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ABSTRACT 
In this paper, a method to discretize the physical domain in the shape of a linear 

polyhedron into an assemblage of all hexahedral finite elements is discussed. The idea is to 

generate a coarse mesh of all tetrahedrons for the given domain, Then divide each of these 

tetrahedron further into a refined mesh of all tetrahedrons, if necessary. Then finally, we divide 

each of these tetrahedron into four hexahedra. Further each of these hexahedra is divided into 2^3 

and 〖(2^3)〗^2  hexahedra.  A numerical scheme which decompose a arbitrary linear tetrahedron 

into 4, 4(2^3) hexahedra is presented and is applied to solve some integrals over a unit cube using 

Gauss Legendre Quadrature Rules.  
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INTRODUCTION 

The finite element method (FEM) has 

become a central tool in computer graphics, 

and it is widely used for physically based 

animation of deformations, fracture, fluids, 

smoke, or other affects. Most methods 

discretize the computational domain by 

tetrahedral or hexahedral elements and 

linear or trilinear interpolants, respectively. 

In several earlier works[1-12], numerical 

integration rules for tetrahedron are already 

established. In studies [13], composites 

integration with all tetrahedron 

decomposition is also proposed. In a recent 

study [16] numerical integration over a 

standard tetrahedron is computed by 

decomposing it into four hexahedrons and 

applied to some typical integrals.  They 

have not shown the application of the 

method to compute integrals over a linear 

polyhedron.  

         In this paper, we propose a 

method to discretize   the physical domain 

in the shape of a linear polyhedron into an 

assemblage of all hexahedral finite 

elements. We have proposed numerical 

schemes which decompose a arbitrary 

linear tetrahedron into 4, 4(2^3) hexahedra. 

This is proposed in sections 2-4 of this  

 

paper. In section 5, numerical 

integration scheme for a linear polyhedron 

which is partitioned into tetrahedra, 

pyramids and tetrahdra obtained by 

triangulating the surface of polyhedron is 

shown. In section 6, the above numerical 

schemes are applied to solve typical 

integrals over a unit cube using Gauss 

Legendre Quadrature Rules. 

 

1. VOLUME INTEGRATION OVER 

AN ARBITRARY LINEAR 

TETRAHEDRON  

Let us consider the volume integral over an 

arbitrary linear tetrahedron 𝑇1234 as 𝐼𝐼𝐼𝑇1234 (𝑓) =∭ 𝑓(𝑋, 𝑌, 𝑍)  𝑑𝑋𝑑𝑌𝑑𝑍𝑇1234~               (1) 

Where, 𝑇1234 is an arbitrary linear tetrahedron in 

Cartesian space with vertices ((𝑋𝑖 , 𝑌𝑖 ,  𝑍𝑖) ,  
i=1,2,3.4). We can transform the arbitrary 

linear tetrahedron into an orthogonal 

tetrahedron (standard tetrahedron)  𝑇1234~     by 

using the following affine coordinate 

transformation as shown in Fig.1 and the 

transformation is 
X=𝑋1 +( 𝑋2- 𝑋1)𝑥  +( 𝑋3 − 𝑋1)𝑦  +( 𝑋4 − 𝑋1)𝑧 ,  
Y=𝑌1 +( 𝑌2- 𝑌1)𝑥  +( 𝑌3 − 𝑌1)𝑦  +( 𝑌4 − 𝑌1)𝑧 ,  
Z=𝑍1+( 𝑍2- 𝑍1) x +( 𝑍2 − 𝑍1)y  +( 𝑍4 − 𝑍1)𝑧, (2) 
We now evaluate the integral 
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∭ 𝑓(𝑋, 𝑌, 𝑍)𝑑𝑋𝑑𝑌𝑑𝑍 =𝑇1234| det 𝐽|∭ 𝑓(𝑋(𝑥, 𝑦, 𝑧), 𝑌(𝑥, 𝑦, 𝑧), 𝑍(𝑥, 𝑦, 𝑧))𝑑𝑥𝑑𝑦𝑑𝑧𝑇1234~
(3) 

Where, det 𝐽 = | 𝑋21 𝑋31 𝑋41𝑌21 𝑌31 𝑌41𝑍21 𝑍31 𝑍41| , 𝑋𝑝𝑞 = 𝑋𝑝 − 𝑋𝑞 , 𝑌𝑝𝑞 = 𝑌𝑝 − 𝑌𝑞  , 𝑍𝑝𝑞 = 𝑍𝑝 − 𝑍𝑞 ,  (4)  𝑝 = 2,3,4 ; 𝑞 = 1     

 
2. COMPOSITE INTEGRATION 

OVER A UNIT ORTHOGONAL 

LINEAR TETRAHEDRON 

A composite integration by dividing the 

arbitrary linear tetrahedron into an all 

hexahedron finite element mesh is proposed. 

We first divide the arbitrary linear tetrahedron 

into four unique hexahedrons, then we refine 

this division into a mesh of 32 hexahedrons 

and finally into 256 hexahedrons. These three 

are connected and the give higher accuracies 

by using mathematical expressions of same 

order but higher rational constants. We now 

obtain the necessary coordinate 

transformations and their Jacobians which 

will transform the integration over arbitrary 

linear hexahedrons to the integrals over a 2-

cube. 

Division of a tetrahedron into four 

hexahedrons 

 We divide tetrahedron into four hexahedron 

as shown in the following figure; Fig.1.This 

is done first by joining the centroid of the 

tetrahedron to the centroids of four triangular 

surfaces which form the tetrahedron. Then we 

locate the centroids of the four triangular 

surfaces which are further joined to the mid 

points of the respective triangular edges of 

the triangular surfaces.  This creates four 

hexahedrons Ω𝑖  (𝑖 = 1,2,3,4) in the standard 

linear tetrahedron, Thus, we can write from 

eqn(3) for the triple integral over the arbitrary  

linear tetrahedron as ∭ 𝑓(𝑋, 𝑌, 𝑍)𝑑𝑋𝑑𝑌𝑑𝑍 = 𝑇1234

| det 𝐽|∭ 𝑓(𝑋(𝑥, 𝑦, 𝑧), 𝑌(𝑥, 𝑦, 𝑧), 𝑍(𝑥, 𝑦, 𝑧))𝑑𝑥𝑑𝑦𝑑𝑧 𝑇1234~                    

=|𝑑𝑒𝑡𝐽| ∑ ∭ 𝑓(𝑋(𝑥, 𝑦, 𝑧), 𝑌(𝑥, 𝑦, 𝑧), 𝑍(𝑥, 𝑦, 𝑧))𝑑𝑥𝑑𝑦𝑑𝑧Ω𝑖4𝑖=1  

                            .................... (5) 

Where, (X,Y,Z)  and (x,y,z) are different 

Cartesian spaces and  𝑇1234 ,   𝑇1234~  are the  

arbitrary linear tetrahedron and the standard 

orthogonal  linear tetrahedron respectively. Ω𝑖 (𝑖 = 1,2,3,4) are the hexahedrons created 

inside the standard linear orthogonal 

tetrahedron 𝑇1234~ . 

 
Fig.2 DIVISION  OF  A  STANDARD TETRAHEDRON INTO 

FOUR HEXAHEDRONS 

In  Fig.2 above, Ω1, Ω2, Ω3, Ω4 are Hexahedrons, 𝐶𝑖 
(i=1,2,3,4) are centroids of triangular  faces 

spanned by  vertices  {𝑉1, 𝑉2 , 𝑉3} , {𝑉2, 𝑉3 , 𝑉4} , 
{𝑉1, 𝑉3 , 𝑉4} , and  {𝑉1, 𝑉2 , 𝑉4}  respectively. 𝑃𝑖𝑗  
,{(𝑖𝑗) = (12), (23), (13), (14}, (24), (34)} are 

the midpoints of edges  joining vertices 𝑉𝑖 𝑉𝑗 and 

C   is the centroid of the standard tetrahedron. The 

nodal coordinates for the above four hexahedrons 

are shown in fig. 

We can transform  each of these  hexahedrons in 

physical  space (x,y ,z) into a  standard 2-cube in  

a parametric space  (r,s,t) by using  the  

coordinate transformations: 𝑥=∑ 𝑁ℎ(𝑟, 𝑠, 𝑡)8ℎ=1  𝑥ℎ  ;   𝑦=∑ 𝑁ℎ(𝑟, 𝑠, 𝑡)8ℎ=1  𝑦ℎ  

; 𝑧=∑ 𝑁ℎ(𝑟, 𝑠, 𝑡)8ℎ=1 𝑧ℎ         ..........(6)                

Where,  𝑁ℎ(r,s,t) are the nodal shape functions for 

a the standard 2-cube ,−1 ≤ 𝑟, 𝑠, 𝑡 ≤ 1  in the  

parametric space (𝑟, 𝑠, 𝑡)and    (𝑥ℎ  , 𝑦ℎ  , 𝑧ℎ) are 

the  nodal coordinates  of the hexahedron in the 

Cartesian space (x,y,z)   

The integrals  over  the  hexahedrons  Ω𝑖 
(i=1,2,3,4)  in Cartesian  space can be  now 

expressed from the above transformations as :        ∭ 𝑓(𝑋(𝑥, 𝑦, 𝑧), 𝑌(𝑥, 𝑦, 𝑧), 𝑍(𝑥, 𝑦, 𝑧))𝑑𝑥𝑑𝑦𝑑𝑧 Ω𝑖  

=∫ ∫ ∫ 𝑓 (𝑋(𝑥𝑖, 𝑦𝑖 , 𝑧𝑖), 𝑌(𝑥𝑖, 𝑦𝑖 , 𝑧𝑖), 𝑍(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖))1−11−11−1           
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𝜕(𝑥𝑖,𝑦𝑖,𝑧𝑖)𝜕(𝑟,𝑠,𝑡)    𝑑𝑟𝑑𝑠𝑑𝑡 ......(7)                                              

Hence from eqns(5) and (7),we obtain ∭ 𝑓(𝑋, 𝑌, 𝑍)𝑑𝑋𝑑𝑌𝑑𝑍 =𝑇1234| det 𝐽|∭ 𝑓(𝑋(𝑥, 𝑦, 𝑧), 𝑌(𝑥, 𝑦, 𝑧), 𝑍(𝑥, 𝑦, 𝑧))𝑑𝑥𝑑𝑦𝑑𝑧𝑇1234~                     

=|𝑑𝑒𝑡𝐽| ∑ ∭ 𝑓(𝑋(𝑥, 𝑦, 𝑧), 𝑌(𝑥, 𝑦, 𝑧), 𝑍(𝑥, 𝑦, 𝑧))𝑑𝑥𝑑𝑦𝑑𝑧Ω𝑖4𝑖=1  

=|𝑑𝑒𝑡𝐽| ∑ ∫ ∫ ∫ 𝑓(𝑋(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖), 𝑌(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖), 𝑍(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖))1−11−11−1  4𝑖=1    
                            

𝜕(𝑥𝑖,𝑦𝑖,𝑧𝑖)𝜕(𝑟,𝑠,𝑡)  𝑑𝑟𝑑𝑠𝑑𝑡  .......(8)                                               

 

We compute the  Jacobian  

𝜕(𝑥𝑖,𝑦𝑖,𝑧𝑖)𝜕(𝑟,𝑠,𝑡)  =( 
 𝜕𝑥𝑖𝜕𝑟 𝜕𝑥𝑖𝜕𝑠 𝜕𝑥𝑖𝜕𝑡𝜕𝑦𝑖𝜕𝑟 𝜕𝑦𝑖𝜕𝑠 𝜕𝑦𝑖𝜕𝑡𝜕𝑧𝑖𝜕𝑟 𝜕𝑧𝑖𝜕𝑠 𝜕𝑧𝑖𝜕𝑡 ) 

 
 =𝐽𝑖(𝑟, 𝑠, 𝑡) = 𝐽𝑖 

(say)    ......(9)                                                                                  

Using  eqn(2),the the coordinate trans formations  

over a hexahedron  Ω𝑖 can be now  rewritten  as 𝑋(𝑥𝑖, 𝑦𝑖, 𝑧𝑖) =   𝑋1 𝑤𝑖+ 𝑋2𝑥𝑖  + 𝑋3𝑦𝑖  + 𝑋4𝑧𝑖 𝑌(𝑥𝑖, 𝑦𝑖, 𝑧𝑖) =    𝑌1 𝑤𝑖+ 𝑌2𝑥𝑖  + 𝑌3𝑦𝑖  + 𝑌4𝑧𝑖 𝑍(𝑥𝑖, 𝑦𝑖, 𝑧𝑖) = 𝑍1 𝑤𝑖 + 𝑍2𝑥𝑖 + 𝑍3𝑦𝑖 + 𝑍4𝑧𝑖  𝑤𝑖=1 − 𝑥𝑖 − 𝑦𝑖 − 𝑧𝑖        ..(10)  

  

We may now mention that the integration over an   

arbitrary linear tetrahedron can be computed as a 

sum of four integrals over the 2-cube∶  −1 ≤𝑟, 𝑠, 𝑡 ≤ 1 which is shown in Fig.3, by applying 

Gaussian rules. 

 

Fig.3   A    2-cube  over  the  domain − 1 ≤r, s, t ≤ 1   in (r,s,t ) space 

3. DIVISION OF A TETRAHEDRON 

INTO THIRTY TWO 

HEXAHEDRONS  

We divide  each  hexahedron into  eight  

hexahedrons .This can  be done first  by 

locating the centroids of the six faces of the 

hexahedrons  and then joining the centroids  

to the midpoints of the respective edges We 

also  locate the centroid  of the  hexahedron 

and join this to the centroids of the six faces . 

This process can be repeated for the 

remaining three hexahedrons as well. This 

divides the tetrahedron into thirty two 

hexahedrons. We can then integrate over all 

the hexahedrons. This straight forward 

process is very tedious, because one has to 

obtain the coordinates of transformations and 

the respective Jacobian to apply numerical 

integration over the 2-cube.Instead of this we 

follow a more efficient method of finding the 

coordinates of transformations and their 

respective Jacobians. Using the  

transformations  of eqn(14)  and  the  

expressions  of  𝑥𝑖 , 𝑦𝑖,  𝑧𝑖, 𝑤𝑖  , 𝐽𝑖  we can  

map the hexahedrons  Ω𝑖,( 𝑖 = 1,2.3.4 ),  into 

a  2-cube in  (r,s,t) space. There is a one to 

one correspondence between 2- cube in (r,s,t) 

space and the hexahedron   Ω𝑖,  𝑖 = 1,2.3.4 ). 
Hence a division of 2-cube  correspondences 

to a  unique division of the hexahedra. Thus 

the division of hexahedra can be achieved by 

dividing the 2-cube. The division of a 2-cube 

into eight cubes of unit dimension is 

displayed in Fig.4  
 

 
Fig.4  Division  of a  2-cube into eight  cubes  of  unit dimension 

 

We now consider the integration over a 2-cube by 

dividing the2-cube into eight unit cubes. 

Let     
F(r,s,t)=
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 𝑓(𝑋(𝑥𝑖, 𝑦𝑖 , 𝑧𝑖), 𝑌(𝑥𝑖, 𝑦𝑖 , 𝑧𝑖), 𝑍(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖)) 𝜕(𝑥𝑖,𝑦𝑖,𝑧𝑖)𝜕(𝑟,𝑠,𝑡)                                 

.......................(11) ∭ 𝑓(𝑋(𝑥, 𝑦, 𝑧), 𝑌(𝑥, 𝑦, 𝑧), 𝑍(𝑥, 𝑦, 𝑧))𝑑𝑥𝑑𝑦𝑑𝑧Ω𝑖   

=∭ 𝑓(𝑋(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖), 𝑌(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖), 𝑍(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖))Ω𝑖     

            𝜕(𝑥𝑖,𝑦𝑖,𝑧𝑖)𝜕(𝑟,𝑠,𝑡) drdsdt    .................(12a) 

=∫ ∫ ∫ F(r, s, t)1−11−11−1   𝑑𝑟𝑑𝑠𝑑𝑡    
=∑ ∭ 𝑓(𝑋(𝑥𝑖,𝑗 , 𝑦 𝑖,𝑗  , 𝑧𝑖,𝑗) , 𝑌(𝑥𝑖,𝑗 , 𝑦𝑖,𝑗 , 𝑧𝑖,𝑗), 𝑍(𝑥𝑖,𝑗 , 𝑦𝑖,𝑗 , 𝑧𝑖,𝑗) )Ωi,j  8𝑗=1    

               𝐽𝑖,𝑗(𝑟, 𝑠, 𝑡) drdsdt  .....  (12b) 

=∫ ∫ ∫ F(r, s, t)0−1 𝑑𝑟𝑑𝑠𝑑𝑡0−10−1 +∫ ∫ ∫ F(r, s, t)10 𝑑𝑟𝑑𝑠𝑑𝑡0−10−1  +∫ ∫ ∫ F(r, s, t)0−1 𝑑𝑟𝑑𝑠𝑑𝑡100−1 +∫ ∫ ∫ F(r, s, t)10 𝑑𝑟𝑑𝑠𝑑𝑡100−1  +∫ ∫ ∫ F(r, s, t)0−1 𝑑𝑟𝑑𝑠𝑑𝑡0−110 +∫ ∫ ∫ F(r, s, t)10 𝑑𝑟𝑑𝑠𝑑𝑡0−10−1  +∫ ∫ ∫ F(r, s, t)0−1 𝑑𝑟𝑑𝑠𝑑𝑡1010 +∫ ∫ ∫ F(r, s, t)10 𝑑𝑟𝑑𝑠𝑑𝑡1010                           

..............................................(12c) 

=
18∫ ∫ ∫ 𝐹 (−12 + 12 𝑟. −12 + 12 𝑠. −12 + 12 𝑡) 𝑑𝑟𝑑𝑠𝑑𝑡1−11−11−1  

+
18∫ ∫ ∫ 𝐹 (12+ 12 𝑟. −12 + 12 𝑠. −12 + 12 𝑡) 𝑑𝑟𝑑𝑠𝑑𝑡1−11−11−1   

+

18∫ ∫ ∫ 𝐹 (−12 + 12 𝑟. 1−2 + 12 𝑠. −12 + 12 𝑡. ) 𝑑𝑟𝑑𝑠𝑑𝑡1−11−11−1  

+
18∫ ∫ ∫ 𝐹 (12+ 12 𝑟. 12+ 12 𝑠. −12 + 12 𝑡) 𝑑𝑟𝑑𝑠𝑑𝑡1−11−11−1  

+
18∫ ∫ ∫ 𝐹 (−12 + 12 𝑟. −12 + 12 𝑠. 12+ 12 𝑡) 𝑑𝑟𝑑𝑠𝑑𝑡1−11−11−1  

+
18∫ ∫ ∫ 𝐹 (12+ 12 𝑟. −12 + 12 𝑠. −12 + 12 𝑡) 𝑑𝑟𝑑𝑠𝑑𝑡1−11−11−1  

+
18∫ ∫ ∫ 𝐹 (−12 + 12 𝑟. 12 + 12 𝑠. 12+ 12 𝑡) 𝑑𝑟𝑑𝑠𝑑𝑡1−11−11−1  

+
18∫ ∫ ∫ 𝐹 (12+ 12 𝑟. 12+ 12 𝑠. 12+ 12 𝑡) 𝑑𝑟𝑑𝑠𝑑𝑡1−11−11−1                   

......(12d)                     

Now  referring to eqn(12),we can 

compute the new coordinate transformations 

(𝑥𝑖,𝑗 , 𝑦 𝑖,𝑗  , 𝑧𝑖,𝑗),and the corresponding 

Jacobians 𝐽𝑖,𝑗 over the hexahedron Ωi,j 
(i=1,2,3,4;j=1,2,3,4,5,6,7,8),which referes to 

jth division of the ith hexahedron  Ω𝑖 . We 

may now mention that the integration over  an   

arbitrary linear  tetrahedron  can be  now 

computed as a sum of thirty two integrals 

over the 2-cube∶   −1 ≤ 𝑟, 𝑠, 𝑡 ≤ 1 which  is 

shown in Fig.4. These integrals can  be  

computed  numerically by applying Gaussian 

rules and it will be explained  later. 

4. NUMERICAL INTEGRATION 

OVER A LINEAR 

POLYHEDRON  

Numerical integration over a n arbitrary linear 

hexahedron will be very tedious and 

complicated if trilinear transformations are 

directly used. However, the alternative is to 

divide the hexahedron into an assemblage of 

tetrahedrons and then sum the contributions 

to get the desired accuracy. This procedure 

can also be applied to the numerical 

integration over a linear polyhedron.  

Let P denote the linear polyhedron. We can 

write P=⋃ Tae,be,ce,deeMi=1 ,   where  Tae,be,ce,dee  

is a linear tetrahedron element ‘e’ with nodal 

addresses 𝑎^𝑒, 𝑏^𝑒, 𝑐^𝑒, 𝑑^𝑒 and M is the 

total number of tetrahedral  elements made in P.  

Let us consider the volume integral over an 

arbitrary linear polyhedron 

P=⋃ Tae,be,ce,deeMi=1 , defined as III P  (f) 
=∭ f(X, Y, Z)  dXdYdZP=⋃ Tae,be,ce,deeMi=1  

=∑ ∭ f(X, Y, Z)  dXdYdZTae,be,ce,deeMe=1    ...(13) 

We illustrate this procedure to integrate over 

a unit cube. We first consider a unit cube. We 

first choose to divide the unit cube into six 

linear tetrahedra which is shown in Fig.6. We 

have next shown the division of a unit cube 

into 24 tetrahedra which can be applied to 

integrate a linear convex polyhedron. This is 

done by partitioning the unit cube first into 

six pyramids and then divides each of these 

pyramids further into four unique tetrahedra. 

Base of the pyramid is a square which is 

divide into four isoscles right triangles.Then 

join the corner nodal points of these triangles 

to the centroid of the  unit cube.This division 

is shown in Fig.7.We may note that the 

procedure  applied is equivalent to first 

triangulating the six faces of unit cube,We 

then select an  interior point in the unit 

cube.By joining the three corner nodes of a 

triangle to this interior point  creats a 

tetrahedron.We repeat this process for all the 

triangles of triangulated faces of the unit cube  
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NUMERICAL EXAMPLES 

We now consider some integrals on the 

regions described above in Figs.6-7 The 

integral are:  𝐼𝐼𝐼𝑗𝑖 = ∫∫∫ 𝑓𝑗(𝑥, 𝑦, 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧 𝑉𝑖 ,i=0,1; 

j=1,2,3,4 

Where 𝑉0 a unit is cube and 𝑉1 is a irregular 

heptahedron; and the integrands 𝑓𝑗(𝑥, 𝑦, 𝑧), 𝑗 = 1,2,3,4  are defined as 𝑓1(𝑥, 𝑦, 𝑧) = 𝑥3sin(𝜋𝑦)sin(𝜋𝑧) 𝑓2 (𝑥, 𝑦, 𝑧) = sin(𝜋𝑥)sin(𝜋𝑦)sin(𝜋𝑧) 𝑓3 (𝑥, 𝑦, 𝑧) = 𝑒(−((𝑥−0,5)2+(𝑦−0.5)2+(𝑧−0.5)2)) 𝑓4(𝑥, 𝑦, 𝑧)= 278 √(1 − |2𝑥 − 1|)√(1 − |2𝑦 − 1|)√(1 − |2𝑧 − 1|) 
The values of integrals are  𝐼𝐼𝐼10 =

1𝜋2=0.10132118364233778397171412865964 𝐼𝐼𝐼20 =
8𝜋3  =0.258012275465595961328179939373 𝐼𝐼𝐼30 = 0.78521159617436901020962024602291 𝐼𝐼𝐼𝑗0 =1 

We have compared the computed values 

of the integrals (𝐼𝐼𝐼𝑗1, j=1, 2, 3, 4) which 

are in agreement. The computed 

numerical values of the above integrals 

are presented in tables. 

7. CONCLUSION 

  In this paper, a method to discretize   the 

physical domain in the shape of a linear 

polyhedron into an assemblage of all 

hexahedral finite elements is discussed. Each 

of these hexahedra can be divided into 2^3 

and 〖(2^3)〗^2  hexahedra.   This generates an 

all hexahedral finite element mesh which can 

be used for various applications. Numerical 

schemes which decompose a arbitrary linear 

tetrahedron into 4, 4(2^3) hexahedra are 

considered. These numerical schemes are 

applied to solve typical integrals over a unit 

cube using Gauss Legendre Quadrature 

Rules.  

REFERENCE 

1. P. C. Hammer, O. J. Marlowe, and A. H. 

Stroud. Numerical integration over simplexes 

and cones. Mathematical Tablesand Other Aids 

to Computation, 10:130–137, 1956 

2. H. G. Timmer and J. M. Stern. Computation of 

global geometric properties of solid objects. 

Computer Aided Design,12(6):301–304, 1980. 

3. C. Cattani and A. Paoluzzi. Boundary 

integration over linear polyhedra. Computer 

Aided Design, 22(2):130–135, 1990 

4. F. Bernardini. Integration of polynomials over 

n-dimensional polyhedra. Computer Aided 

Design, 23(1):51–58, 1991. 

5. H. T. Rathod and H. S. Govinda Rao, 

Integration of polynomials over linear 

polyhedra in Euclidean three-dimensional 

space, Computer Methods in Applied 

Mechanics and Engineering, Vol.126, pp.373-

392 (1990). 

6. H. T. Rathod and H. S. Govinda Rao, 

Integration of polynomials over an arbitrary 

tetrahedron in Euclidean three-dimensional 

space, Computers and Structures, Vol.59, No.1, 

pp.55-65 (1996). 

7. H. T. Rathod and H. S. Govinda Rao, 

Integration of polynomials over n-dimensional 

linear polyhedra, Computers and Structures, 

Vol.65, No.6, pp.829-847 (1997). 

8. H. T. Rathod and H. S. Govinda Rao, 

Integration of trivariate polynomials over linear 

polyhedra in Euclidean three-dimensional 

space, Journal of Australian Mathematical 

Society Series-B, Vol.39, pp.1-31 (1997). 

9. H. T. Rathod and S. V. Hiremath, Boundary 

Integration of polynomials over an arbitrary 

linear tetrahedron in Euclidean three-

dimensional space, Computer Methods in 

Applied Mechanics and Engineering, Vol.153, 

pp.81-106 (1998). 

10. H. T. Rathod and S. V. Hiremath, Boundary 

Integration of polynomials over an arbitrary 

linear hexahedron in Euclidean three-

dimensional space, Computer Methods in 

Applied Mechanics and Engineering, Vol.161, 

pp.155-193 (1998). 



Vol 08 Issue06, Jun 2019                                           ISSN 2456 – 5083 Page 196  

11. M. M. Rashid and M. Selimotic. A three-

dimensional finite element method with 

arbitrary polyhedral elements. International 

Journal for Numerical Methods in Engineering, 

67:226–252, 2006. 

12. T.M.Mamatha, B.Venkatesh, Gauss quadrature 

rules for numerical integration over a standard 

tetrahedral element by decomposing into 

hexahedral elements, Applied Mathematics and 

Computation 271(2015)1062-1070. 

  



Vol 08 Issue06, Jun 2019                                           ISSN 2456 – 5083 Page 197  

TABLE 1 

DOMAIN IS A UNIT CUBE DISCRITISED BY SIX TETRA HEDRONS (EACH TETRAHEDRON IS DECOMPOSED INTO F0UR 

HEXAHEDRA)  

OGLR=ORDER OF GAUSS LEGENDRE RULE 

-------------------------------------------------------------------------------------------------------------------------------------------------------------- 

OGLR                 𝑰𝑰𝑰10                                           𝐼𝐼𝐼20                                              𝐼𝐼𝐼30                                               𝐼𝐼𝐼40                                              
--------------------------------------------------------------------------------------------------------------------------------------------------- 

      5 1.013211806444221e-001    2.580122959339014e-001    7.852115963588021e-001    1.001478584900792e+000 

    10   1.013211836423378e-001    2.580122754655960e-001    7.852115961743690e-001    1.000227646249210e+000 

    15    1.013211836423378e-001    2.580122754655954e-001    7.852115961743692e-001    1.000061678153538e+000 

    20   1.013211836423378e-001    2.580122754655963e-001    7.852115961743685e-001    1.000025804554168e+000 

    25   1.013211836423379e-001     2.580122754655957e-001    7.852115961743715e-001    1.000016478982331e+000 

    30   1.013211836423380e-001    2.580122754655955e-001    7.852115961743695e-001    1.000007373245699e+000 

    35   1.013211836423377e-001     2.580122754655954e-001    7.852115961743712e-001    1.000006273893386e+000 

    40    1.013211836423377e-001     2.580122754655946e-001    7.852115961743718e-001    1.000004744754559e+000 

                                                                          

TABLE 2 

DOMAIN IS A UNIT CUBE DISCRITISED BY SIX PYRAMIDS (=24 TETRAHEDRA)   (EACH TETRAHEDRON IS DECOMPOSED INTO 

F0UR HEXAHEDRA) OGLR=ORDER OF GAUSS LEGENDRE RULE 

-------------------------------------------------------------------------------------------------------------------------------------------------------------- 

OGLR                 𝑰𝑰𝑰10                                           𝐼𝐼𝐼20                                              𝐼𝐼𝐼30                                               𝐼𝐼𝐼40                                            
--------------------------------------------------------------------------------------------------------------------------------------------------- 

      5    1.013211836443502e-001    2.580122754044406e-001    7.852115961737480e-001    1.002158759290186e+000 

    10    1.013211836423378e-001    2.580122754655962e-001    7.852115961743691e-001    1.000509125714392e+000 

    15    1.013211836423376e-001    2.580122754655944e-001    7.852115961743688e-001    1.000220551380930e+000 

    20    1.013211836423378e-001    2.580122754655957e-001    7.852115961743686e-001    1.000122286256523e+000 

    25    1.013211836423376e-001    2.580122754655948e-001    7.852115961743690e-001    1.000077545110675e+000 

    30    1.013211836423374e-001    2.580122754655982e-001    7.852115961743688e-001    1.000053507040659e+000 

    35    1.013211836423377e-001    2.580122754655942e-001    7.852115961743681e-001    1.000039126709146e+000 

    40   1.013211836423389e-001     2.580122754655933e-001    7.852115961743797e-001     1.000029848591206e+000 

---------------------------------------------------------------------------------------------------------------------------------------------------------------- 

TABLE 3 

 

DISCRITISED BY SIX PYRAMIDS (=24 TETRAHEDRA)   (EACH TETRAHEDRON IS DECOMPOSED INTO TWO HUNDRED FIFTY SIX 

HEXAHEDRA) OGLR=ORDER OF GAUSS LEGENDRE RULE 

-------------------------------------------------------------------------------------------------------------------------------------------------------------- 

OGLR                 𝑰𝑰𝑰10                                           𝐼𝐼𝐼20                                              𝐼𝐼𝐼30                                               𝐼𝐼𝐼40                                                  
--------------------------------------------------------------------------------------------------------------------------------------------------------- 

  2    1.013208334385053e-001    2.580140862513543e-001    7.852119020811539e-001    1.001418294412512e+000 

  3    1.013211837125683e-001    2.580122744592550e-001    7.852115961249017e-001    1.000566005640103e+000 

  4    1.013211836423264e-001    2.580122754658746e-001    7.852115961743749e-001    1.000297938031433e+000 

  5    1.013211836423378e-001    2.580122754655975e-001    7.852115961743655e-001    1.000181368230410e+000 

 10   1.013211836423384e-001    2.580122754655989e-001    7.852115961743788e-001    1.000039539963383e+000 

------------------------------------------------------------------------
 


