

Vol 11 Issue 12, Dec 2022 ISSN 2456 – 5083 www.ijiemr.org

COPY RIGHT

2022 IJIEMR. Personal use of this material is permitted. Permission from IJIEMR must

be obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted

component of this work in other works. No Reprint should be done to this paper, all copy

right is authenticated to Paper Authors

IJIEMR Transactions, online available on 2
nd

 Dec 2022. Link

:http://www.ijiemr.org/downloads.php?vol=Volume-11&issue=Issue 12

DOI: 10.48047/IJIEMR/V11/ISSUE 12/01

Title A Review on Continuous Integration of Jenkins with Industrial Use cases

Volume 11, ISSUE 12, Pages: 1-6

Paper Authors

Nitesh Kaushik,Abhinav Khandelwal,Shiv Kumar Agarwal,

Rishi Kumar Sharma

 USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER

To Secure Your Paper As Per UGC Guidelines We Are Providing A Electronic

Bar Code

1

A Review on Continuous Integration of Jenkins with Industrial Use cases

Nitesh Kaushik
1*

,Abhinav Khandelwal
2
,Shiv Kumar Agarwal

3,
Rishi Kumar Sharma

4

1,3,4
Associate Professor, Faculty of Computer Science & Engineering, Poornima University, Jaipur,

Rajasthan, India
2
UG Student, Faculty of Computer Science & Engineering, Poornima University, Jaipur, Rajasthan,

India

ABSTRACT

An open source automation server is called

Jenkins. Continuous integration and continuous

delivery are made possible by it by automating

the software development processes of

developing, testing, and deploying. It is a server-

based program that runs on Apache Tomcat or

another servlet container. It can run arbitrary

shell scripts, Windows batch operations, and

version control programs including AccuRev,

CVS, Subversion, Git, Mercurial, Perforce,

Clear Case, and RTC. It also supports Apache

Ant, Apache Maven, and set-based projects.

Continuous integration and continuous delivery

may significantly lessen the issue of finding and

fixing bugs slowly. A company can produce

several releases that adhere to the deadline as

long as the time needed to detect, and repair

issues is decreased. For the continuous

integration process, several software solutions,

such as Jenkins, Bitbucket, and TeamCity, have

been created.

Keywords: Jenkins, Automation Server, GUI,

Apache, CVS, CI, Pipelines.

developers who contribute to the source code at the

time the code is submitted.

With the help of automated building and testing, the

integration is confirmed. Upon a successful test, the

Deployment testing done of builds. [1,2]

1.1 USE CASES

1.) Jenkins lowers the Effort of repeated coding

Jenkins makes it possible to convert command-line

code into GUI button clicks, which minimizes the

work required for repetitive writing. To accomplish

this, the script might be packaged as a Jenkins task.

Jenkins jobs can take user input or be parameterized

to be customized. Thousands of lines of code can be

saved as a result.

2.) Integration of Individual Jobs
Jenkins tasks are frequently straightforward tools.

They succeed in a few, modest objectives. Jenkins

provides a pipeline plugin that makes it possible to

combine many tasks. Pipelining provides this

benefit, and Linux users are best suited to take

advantage of it. Combinations may be parallel or

sequential.

 3.) Synchronization with Slack

A sizable team communicates via a centralized

1. INTRODUCTION

Everything from workstations on corporate

intranets to powerful servers connected to the

public internet use Jenkins. Jenkins provides many

configuration choices for activating, modifying, or

turning off different security elements to safely

serve this vast range of security and threat profiles.

To ensure that Jenkins is safe, several of the

security options are enabled by default after the

interactive setup wizard is completed. Others

depend on use cases enabled by unique Jenkins

instances and necessitate setting up and making

trade-offs specific to the Continuous Integration

(CI) is a process in software development that

involves integrating the changes made by the

platform. Slack is one of these most well-liked

services. Jenkins may connect to Slack so that

details about triggered actions, their times, users'

names, results, etc. may be communicated with

others.

4.) Effortless Auditing
Jenkins can perform database auditing thanks to this

plugin. The person who started the build, the node

where it is executed, and any build parameters (if

any) can all be recorded in the database. [3]

XML files are already used to store Jenkins

activities.

The rest of the paper is organized as follows: Section

2 describe about the Continuous Integration, Section

3 describes about the research findings which

1

2

include resources and procedures, pipelines,

Section 4 includes Jenkins- CI workflow

orchestration, Jenkins- CI project and plugins,

Jenkins-CI cell profiler, and Overview of pipeline

automation, Section 5 includes Conclusion and

Future Scope and lastly Section 6 tells about the

references.

2. CONTINUOUS INTEGRATION(CI)

Programmers are required to often integrate their

work into a main repository as part of a process

known as continuous integration. Instead of

creating new features from scratch without any

quality assurance, each change is compared to the

central repository to identify issues. Each

developer makes daily contributions to a shared

mainline, and every contribution kick starts an

automated build and test process. A faulty build

or test can be identified and fixed in a couple of

minutes without endangering the entire structure,

process, or project. It is possible to isolate issues

in this way to fix them more rapidly and create

products of higher quality. [4]

3. RESEARCH FINDINGS

The Jenkins Integration Development Environment

(IDE) is highlighted, and five distinct software

integration solutions are reviewed and compared to

ascertain their usefulness. According to the

investigation, Jenkins can help with the quick and

easy correction of severe flaws in contrast to other

technologies. [3]

Jenkins has developed from a Continuous

Integration platform to a Continuous Delivery

platform. It has embraced the automated build,

release, and delivery processes used in modern

design. The challenges that Jenkins tracking

capabilities must overcome are listed. When

moving from CI to CD, there are a few problems

that must be resolved, including versioning

artifacts that must be constantly shippable and

monitoring the environment where artifacts are

generated. Although many attempts have been

made to overcome these issues and many solutions

have been proposed, a more thorough investigation

is required.

Software patches are integrated and distributed to

consumers using Jenkins. The advantage of using

the Jenkins tool for software development in

business undertakings is presented using a real-

world example. Developers might gain time at

work by automating the entire process. Jenkins is

implemented using a master/slave architecture, as

seen in Figure 2, where the master node is the

Jenkins server and the slaves are the Jenkins clients.

We go into great length on the value and use of the

numerous plug-ins that are available to aid in

development. [5]

The automation scripts that have been established

can expand in the future.

In a continuous integration system, source code and

build script maintenance is done automatically. The

first strategy entails conducting an empirical

examination of software build failures and build

repair trends. A method for using build scripts to

automatically remedy build problems has been

created based on the findings of the empirical

investigation. It is suggested to extend this repair

procedure to include both the build script and the

source code. It is advised that user research be done

to quantify the automatic fixes and offer a

comparison between the fixes produced by the

suggested approach and actual repairs. [4]

When an integration is finished, the code is built and

tested. It could be difficult for the developers to

comprehend some of the problems that were

discovered during testing. Testing large code blocks

can occasionally be time-consuming. To mitigate

this, the developers might resort to making

significant changes to the code, which might

ultimately slow down the integration process. A

novel testing approach is proposed in which testing

is performed on a small fraction of the updated code

rather than the entire piece of code, i.e., the test is

concentrated on a single area of the entire code. A

"micro-pipeline" concept is presented.

Fig 1. Jenkins Master/ Slave Configuration

In this figure it tells about the Jenkins Master

or slave Configuration, which includes

Ubuntu, fedora, windows 7, windows 8.

2

3

3.1 RESOURCES AND PROCEDURES

1. Image Capture
With a 10 objective, cell images were taken using

the IN Cell 2000 (GE Healthcare,

Buckinghamshire, UK) for small interfering RNA

(siRNA) screening. FITC was exposed for 0.7

seconds, compared to 0.1 seconds for DAPI. Flat-

field correction was used on both channels. Pictures

were taken using the DAPI (80 MS exposure) and

FITC (1000 MS exposure) channels with a binning

value of 1 1 for the phosphoprotein identification

test using an IN Cell 2000.

2. Tools for configuring software are gaining

popularity every day. In this work, we introduce

Jenkins, an open source continuous integration

solution that is mostly server-oriented and operates

in a container like a servlet (like, Apache Tomcat).

Various Source Control Management (SCM) tools,

such as Subversion, Mercurial, Perforce, Clear

Case, and Rational Team Concert, are supported

(RTC). Jenkins design feature and applications and

compare five software integration. [9]

3.2. PIPELINE

A Jenkins pipeline is made up of several tasks,

processes, or events that are linked to one another

in a certain sequence. It is, in other words, a group

of plugins that enable it simple to use and

integrate continuous delivery pipelines.

Extensible automation aids a pipeline in the

creation of both straightforward and complex

delivery pipelines using domain-specific

language, or DSL. [6]

The Jenkins pipeline automates many CI/CD

pipeline operations, making them extremely

predictable, efficient, repeatable, and high-

quality. Jenkins oversees attaching tasks with a

specific format to the pipeline. It stands for the

pipeline's continuous delivery, DevOps life cycle

management, and SDLC activity integration. The

diagram below shows the Jenkins pipeline.

This comprises Build, Deploy, Test, and Release

activities that are continuously integrated and

delivered. It is done because these tasks depend

on one another and because the pipeline has a

specific shape. To reduce the cost, time, and

number of iterations without compromising the

quality, this entails continuous automation.

Fig 2. Micro-Pipeline for division unit

4.JENKINS-CI WORKFLOW

ORCHESTRATION

After image capture, scientific data- and image-

processing operations are integrated and

coordinated via Jenkins-CI. Figure 1 summarizes

the key elements of a typical Jenkins-CI system,

supplemented with compute and data architectural

components of our implementation. [7]

High-capacity networked data shares mounted on

different operating systems make up the data

architecture we chose to support HPC image

processing, which is further discussed under

Results. The mapping of Jenkins language to more

widely recognized business process and workflow

principles is provided by Supplemental Table 6.1.

Fig.3 Architecture of Jenkins-CI considered as a

scientific data-processing platform. A typical

Jenkins-CI installation integrates computational

resources and local remote and data and makes

them accessible to end users via a standard web

portal.

3

4

4.1 JENKINS CI-PROJECTS AND

PLUGINS
Each project is an illustration of the Jenkins-CI

"free-style, parameterized build" project type.

Every Jenkins-CI project has a specific sequence

of build phases. Each construction step has

functionality provided by a corresponding Jenkins

plugin (such as data copying, archiving, running

commands, and writing custom scripts). The

required custom code is created using Groovy

scripts, which may then be executed using the

Groovy plugin. To build multistage pipelines, we

connect numerous jobs using the Parameterized

Trigger plugin. Cell Profiler is performed through

multistage pipelines that integrate output data and

keep track of a cluster run. We may interact with

specific stages and see workflow pipelines using

the Build Pipeline plugin. Table 1 lists the Jenkins

plugin that we make use of. [8]

4.2 JENKINS CI – CELL PROFILER

By incorporating Cell Profiler into the Jenkins

workflow, the Jenkins-CI Cell Profiler project

parallelizes and launches Cell Profiler on the Red

Hat Linux cluster. Utilizing the Distributed

Resource Management of the Univa Grid Engine,

the Cell Profiler activity is parallelized (DRM).

Jenkins uses a Groovy build step to produce the

required grid engine task array script. Using a

sequence of shell commands on the distant Linux

cluster, we launch the task array, supply the

required Cell Profiler command line options, and

set up the environment for Cell Profiler to execute

in "headless mode" (that is, from the command line

without a user interface). Groups of 12 picture sets

make up the divisions in image lists. One grid

engine processes each batch of images. Cell

Profiler task selects the range of photos in the

image list to be processed using the first and last

image set command line options. [10]

4.3 OVERVIEW OF PIPELINE

AUTOMATION

1. It is said that the Pipeline is a "Black Box."

When creating a highly autonomous pipeline, it is

essential to keep an eye on what is currently

running and where attributes are being delivered.

The remaining quality

It is necessary to have a dark box with no view of

what is happening.

2. A company cannot utilize the Pipeline again.

It is a bottom-up approach that supports

organizational teams since it is all about doing

things. Organizations are therefore urged to

develop solutions that work for themselves to

advance quickly. However, enterprises must

reproduce tried-and-true solutions because they

cannot afford to experiment any farther than at the

corporate level. [11]

3. No changes could be made to the Pipeline

The fact that planned pipelines disintegrate during

unexpected changes while still performing better

on successful routes is a significant issue. Scripted

pipelines are prone to failure, whether they are

represented in code or a flow diagram, and they

necessitate extensive redesign if the pipeline's

inputs or outputs change.

4. The Pipeline will not take obedience or safety

into account.

Typically, the team members construct the apps'

distribution pipeline.

Their job is to write software into development,

test it, distribute it to various environments, and

then track it to generate functionality. But finally,

a couple other important factors, particularly safety

and obedience, must be properly considered in any

institutions.

5. The Pipeline disregards procedures pertaining to

the commercial sector

Unavoidably, there is a risk of excessive

automation. The fact that automation must

continue implies that not everything should be

automated, though. There have always been

pipeline components that require user intervention,

4

5

such as the decision to scale back following quality

concerns, the consent to go live, or a pipeline jump

that cannot simply be automated.

6. Offering end-to-end pipeline accessibility in

the software development sequence to everyone is

one measure to address the issues mentioned

above.[13]

a. Giving teams throughout the enterprise a

framework that makes it simple for them to utilize

pipelines.

b. Enabling a model-driven approach by

standardizing updates and implementations that

can easily adapt to changes in fields and

applications.

c. Integration of security and management across

the whole pipeline.

d. Conveniently integrating human and automated

processes.

The overview of the CI stages is shown in figure 3

below. Version control, ongoing software

integration, delivery, and deployment are the four

essential processes. These four acts will be

monitored continuously

Fig 4. Overview of Continuous Integration

5. CONCLUSION AND FUTURE SCOPE

Since CI/CD shortens the time needed to find and

fix errors in a large source code base, it is essential

to use it when building software. This paper

discusses the challenges of using Jenkins to

implement CI/CD, such as the inability to quickly

find and fix bugs, the advantages of Jenkins over

other development tools, and ways to improve the

current approach, such as by using micro-pipelines

to reduce testing time and having methods to fix

build failure. Jenkins's plug-ins and the problems

that must be resolved while transitioning from CI

to CD are also highlighted.

Accelerated release cycles, cloud native

development, and increased stability are what

Jenkins will focus on in the future. Jenkins'

extensibility, community, and general purpose

have all contributed significantly to its growth over

the past ten years. But now that they are more

apparent, it still has several problems and

shortcomings.

6. REFERENCES

[1] "Continuous Integration, Delivery and

Deployment: A Systematic Review on

Approaches, Tools, Challenges and Practices," M.

Shahin, M. Ali Babar, and L. Zhu, IEEE Access,

vol. 5, pp. 3909–3943, 2017, doi:

10.1109/ACCESS.2017.2685629.

[2] "Continuous Integration and Continuous

Deployment Pipeline Automation Using Jenkins

Ansible," in 2020 International Conference on

Emerging Trends in Information Technology and

Engineering (ic-ETITE), pages 1-4, doi:

10.1109/ic-ETITE47903.2020.239.

[3] P. Rai, Madhu Rima, S. Dhar, Mahilika, and A.

Garg, "A prologue of JENKINS with comparative

examination of several software integration tools,"

in InaCom, 2015, 2nd International Conference on

Computing for Sustainable Global Development,

pp. 201-205.

[4] V. Arsenide, "Continuous Delivery with

Jenkins: Jenkins Solutions to Implement

Continuous Delivery," 2015 IEEE/ACM 3rd

International Workshop on Release Engineering,

pages 24-27, doe: 10.1109/RELENG.2015.19

"ACI (automated Continuous Integration) using

Jenkins: Key for effective embedded Software

development," N. Seth and R. Khare, 5 RAECS

2015, 2nd International Conference on Recent

Advances in Engineering & Computational

Sciences, 2015, pp. 1-6, doi:

10.1109/RAECS.2015.7453279.

[6] F. Hassan, "Tackling Build Failures in

Continuous Integration," 34th IEEE/ACM

International Conference on Automated Software

Engineering, 2019, pp. 1242–1245, doi:

10.1109/ASE.2019.00150.

[7] "Test Automation Framework for

Implementing Continuous Integration," 2009 Sixth

International Conference on Information

5

6

Technology: New Generations, pp. 784–788, doi:

10.1109/ITNG.2009.260

[8].Faheem Ullah, Adam Johannes Raft, Mojtaba

Shahin, Mansooreh Zahedi and Muhammad Ali

Babar, “Security Support in Continuous

Deployment Pipeline,” Proceedings of 12th

International Conference on Evaluation of Novel

Approaches to Software Engineering, 2017.

[9] Valentina Armenise, “Continuous Delivery

with Jenkins,” IEEE/ACM 3rd International

Workshop on Release Engineering, pp. 24-27,

2015.

[10] Zebula Sampedro, Aaron Holt and Thomas

Hauser, “Continuous Integration and Delivery for

HPC,” Practice and Experience in Advanced

Research Computing, pp. 22-26, 2018.

[11] S.A.I.B.S. Arachchi and Indika Perera,

“Continuous Integration and Continuous Delivery

Pipeline Automation for Agile Software Project

Management,” 2018.

[12] Wang yiran, Zhang tongyang and Guo yidong,

“Design and Implementation of Continuous

Integration scheme based on Jenkins and Ansible,”

pp. 245-249, International conference on Artificial

Intelligence and Big Data, 2018.

[13] Nikita Seth and Rishi Khare, “ACI
(Automated Continuous Integration) using

Jenkins: Key for Successful Embedded Software

Development,” Proceedings of RAECS UIET

Punjab University Chandigarh, 2015.

6

