraries, new log formats are 

produced everyday, consequently, new 

regular expressions need to be 

added/updated on regular basis.It is 

impractical to use regular expressions to 

parse various logs, which lead researchers 

to develop increasingly intelligent log 

parsing techniques (see [12] for a good 

survey). Existing approaches, however, 

have certain drawbacks to them [12] 

including their reliance on domain 

knowledge, inability to demarcate static 

content from dynamic variables for 



 

 

Volume 12, Issue 01, Jan 2023                             ISSN 2456 – 5083                      Page 705 

 

 

O 

complex log files, and use of advanced 

machine learning algorithms, which 

require parameter tuning at various levels. 

 

HLAer [24] is one such methodology 

developed in the area of automated log 

pattern recognition, which parses 

heterogenous log messages automatically.. 

Owing to high memory requirements and 

huge overhead communication in parallel 

implementation, HLAer is not efficient 

and scalable, despite being unsupervised 

and robust to heterogeneity. 

 

We propose, through this paper, YALP, an 

end to end framework which is capable of 

addressing all the deficiencies with 

existing tools and packages. YALP is an 

unsupervised framework that scans log 

messages only once and can quickly 

process hundreds of millions of log 

messages with minimal memory. It is a 

simple yet powerful approach that 

recognizes log structures from any log 

files without prior domain knowledge or 

using complex machine learning 

techniques. It relies on string matching and 

regional frequency analysis for data pre-

processing. It begins by grouping similar 

log events into groups using the clustering 

module. A pattern is then generated for 

each cluster by our pattern recognition 

module. It then uses frequency analysis on 

instances of each group to distinguish 

between static and dynamic log message 

tokens. YALP works in an iterative 

manner that generates a hierarchy of 

patterns (regexes), one level at every 

iteration.  The hierarchy allows users to 

select the right patterns that satisfy their 

needs.  We implement a map-reduced 

version of YALP to deploy in a massively 

parallel data processing system. 

 

We have organised the paper in the 

following different subsections: Section 2 

talks about related work and background 

with respect to YALP. Section 3 described 

the proposed approach that is followed. 

Section 4 discusses the experimentation 

results and analysis. In the following 

Section 5, we conclude the paper, 

providing future scope, and work that can 

be done on top of YALP for complete end-

to-end logging feature. 

 

Literature Review and background 

Due to the need of understanding and 

maintain systems during runtime, it has 

become increasingly important to analyze 

logs  with  better  precision.  As  such,  a  

lot  of  researchers and practitioners have 

started working in this area. [25] talks 

about the use of archived log messages to 
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identify and troubleshoot components and 

system failures in High Performance 

Computing (HPC) and other large-scale 

systems. El-Masri et al. [12] shows a 

survey of log parsing techniques where 

they define a model of a classification 

technique and examined 17 log parsing 

tools existing in the area. [33] proposes a 

method of clustering weblogs without 

providing any user-defined parameters. 

However, because the time complexity of 

their algorithm is  (n3), makes their 

method not scalable and unsuitable for 

large datasets.  Authors of  [9] propose a 

system where users’ search logs are used 

to create a website’s search index. [26] 

discusses an algorithm which does pre-

processing on weblogs and extracts a set of 

fields from it. Similar to [9], Authors of 

[13] proposes a method that goes through 

user navigation and extracts useful 

information for website admins. 

 

Vaarandi et al. [30] [31] proposed SLCT 

(Simple Logfile Clustering Tool), where 

log templates  are  identified  using  

clustering  techniques.  SLCT  analyzes  

frequently  used  terms in logs and groups 

them together. Dynamic tokens are 

analyzed and identified using density- 

based clustering algorithm. [32] can be 

considered SCLT version 2.0 written by 

same authors, where all the frequent terms 

are extracted and arranged into tuples. 

Then, clusters are created based on the log 

lines containing minimum number of 

tuples. 

 

Makanju et al. [22] proposed IPLOM 

(Iterative Partitioning Log Mining), a log 

clustering approach, which uses heuristic-

based hierarchical clustering. First, Log 

messages are partitioned based on the size 

of log events, which is then further 

subdivided based on the highest number of 

similar terms. Fu et al. [14] proposed LKE 

(Log Key Extraction), which uses a 

distance-based clustering technique in 

which weighted edit distance method are 

used to group log together such that if the 

terms appear at the beginning of events,  it 

is given more weight.  Then,  LKE does 

the clustering of logs by providing log key 

to each raw log level, which is then 

extracted to get the common parts out and 

is used to generate event types. 

 

Hamooni  et  al.    proposed  LogMine  

[15],  where  log  messages  generated  are  

subjected to MapReduce algorithm to 

which uses MapReduce to abstract 

heterogeneous log messages generated 

from various systems. The LogMine 

algorithm consists of a hierarchical 
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clustering module combined with pattern 

recognition. It uses regular expressions 

based on domain knowledge to detect 

dynamic variables. Then, it replaces the 

real value of each field with its name. It 

then clusters similar log messages with the 

friends-of-friends clustering algorithm. 

 

Dai et al. [8] proposed Logram, which uses 

Natural Language Processing (NLP) 

Techniques, specifically n-gram dictionary 

to combat the need of log analysis tools 

which can parse large 

 log sizes with low parsing time. N-gram 

dictionary is used to differentiate between 

static and dynamic tokens by storing the 

frequencies of n-gram in logs. The biggest 

advantage of Logram is that it can be 

easily deployed in multiple core to achieve 

parallel processing and achieve scalability, 

since multiple n-gram dictionaries can be 

used concurrently.  Template extraction 

from log lines can be considered as 

labeling sequential data problem, which is 

what Kobayashi et al. proposes in NLP-

LTG (Natural Language Processing–Log 

Template Generation) [19]. Log messages 

are classified into static and dynamic terms 

using Conditional Random Fields (CRF) 

[20], and then build the ground truth data 

using regular expressions. NLM-

FSE(Neural language Model-For Signature 

Extraction), proposed by Thaler et al. [29], 

classifies static and dynamic tokens by 

training a character-based neural network. 

 

He et al. [16] proposed Drain, which 

utilizes parse tree to generate event types 

from log messages. First, to pick out 

dynamic tokens, raw log messages are pre-

processed using regular expressions. Then, 

using the number of tokens, a parse tree is 

built. A similarity metric is then used 

which compares leaf nodes to event types, 

assuming that the tokens which are at the 

start of each log line are most likely to be 

static tokens. 

 

Spell (Streaming Parser for Event Logs 

using an LCS) [11] proposes the idea that 

if same logging statement is used to 

produce log messages, then the Longest 

common subsequence of a pair of logs is a 

static field, and can be used as a group 

defining that particular cluster of logs. 

 

Map reduce has become the go-to 

framework for log processing instead of 

storing it in DBMS, as shown in [7], where 

join processing techniques are 

demonstrated extensively using map-

reduce. [21] describes how heterogeneous 

application logs can also exploit map-

reduce framework for effective logging, 
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and have described an architecture for it as 

well. 

 

Approach followed 

YALP consists of the following steps: pre-

processing, grouping of similar log events, 

and the generation of log templates using 

static and dynamic tokens, which get 

refined as we generate a hierarchy of 

patterns by iteration. In the first pre-

processing step, header information such 

as log level, timestamp and IP address is 

identified. We also detect trivial dynamic 

tokens such as IP and MAC addresses 

based on common regular expressions. In 

the second step of YALP, we identify log 

events that are similar and group them 

together using the distance function 

referencing LogMine [15]. This method 

creates a tree-like hierarchy of patterns, 

with general patterns being the root,  and 

specific patterns being the child/node.  

Such hierarchy is useful for the system 

administrators to pick the right level of 

detail they want to track in the log 

messages as opposed to writing regular 

expressions manually. We discuss each 

step of breaking the log in general and 

specific patterns in the following 

subsections. 

 

 

Pre-processing and Tokenization 

In the first step of log parsing, log lines 

undergo pre-processing, where header 

information such as timestamp, log level 

and process ID which are commonly 

present in the first line of the log, is 

separated from the log. This information is 

fairly easy to identify using regular 

technical phrases [8]. In the next step of 

pre-processing, dynamic variables such as 

IP and MAC addresses are identified. As 

shown by He et al. [16] and all the tools 

studied in this paper (i.e., Drain [17], 

SPELL [11], Logram [8] and AEL [18]), 

This step is known to increase the 

accuracy of log parser. The grouping of 

similar events is discussed in more detail 

in the next subsection. We referred ULP 

[27] that created regular expressions to 

detect the following trivial dynamic 

variables: Mac addresses, IPV6 addresses, 

URLs (beginning with HTTP and 

HTTPS), numerical in hexadecimal 

format, Dates such as 2002-03-24 and 

2002-03-24, Time in the format hh:mm:ss.  

All the regular expressions used in this 

step are generic in nature, which can cater 

to any log file as input. 
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1 2022-09-17 10:20:26,788 | WARN | 
Transport Connection to: 
tcp://172.25.170.139:53160 failed: 
java.io.EOFException | 
org.apache.activemq.broker.TransportCon
nection.Transport | 

ActiveMQ Transport: 
tcp:///172.25.170.139:53160@7862 

2 2022-09-17 10:20:26,788 | WARN | 
Transport Connection to: 
tcp://172.25.170.139:53660 failed: 
java.io.EOFException | 
org.apache.activemq.broker.TransportCon
nection.Transport | 

ActiveMQ Transport: 
tcp:///172.25.170.139:53660@7862 

3 2022-09-17 10:20:26,788 | WARN | 
Transport Connection to: 
tcp://172.25.170.139:53348 failed: 
java.io.EOFException | 
org.apache.activemq.broker.TransportCon
nection.Transport | 

ActiveMQ Transport: 
tcp:///172.25.170.139:53348@7862 

4 2022-09-17 10:20:26,788 | WARN | 
Transport Connection to: 
tcp://172.25.170.139:53368 failed: 
java.io.EOFException | 
org.apache.activemq.broker.TransportCon
nection.Transport | 

ActiveMQ Transport: 
tcp:///172.25.170.139:53368@7862 

5 2022-09-17 10:20:26,788 | WARN | 
Transport Connection to: 
tcp://172.25.170.139:53396 failed: 
java.io.EOFException | 
org.apache.activemq.broker.TransportCon
nection.Transport | 

ActiveMQ Transport: 
tcp:///172.25.170.139:53396@7862 

6 2022-09-17 10:20:26,788 | WARN | 
Transport Connection to: 
tcp://172.25.170.139:53644 failed: 
java.io.EOFException | 
org.apache.activemq.broker.TransportCon
nection.Transport | 

ActiveMQ Transport: 
tcp:///172.25.170.139:53644@7862 

7 2022-09-17 10:20:26,788 | WARN | 
Transport Connection to: 
tcp://172.25.170.139:53808 failed: 

java.io.EOFException | 
org.apache.activemq.broker.TransportCon
nection.Transport | 

ActiveMQ Transport: 
tcp:///172.25.170.139:53808@7862 
8 2022-09-17 10:51:08,252 | WARN | 

Broker localhost not started so using 
degtlun5363 instead | 
org.apache.activemq.broker.BrokerRegistr
y | qtp1659286984-90273 
9 2022-09-17 16:13:48,573 | WARN | 

Broker localhost not started so using 
degtlun5363 instead | 
org.apache.activemq.broker.BrokerRegistr
y | qtp1659286984-91217 

10 2022-09-18 00:30:12,139 | INFO | 
Apache ActiveMQ 5.15.8 

(degtlun5363, ID:degtlun5363-39795-
1662132976013-0:1) is shutting down | 
org.apache.activemq.broker.BrokerService 
| Thread-358 

11 2022-09-18 00:30:13,344 | INFO | 
Connector openwire stopped | 
org.apache.activemq.broker.TransportCon
nector | Thread-358 

12 2022-09-18 00:30:13,351 | INFO | 
Connector amqp stopped | 
org.apache.activemq.broker.TransportCon
nector | Thread-358 

13 2022-09-18 00:30:13,352 | INFO | 
Connector stomp stopped | 
org.apache.activemq.broker.TransportCon
nector | Thread-358 

14 2022-09-18 00:30:13,353 | INFO | 
Connector mqtt stopped | 
org.apache.activemq.broker.TransportCon
nector | Thread-358 

15 2022-09-18 00:30:13,438 | INFO | 
Connector ws stopped | 
org.apache.activemq.broker.TransportCon
nector | Thread-358 

16 2022-09-18 00:30:13,462 | INFO | 
PListStore:[/DBA/mule-
home2/activemq515/data/degtlun5363/tm
p_storage] stopped | 
org.apache.activemq.store.kahadb.plist.PL
istStoreImpl | Thread-358 

 
Fig: ActiveMQ logs used as an example 
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Grouping of log events 

The next step after pre-processing is done 

is to group the log events together.  This 

grouping is done so that the processor can 

distinguish between static and dynamic 

tokens with better accuracy when 

frequency analysis is applied to group 

members. The Log messages in the above 

ActiveMQ logs in lines 1-7 can be grouped 

together since all are related to transport 

connection. Similarly, 8 and 9 deal with 

broker localhost, and 11-15 show the 

connector-related logs. Line 16 will be put 

in a separate group since it is not matching 

with other log lines. The separate group 

then undergoes localized frequency 

analysis so that static tokens can be 

separated from dynamic tokens. Here, 

Date-Time, log level, and IP addresses are 

deemed dynamic, the rest all are 

considered as static tokens. The string 

matching technique is applied to separate 

log lines into tokens. For each log line, the 

number of words is counted in that logline, 

words being any set of characters 

separated by whitespace. Then, Only those 

tokens are identified which have 

alphanumeric characters, because others 

are most likely to be dynamic tokens. If 

there is an exact match between the 

number of tokens and the number of 

dynamic tokens, the log lines are grouped 

together. Now that we have different 

groups of logs, w e can now apply local 

frequency analysis to determine dynamic 

tokens and then generate log templates for 

each group. 

 

Generation of tokens using local 

frequency analysis 

In this step, the log group undergoes 

frequency analysis to determine the 

number of times a token has appeared in 

that group. A frequency threshold is set, 

and initially, all tokens are considered 

dynamic. If a token appears more times 

than the maximum frequency, it is then 

deemed static by the processor. To prevent 

bias originating from tokens occurring 

multiple times in the same log line, 

multiple tokens present in the same log 

lines are rejected.  For example, the word 

Transport comes twice in each of lines 1-8, 

which is read-only once by the frequency 

analyzer. 

Following is the table 1 of tokens 

generated after local frequency analysis is 

done in lines 1-8. 

 

Log Pattern Recognition 

After we have our tokens ready and the log 

lines are clustered, each cluster is assigned 

a pattern.   For this process,  we employ 

two techniques as given in LogMine [15],  

and both of them are discussed below. 
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Pattern Generation in Pairs  

After the lothe pattern recognition 

algorithm is deployed only after 

clusteringge two log lines. If the two log 

lines are 100% match, the log lines are 

merged. We start processing the logs 

field by field once we have the log lines 

of similar length. We use the Smith-

Waterman algorithm [28], one of many 

algorithms available for string 

alignment, to align two sequences of 

length l1 and l2 in O(l1, l2) time, which 

causes time complexity of our Merge 

function to also be O(l1, l2). 

 

Sequential Pattern Generation 

After we have determined the log lines’ 

tokens, we are essentially going line-by-

line and determining to which cluster that 

particular log line fits best. As you can 

imagine, ordering plays an important role 

in whether the log line will be put on a 

new or old cluster will be used. However, 

our end goal is to find log lines grouped in 

a different cluster, not how those clusters 

are arranged one after the other, which is 

not affected by the ordering of log lines. 

For this reason, we can use another 

technique, described in the next section. 

 

 

Term Frequency Classification 
2022-09-17 8 Dynamic Token 
warn 8 static token 
10:20:26788 7 Dynamic Token 
transport 7 static token 
connection 7 static token 
to: 7 static token 
failed: 7 static token 
javaio.eofexception 7 static token 
orgapache.activemq.broker.tra
nsportconnection.transport 

7 static token 

|activemq 7 static token 
tcp://17225.170.139:53160 1 Dynamic Token 
tcp:///17225.170.139:53160@78
62 

1 Dynamic Token 

tcp://17225.170.139:53660 1 Dynamic Token 
tcp:///17225.170.139:53660@78
62 

1 Dynamic Token 

10:51:08252 1 Dynamic Token 
broker 1 static token 
localhost 1 static token 
degtlun5363 1 static token 
instead 1 static token 
|orgapache.activemq.broker.br
okerregistry 

1 static token 

qtp1659286984-90273 1 Dynamic Token 

Table 1: Frequency Analysis of tokens 
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Figure 1: Flow Diagram of YALP 

 

 

Improve Scalability via Map-Reduce 

Framework 

As discussed in  3.4.2, the order of logs 

present in the file or the order of merging 

of log lines after tokenization is not 

important.   So,  in order to improve 

efficiency,  we employ a map- reduce 

framework and parallelize this merging 

process. We know the cluster for every 

single log line since only after clustering 

the pattern recognition algorithm is 

deployed. In this process, whenever a new 

cluster is created, we assign a cluster 

number to it. In the map function, each log 

gets assigned a key-value pair. The cluster 

number created in the previous step is used 

as the key, and the value is the whole log 

line. If the map-reduce framework finds 

the same key, it will concatenate the line in 

reduce function.  In the reduce function, 

the merging of two log lines in the same 

cluster happens.  Consequently, in the final 

output, we get a cluster of logs.  If we run 

this function on m machines, and the 

number of log lines is n, and l being the 

average number of tokens in each log line, 

the time complexity is  

Evaluation 

We evaluate YALP’s accuracy and 

efficiency by parsing logs of 10 log 

datasets of the LogPai benchmark [34] 

available online. The datasets consist of a 

collection of log files from various 

systems, including Apache, HPC, HDFS. 

The following questions needs to be 

answered to quantitatively evaluate YALP: 
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1. How precisely does log grouping 

occurs in YALP so that each of the 

millions of log go into relevant 

cluster 

2. How efficiently does YALP parse 

the cluster when compared to other 

parsing tools 
 

Precision 

For baseline, we will use the log clusters 

generated in OPTICS [6], and then 

define a baseline metric that will 

calculate how close the clustering of 

YALP is to that of OPTICS. Let the 

number of logs in the log lines be n, S   

= { l1, l2, l3..., ln },   M  = { M1, M2, 

M3..., Mn } be the cluster you get after 

running OPTICS, = { N1, N2, N3..., Nn 

} be the set of cluster you get after 

running YALP. The agreement metric 

is a
 , where a is the number of pairs of 

logs lines that are in S and in the same 

cluster set of M, and b is the number 

of pairs of logs lines that are in S and 

in the same cluster set of N . 

 

Following is the table 2 which shows 

the accuracy comparison result of 

YALP with OPTICS and Logmine. 

 
Table 2: Comparing LogMine and 
YALP clustering accuracy with 
OPTICS 

 
Efficiency 

In section 3.4.2 and 3.4.3, we discussed 

the problem of parsing the line one by 

one and how we have increased the 

efficiency by adding map-reduce 

framework as defined in LogMine [15]. 

We take a dataset having 10 million log 

lines. and then run it through sequential 

log clustering and then via the map-

reduce algorithm, initially working with 

8 workers, each running 1 GB memory 

with a single core CPU. Map-reduce 

takes up to 5 times less time to cluster 

the logs than the sequential algorithm 

takes. This time can be further 

decreased by using more workers for 

clustering. The algorithm doesn’t show 

much improvement for 10 million log 

lines when the number of workers is 

increased beyond 32. 

 

Conclusion 

We have presented YALP, which can 

take input from the stream, buffer, and 

file.  It first generates tokens out of log 

lines, then classifies them into static and 

dynamic tokens.  Once tokens are 

generated, the log lines are clustered 

using the map-reduce function to get log 

clusters. Since one log line is needed to 

go through processing only once, 

pattern generation is done in real-time. 
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Future work would be to generate 

Regex patterns on top of each cluster so 

that those Regex patterns can be used 

effectively to filter logs based on users’ 

needs. A DevOps Engineer could 

generate a notification system that 

would be triggered when a certain 

amount of hits are encountered on that 

pattern. This would eliminate the need 

for the support services to look for 

errors inside the server, as the 

notification system can send the logs 

pertaining to that pattern directly. 
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