

A Peer Revieved Open Access International Journal

www.ijiemr.org

COPY RIGHT

2019IJIEMR. Personal use of this material is permitted. Permission from IJIEMR must

be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. No Reprint should be done to this paper, all copy right is authenticated to Paper Authors

IJIEMR Transactions, online available on 5th Jun 2019. Link

:http://www.ijiemr.org/downloads.php?vol=Volume-08&issue=ISSUE-06

Title: AN ANALYTICAL STUDY OF DISSIMILAR MATERIALS JOINT USING FRICTION WELDING AND ITS APPLICATION

Volume 08, Issue 06, Pages: 306–313.

Paper Authors

SIRAJUDDIN ELYAS KHANY Dr.VINOD KUMAR NEMA Dr.S.N.MEHDI Mewar University,Chittorgarh, Rajasthan

USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER

To Secure Your Paper As Per UGC Guidelines We Are Providing A Electronic Bar Code

A Peer Revieved Open Access International Journal

www.ijiemr.org

AN ANALYTICAL STUDY OF DISSIMILAR MATERIALS JOINT USING FRICTION WELDING AND ITS APPLICATION

1.SIRAJUDDIN ELYAS KHANY 2.Dr.VINOD KUMAR NEMA 3.Dr.S.N.MEHDI

- 1. PhD Scholar, Mewar University, Chittorgarh, Rajasthan Email: <u>sirajkhany@yahoo.co.in</u>
 - 2. PhD Supervisor, Mewar University, Chittorgarh, Rajasthan
 - 3. PhD Co Supervisor, Mewar University, Chittorgarh, Rajasthan

ABSTRACT

In this study the effect of friction welding parameters such as rotational speed, friction time, forging pressure and friction pressure on impact strength and hardness of a joint between SS316 and EN8 is experimentally investigated. A partial factorial design of experiment based on Taguchi analysis is conducted to study the main effects of the process parameters on the responses. Analysis of variance ANOVA and main effects plot is used to determine the significant parameters and set the optimal level for each parameter. A linear regression equation is derived to extrapolate the response for other of input parameters. Based on the experimentally determined optimal parameters a confirmation experiment is conducted. The results are useful to the industry in selecting optimal process parameters while performing a friction welding joint of the pump shaft.

1.INTRODUCTION

Friction welding has been used extensively in industry in joining similar and dissimilar materials efficiently as it is the only method of joining dissimilar materials and also because of the advantages such as material saving, low production time, elimination of filler material and production of joints as strong as parent metal with very little heat affected zone.Different studies have been undertaken by Midling et.al{1} who have examined the properties of friction welded ioints between AlSiMg(A357) allov containing 10% Volume of Sic particles with a mean diameter of 20microns. Kreyr and Reiner{2} studied the joint strength of mechanically alloyed aluminium alloy(Dispal) containing a fine dispersion of Alumina and carbide particles. Aritoshi et al {3} compared the friction welding characteristics of Oxygen free Cu-Al Colaand Baeslack {4} joints. have examined the relationship between joining parameters and the tensile properties of 6061 alloy tubing, containing 10% volume Al2O3 particles. Ananthpadmanabhan{5} reported the experimental studies on the effect of process parameters on strength of steel.Dobrovidor{6} studied the optimal parameters while welding high speed steel to carbon steel. Hence as the literature survey indicates that no work has been carried out in welding SS316 and EN-8 joints by friction welding process, the conducting importance of this experimental study is to assist a pump manufacturing industry to reduce the cost

A Peer Revieved Open Access International Journal

www.ijiemr.org

of the pump shaft of replacing the expensive materials such as Inconel and SS316 with a cheaply available EN-8 to an extent of 2/3 length of the shaft. Generally the pump manufacturers use highly corrosion resistant materials such as SS316 and Iconel to manufacture a pump shaft used in corrosion and chemical environment, even though the entire length of the shaft does not come in contact with the corrosive fluids. Hence an attempt has been made to replace 2/3 of expensive shaft material with cheaper material like EN-8 by making a friction welded joint between 1/3 of Inconel /SS316 and 2/3 if EN-8, thus saving cost of manufacturing of shaft, having done so . now the challenge lies in welding the two dissimilar materials by friction welding and also identify the optimal process parameters in order to obtain higher strength of the joints.

2.0. Preparation of specimen:

This project involves the experimental study on friction welding of dis-similar materials of SS 316 and EN-8. For all the friction welding system, rotational speed, friction pressure, forging pressure applied to the stationary part and friction time are the principle controlling variables which influence the metallurgical and mechanical properties of friction welded joints. These dissimilar joints thus prepared by continous friction welding technique have been studied for bending load before fracture and hardness values. All the specimens were prepared on afriction welding setup at MUFAKHAM JAH COLLEGE OF ENGINEERING AND TECHNOLOGY Labs. The power pack and a hydraulic mechanism is used to

vary and exert the pressure during friction stage and final forging stage.

3.0. EXPERIMENT NO. 1.

Bending and Hardness of SS 316 and EN-8:-

Bending load of the joint prepared for various levels of reotational speed, forging pressure and cooling method

3.1. Taguchi Orthogonal Array Design for L9 (33):-**

Table 1. Taguchi Ortho	gonal Array Design	for L9 (3**3)
------------------------	--------------------	---------------

S.No	Cl	C2	C3
1	1	1	1
2	1	2	2
3	1	3	3
4	2	1	2
5	2	2	3
6	2	3	1
7	3	1	3
8	3	2	1
9	3	3	2

The above table.5 shows the Orthogonal Array matrix Of L9 (3**3). In this, the First row indicates the number of factors that are tested which are 3. The First column shows the number of specimens that must be prepared as per the Taguchi design of Experiment, in this case being 9. The other columns underneath show the levels of each factor, in this case 3 i.e. (High-3, Medium-2 and Low-1).

3.2 INPUT Variables for 9 Runs, 3 Levels and 3 Factors:-

Table 2. Input variables for 9 Runs, 3 Levels and 3 Factors

Runs	Speed	Forging pressure	Cooling Method
1	980	22	Air
2	980	25	Water
3	980	28	Oil
4	1250	22	Water
5	1250	25	Oil
6	1250	28	Air
7	1580	22	Oil
8	1580	25	Air
9	1580	28	Water

A Peer Revieved Open Access International Journal

www.ijiemr.org

The Above Table

Explains about the Input variables which were considered for testing the Bending load for the joint between SS316 and EN-8 for three levels of factors which are High, Medium and Low. These 3 factor levels selected based on data from literature is indicated below as per the Taguchi design matrix.

3.3 Bending load Test results:-

	Table 3.0. Bending load Test results
	Bending Load
RUNS	Kg
1	80
2	100
3	50
4	130
5	180
6	300
7	90
8	300
9	290

3.4 Optimum input variables of friction welded joint for Maximum Bending Load

- Rotational speed 1580 R.P.M
- Friction Pressure 25 bar
- Cooling Method Air
- 3.5 Summary of Experimental Results of Bending load in Kg

Table 4. Summary of Experimental Results for Bending Load

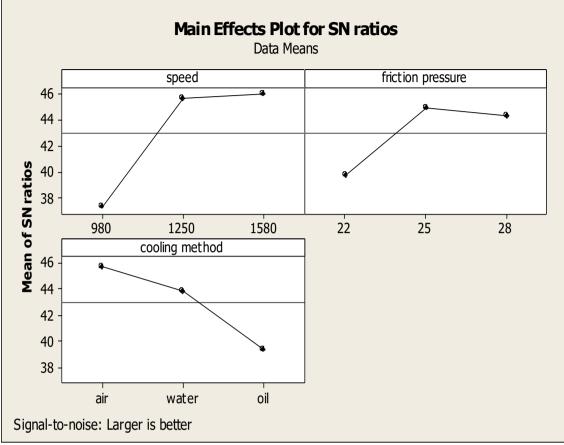
		Table 4. Summary	of Experimer	ital Results f	or Bending Loa	ıd
S.NO	Speed	Forging Pressure Bar	Cooling	Fails	Bending	
	r.p.m		Method	at	Test Kgs	
1	980	22	Air	WELD	80	
2	980	25	Water	WELD	100	
3	980	28	Oil	WELD	50	
4	1250	22	Water	WELD	130	
5	1250	25	Oil	WELD	180	
6	1250	28	Air	WELD	300	
7	1580	22	Oil	WELD	90	
8	1580	25	Air	WELD	300	
9	1580	28	Water	WELD	290	

3.6. Taguchi Analysis of Bending Load using Minitab software and Signal to Noise Ratio

_ . . . _

Table 5. Response Table for S/N Ratio of Bending Loa	d
--	---

_


Level	Speed	Friction pressure	Cooling Method
1	37.35	39.81	45.72
2	45.64	44.88	43.84
3	45.96	44.26	39.39
Delta	8.61	5.07	6.33
Rank	1	3	2

The response table5 shows the average S/N ratio of each response characteristic for each level of control factor. The table5 includes ranks based on Delta statistics, which indicate the relative magnitude of main effects of control factors on response. The Delta statistic is the highest minus the lowest average for each factor. Minitab assigns ranks based on Delta values; rank 1 to the highest Delta value, rank 2 to the second highest, and so on.

A Peer Revieved Open Access International Journal

www.ijiemr.org

Fig.1. Main effects plot for S/N Ratio for Bending Load

.

Source	DF	Seg SS	Adj SS	Adj MS	F	P
Speed	2	39089	39089	19544	40.91	0.024
Friction Pressure	2	21956	21956	10978	22.98	0.042
Cooling Method	2	21689	21689	10844	22.70	0.042
Error	2	956	956	478		
Total	8	83689				

S= 21.8581	R-Sq = 98.86%	R-
Sq(adj) = 95.43%	1	

Predicted	Values:-

S/N Ratio	=	50.5914
Mean	=	308.889

3.7. The Regression equation is

Bending Load = -613 + 0.243 Speed + 18.9 Friction pressure

Predictor	Coef	SE <u>Coef</u>	Т	P
Constant	-612.5	281.0	-2.18	0.072
Speed	0.24345	0.09970	2.44	0.050
Friction pressure	18.889	9.986	1.89	0.107

S = 73.3842 R-Sq = 61.4% R-Sq(adj) = 48.5%

Analysis of Variar	ice				
Source	DF	SS	MS	F	Р
Regression	2	51377	25689	4.77	0.058
Residual Error	6	32311	5385		
Total	8	83689			
Source	DF	Seg SS			
Speed	1	32111			
Friction pressure	1	19267			

4. CONCLUSION OF EXPERIMENTAL NO 1

Table 5. shows response table for S/N ratio and the most significant factor among the three control factors is the SPEED followed by COOLING METHOD and then FRICTION PRESSURE. The R^2 value indicates that the predictors explain 98.86% of the

A Peer Revieved Open Access International Journal

www.ijiemr.org

variance in Bending Load. The Adjusted R^2 is 95.43% which accounts for the number of predictors in the model. Both values indicate that the model fits the data well. The value of R^2 and adjusted R^2 signify that regression model provides an excellent explanation of the relationship the independent variables between (factors) and the response variable.i.e. Bending Load. The associated P value 0.058 for the model which is less than 0.5 indicates that the model is statistically significant.

5. CONFIRMATION EXPERIMENT FOR L9 BENDING LOAD

The confirmation experiment is the final step in the first iteration of the design of the experiment process. The purpose of the confirmation experiment is to validate the conclusions drawn during the analysis phase. The confirmation experiment is performed by conducting a test with optimal combination of the factors and levels previously evaluated. Here after determining the optimum control factor levels the response i.e, bending load is testedagain under these conditions, A new experiment was designed and conducted with the optimum levels of the welding parameters. The final step is to predict and verify the improvement of the response characteristic using MINITAB software. The predicted response is calculated using equ.(1).

 $\eta = \eta_{m} + \sum_{i=1}^{k} (\eta_{i} - \eta_{m}); \ j = 1, 2, 3.....k \qquad(1)$

welding parameters that significantly affect the performance. The results of experimental confirmation using optimal welding parameters and comparison of the predicted bending strength with the actual bending strength using the optimal welding parameter are shown in table.

The S/N ratio $\eta\left(dB\right)$ is calculated for higher the better option as under

	Initial Process	Optimal Process		Improvement in s/n
	Parameter	Parameter		ratio and Bending
				strength in %
	(y1) Nominal	Predicted	Confirmation	
	value	value	experiment value	
			(y2)	
Bending Load(kgs)	168.888	308.889	440	61.61
S/N (dB)	44.551	50.59	52.86	15.71

The improvement in Bending Load at optimal factor levels compared to nominal Bending Load is significant and found to be 61.61%.

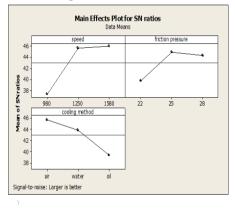
6. EXPERIMENT NO2.

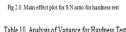
Following the experiment no1. Conducted , the experiment no.2 is carried out on similar lines and the S/N ratio for hardness is calculated as shown in Table 9.

Table 9.	Response	Table	for S/N	Ratio	for	Hardness	

Level	Speed	Friction pressure	Cooling Method
1	43.90	44.05	45.75
2	44.05	44.21	44.05
3	43.75	43.44	43.90
Delta	0.30	0.77	0.31
Rank	3	1	2

The response tables show the average of each response characteristic (s/n ratio) for each level of the control variable. In this experiment for hardness, forging pressure has the highest delta rank and effect on the


A Peer Revieved Open Access International Journal


Predicted Values:

response, followed by cooling method and finally the speed.

Here our goal is to increase the Hardness of friction welded joint between SS 316 and EN-8 materials and determine the factor levels which give the highest hardness of the joint. As shown in fig.2, the level average in the table.8, shows that the means were maximized at rotational speed of 1580r.p.m and friction pressure of 25bar and cooling method followed being cooled in air.

- 6.1 Based on these results, for maximized Hardness we should set the control factors at:-
 - Friction pressure 25 bar •
 - **Rotational Speed** 1580 R.P.M. •
 - Cooling Method as Air

Source	DF	Seg SS	Adj SS	Adj MS	F	P
Speed	2	49.18	49.18	24.59	0.36	0.733
Friction Pressure	2	315.08	315.08	157.54	2.33	0.300
Cooling Method	2	45.02	45.02	22.51	0.33	0.350
Error	2	135.05	135.05	67.52		
Total	8	544.33				

S=8.21733 R-Sq = 75.19% R-Sq(adj) = 0.76 %

S/N Ratio = 43.9034 Mean 156,786 The Regression equation is Hardness test = 209 - 0.0050 Speed - 1.83 Friction pressure

	Table 11. T P ratios				
redictor	Coef	SE Coef	T		
N	208.01	20.27	7.14		

Predictor	Coef	SE Coef	Т	Р
Constant	208.91	29.27	7.14	0.000
Speed	-0.005035	0.01038	-0.48	0.045
Friction pressure	-1.826	1.040	-1.76	0.130

www.ijiemr.org

S = 7.64374	R-Sq = 35.6%	R-Sq(adj) =	14.1%		
Analysis of Va	ariance				
Source	DF	SS	MS	F	Р
Regression	2	193.77	96.88	1.66	0.267
Residual Error	r 6	350.56	58.43		
Total	8	544.33			
Source	DF	Seg SS			
Speed	1	313.72			
Friction pressu	ure 1	180.05			

7. CONFIRMATION **EXPERIMENT FOR L9 HARDNESS TEST:-**

The purpose of the confirmation experiment is to validate the optimal parameters determined by Taguchi method. The confirmation experiment is performed by conducting a test with a specific combination of the optimal levels of factors and a marginal improvement in hardness is observed as tabulated below.

Table 12. Improvement in S/N ratio for hardness

	Initial Process	Optimal Process		Improvement in s/n
	Parameter	Parameter		ratio and Hardness
				strength in %
	(y1) Nominal	Predicted value	Confirmation	
	value		experiment value	
			(y2)	
Hardness (kgs)	156.868	162.265	156.86	1.665
S/N (dB)	43.910	44.2044	43.910	0.331

CONCLUSION

In this study It is observed that the **bending load** is increased considerably by employing the optimal levels of the control factors . It is found that the optimum

A Peer Revieved Open Access International Journal

www.ijiemr.org

values for high bending load are 1580 r.p.m, 25 bar friction pressure and Air as the Cooling method. A study of the regression analysis for both bending load and hardness was done and the regression equation for both Bending load and hardness was established to predict the values of Bending load and hardness at levels beyond the scope of this experimental study. A correlation coefficient of 0.971 and 0.975 was established indicating that the model is satisfactorily representing the data. The pvalue less than 0.5 indicates that there is a relation between the control factors and the response thus rejecting the null hypothesis H0:And from the main affect plots the level of factors that have more effect on the Bending load and Hardness were noted. The importance of conducting this experiment for the pump industry was to reduce the cost of the shaft by using the friction welding technique. The chemicals that are used in the chemical pumps flow across the shaft in a small area. Thus by replacing $2/3^{rd}$ of the expensive material SS316 of the shaft, which is not in contact with the chemicals or corrosive fluids, with cheaply available EN8, it is possible to save substantial amounts in mass production of pumps. REFERENCES

- [1]. O. T. MIDLING, O. GRONG and M. CAMPING, in Proceedings of the 12th International Symposium On Metallurgy and Materials Science, Riso, edited by N. Hansen (Riso National Laboratory, Denmark, 1991) PP. 529-534.
- [2]. H. KREYE and G. REINER, in Proceedings of the ASM

Conference on Trends in Welding Research, Gatlinburg, TN, May 1986 edited by S. David and J. Vitek (ASM International Metals Park, 1986) PP. 728-731.

[3]. M. ARITOSHI, K. OKITA, T. ENDO, K. IKEUCHI and F. MATSUDA, Japan. Welding Society. 8 (1977) 50.

[4]. M. J. COLA, M.A.Sc thesis, Ohio State University, OH (1992).

- [5]. M. J. COLA and W. A. BAESLACK, in Proceedings of the 3rd International. SAMPE Conference, Toronto Oct., 1992, edited by D. H. Froes, W. Wallace, R. A. Cull, and E. Struckholt, Vol. 3, PP 424-438.
- [6]. Aeronautics for Europe Office for Official Publications of the European Communities, 2000.

[7]. ESSLINGER, J. Proceedings of the 10th World conference of titanium (Ed. G. LUTJERING)

Wiley-VCH, WEINHEIM, Germany, 200

- [8]. RODER O., Hem D., LUTJERING
 G. Proceedings of the 10th World conference of titanium (Ed. G. LUTJERING) Wiley-VCH, WEINHEIM, Germany, 2003.
- [9]. BARREDA J.L., SANTAMARÍA F., AZPIROZ X., IRISARRI A.M. Y VARONA J.M. "Electron beam welded high thickness Ti6Al4V plates using filler metal of similar and different composition to the base plate". Vacuum 62 (2-3), 2001.PP 143-150
- [10]. EIZAGUIRRE I., BARREDA J.L., AZPIROZ X., SANTAMARIA F.

A Peer Revieved Open Access International Journal

www.ijiemr.org

Y IRISARRI A.M. "Fracture toughness of the weldments of thick plates of two titanium alloys". Titanium 99, Proceedings of the 9th World Conference on Titanium: Saint Petersburg, (1999), PP. 1734-1740.