

A Peer Revieved Open Access International Journal

www.ijiemr.org

COPY RIGHT

2019IJIEMR.Personal use of this material is permitted. Permission from IJIEMR must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. No Reprint should be done to this paper, all copy right is authenticated to Paper Authors

IJIEMR Transactions, online available on 23rd Apr 2019. Link

:http://www.ijiemr.org/downloads.php?vol=Volume-08&issue=ISSUE-04

Title: ANALYSIS AND DESIGN OF G+4 COMMERCIAL BUILDING BY USING ETABS

Volume 08, Issue 04, Pages: 332–336.

Paper Authors

P.LEELA KRISHNA, G.SANTHOSHI KUMARI AND B.SRINIVASA REDDY

USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER

To Secure Your Paper As Per UGC Guidelines We Are Providing A Electronic Bar Code

A Peer Revieved Open Access International Journal

www.ijiemr.org

ANALYSIS AND DESIGN OF G+4 COMMERCIAL BUILDING

BY USING ETABS

P.LEELA KRISHNA¹, G.SANTHOSHI KUMARI² AND B.SRINIVASA REDDY³

¹Department of Civill Engineering, Welfare Engineering College, Visakhapatnam, AP, India

²Department of Civil Engineering, NSRIT, Visakhapatnam, AP, India ³Graduation Student Of Civil Department, Welfare Engineering College, Visakhapatnam, AP, India E-Mail: p.leela9@gmail.com, guresantoshi@gmail.com, reddysrinuvas@gmail.com

ABSTRACT

Structural Analysis is a branch which involves in the determination of behavior of structures in order to predict the responses of different structural components due to the effect of loads. Each and every structure will be subjected to either one or the groups of loads, the various kinds of loads normally considered are dead load, live load, wind load IS:875-1987 Part1, 2, 3, earthquake load(IS:1893-2016). ETABS (**Extended Three Dimensional Analysis of Building System**) is a software which is incorporated with all the major analysis engines that are static, dynamic, Linear and non-linear, etc. This Computer software's are also being used for the calculation of forces, bending moment, stress, strain & deformation or deflection for a complex structural system & this Software is used to analyze and design the buildings.

Keywords: Etabs, Static Analysis, Dynamic Analysis, Non-linear Analysis, Linear Analysis.

1. INTRODUCTION

The term building in Civil Engineering is used to mean a structure having various components like foundation, walls, columns, floors, roofs, doors, windows, ventilators, stairs lifts, various types of surface finishes etc. Structural analysis and design are used to produce a structure capable of resisting all applied loads without failure during its intended life. Prior to the analysis and design of any structure, necessary information regarding supporting soil has to be collected by means of geotechnical investigation. A geotechnical site investigation is a process of collecting information and evaluating the conditions of the site for the purpose of designing and constructing the foundation for a structure.

Structural engineers are facing the challenges of striving for most efficient and economical design with accuracy in solution while ensuring that the final design of a building and the building must be serviceable for its intended function over its design life time. Nowadays various software packages are available in the market for analyzing and designing practically all types of structures viz. RISA, STAADPRO, ETABS, STRUDL, MIDAS, SAP and RAM etc.

LOADS ON THE STRUCTURE A.DEAD LOAD: (IS:875-1987) PART-1

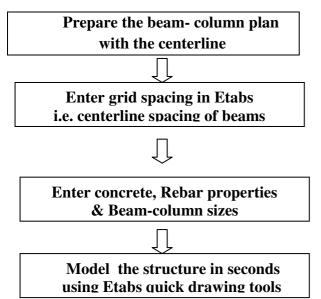
The dead load comprises of the weight of the walls, partition floors finishes, false ceiling, floors and the other false permanent constructions in the building. The dead loads may be calculated from the dimensions of various members and their unit weight. The unit weight of plain concrete and reinforced concrete made with sand and gravel or crushed natural stone aggregate may be taken as 24KN/m and 25KN/m respectively.

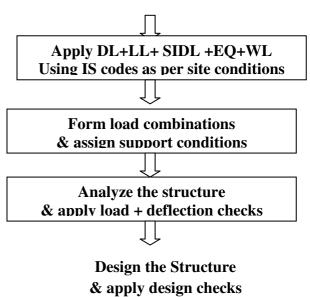
IMPOSED LOADS: (IS:875-1987) PART-2 The Imposed load is produced by the intended use or occupancy of a building including the

A Peer Revieved Open Access International Journal

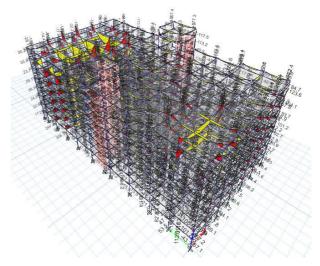
www.ijiemr.org

weight of movable partitions, distribution and concentrated loads, the load due to impact and vibration and dust loads. Imposed loads do not include loads due to the wind, seismic activity, snow and loads imposed due to temperature changes to which the structure will be subjected to creep and shrinkage of the structure, the differential settlements to which the structure may undergo.


WIND LOAD: (IS:875-2015) PART-3


Wind is air in motion relative to the surface of the earth. The primary cause of wind is traced to the earth's rotation and differences in terrestrial radiation. The radiation effects are primarily responsible for convention either upward or downwards. The wind generally blows horizontal to the ground at high wind speeds. Since vertical components of atmospheric motion are relatively small, the term 'wind' denotes almost exclusively the horizontal wind, vertical winds are always identified as such. The wind speeds are assessed with the aid of anemometers or anemograph which are installed at meteorological observations at heights generally varying from 10 to 30 meters above ground.

METHODOLOGY


Analysis and Design in Etabs:

The procedure carried out for Modeling and analyzing the structure involves the following flow chart.

MOMENT DIAGRAM FOR FRAMES OF WHOLE STRUCTURE

ETABS 2016 Concrete Frame Design IS 456:2000 Beam Section Design (Envelope)

Beam Element Details

Level	Element	Unique Name	Section ID	Length (mm)	LLRF
5F(roof)	B111	400	CB 450X1200	5930	1

Section Properties

b	h	b _f	ds	d _{ct}	d _{cb}	h
(mm) (1	mm)	(mm)	(mm)	(mm)	(mm)	(mm)
450 1	1200	450	0	40	40	1200

A Peer Revieved Open Access International Journal

Material Properties

Es (MPa)	f _{ck} (MPa)	Lt.Wt Factor (Unitless)	f _x (MPa)	fya (MPa)	Ec (MPa)	f _{ck} (MPa)
27386.13	30	1	500	500	27386.13	30

Design Code Parameters

¥с	¥s
1.5	1.15

Flexural Reinforcement for Major Axis Moment, M₁₁3

	End-I Rebar Area mm ²	End- I Reb ar %	Middle Rebar Area mm ²	Mid dle Reb ar %	End-J Rebar Area mm ²	End- J Reb ar %
Top (+2 Axis)	0	0	918	0.17	2181	0.4
Bot (-2 Axis)	1989	0.37	1305	0.24	0	0

Flexural Design Moment, M_{u3}

	0	Statio n Loc	e Desig	e Statio n Loc	End-J Desig n M.	Statio n Loc
Top (+2 Axis)	0	1186	-309.9	3953. 3	- 1103. 4	5480
Comb	UDCo		UDCo		UDCo	
0	n50		n49		n41	
Bot (- 2 Axis)	994.4	0	671.4	1581. 3	0	5480
Comb	UDCo		UDCo		UDCo	
0	n2		n42		n50	

Shear Reinforcement for Major Shear, $V_{u2} \label{eq:var_star}$

End-I	Middle	End-J							
Rebar A _{sv} /s	Rebar A _{sv} /s	Rebar A _{sv} /s							
mm²/m	mm²/m	mm²/m							
498.8	821.05	806.94							

Design Shear Force for Major Shear, $V_{\rm u2}$

				WW	w.ijiem	r.org
End-I	End-I	Middle	Middle	End-J	End-J	
Design	Station	Design	Station	Design	Station	
$\mathbf{V}_{\mathbf{u}}$	Loc	Vu	Loc	$\mathbf{V}_{\mathbf{u}}$	Loc	
kN	mm	kN	mm	kN	Mm	
121.22	1186	0.4	3953.3	457.38	4348.7	
99	1100	0.4	3933.3	66	4340.7	
UDCo		UDCo		UDCo		
n50		n2		n2		

Torsion Reinforcement

Shear						
Rebar A _{svt} /s						
mm²/m						
821.05						

Shear Design

Stati on Loca tion	ID	Reb ar mm ²/m	Shear Combo	P _u kN	M _u kN- m	V _u kN	V _c kN	V _c + V _s kN
Тор	Leg 1	575	UDCon 42	117.5 281	106. 1	- 103. 2259	33.8 195	131.7 595
Тор	Leg 2	575	UDCon 42	228.6 369	131. 1	- 90.5 879	67.5 114	263.3 914
Тор	Leg 3	575	UDCon 41	108.8 204	- 82.8	85.2 328	33.6 464	131.5 864
Тор	Leg 4	575	UDCon 38	835.0 487	615	- 359. 2297	135. 598 3	505.7 783
Тор	Leg 5	575	UDCon 42	1270. 7438	109 0.4	- 694. 2774	 311. 279 2 	1201. 0392
Тор	Leg 6	575	UDCon 37	483.6 245	- 144. 7	97.4 201	128. 61	498.7 9
Тор	Leg 7	575	UDCon 37	589.6 295	- 440. 7	237. 148	130. 718	500.8 98
Botto m	Leg 1	851. 02	UDCon 42	248.9 706	- 197. 7	- 181. 3873	36.4 334	181.3 873
Botto m	Leg 2	634. 18	UDCon 42	440.0 072	- 285. 1	- 287. 7561	71.7 147	287.7 561

A Peer Revieved Open Access International Journal

www.ijiemr.org

Stati on Loca tion	ID	Reb ar mm ²/m	Shear Combo	Pu kN	M _u kN- m	V _u kN	V _c kN	V _c + V _s kN
Botto	-	575	UDCon					
m	3		41	337	7	9026	868	268
Botto m	Leg 4	575	UDCon 38	380.3 847	- 469. 5	- 389. 4355	126. 557	496.7 37
Botto m	Leg 5	575	UDCon 42	1625. 659	- 283. 4	- 721. 5646	318. 337	1208. 097
Botto m	Leg 6	575	UDCon 38	731.8 85	-104	- 171. 5573		503.7 269
Botto	Leg	575	UDCon	552.9	175.	234.	129.	500.1
m	7	515	37	722	8	0586	989	69

Boundary Element Check									
Statio		Edge	Gove		М	Stragg	Strong		
n	ID	Lengt	rning	Pu	M _u	Stress	Stress		
Locati	ID	h	Com	kN	kN-	Comp MPa	Limit		
on		(mm)	bo		m	MPa	MPa		
Top-	Leg	0	UDC	48.62	2.2	0.52	7		
Left	1	0	on47	4	-2.2	0.52	7		
Top-	Leg	230	UDC	188.4	010	7.52	7		
Right	1	230	on47	143	81.8	1.32	7		
Тор-	Leg	0	UDC	247.1	-	1 17	7		
Left	2	0	on31	168	14.1	1.17	7		
Тор-	Leg	0	UDC	336.7	44.1	2.07	7		
Right	2	0	on31	105	44.1	2.07	7		
Тор-	Leg	230	UDC	108.8	-	7.01	7		
Left	3	230	on39	204	82.8	7.01	7		
Тор-	Leg	0	UDC	108.3	19.6	0.07	2.27	7	
Right	3	0	on39	257	19.0	2.27	7		
Top-	Leg	0	UDC	812.3	120	0.01	2.31	7	
Left	4	0	on27	283	-139	2.31	7		
Top-	Leg	0	UDC	1170.	254.	2.02	7		
Right	4	0	on27	0813	3	3.62	7		
Top-	Leg	0	UDC	2233.	1(0	1.00	7		
Left	5	0	on27	8058	-168	1.96	7		
Top-	Leg	0	UDC	2301.	<u></u>	1.0	7		
Right	5	0	on27	2828	33.3	1.9	7		
Top-	Leg	0	UDC	573.6	4.0	1 1 4	7		
Left	6	0	on3	776	-4.2	1.14	7		
Top-	Leg	0	UDC	716.5	27	1 / 1	7		
Right	6	0	on3	66	2.7	1.41	7		
Top-	Leg	0	UDC	1243.	-	2 77	7		
Left	7	0	on39	3634	66.7	2.77	7		
Top-	Leg	0	UDC	972.5	224.	2.07	7		
Right	7	0	on39	51	6	3.07	7		
Botto	Lac		UDC	240.0	-				
m–	Leg	230	UDC on2	249.0 573	133.	11.82	7		
Left	1		on2	575	3				
Botto	I a~		UDC	00.20					
m–	Leg	0		80.38	29.6	2.81	7		
Right	1		on2	79					
Botto	Laa			500 7	-				
m–	Leg	0	UDC	589.7	139.	4.79	7		
Left	2		on36	562	8				
Botto	Leg	0	UDC	440.0	57.8	2.7	7		

A Peer Revieved Open Access International Journal

www.ijiemr.org

Statio		Edge	Gove		М	Strong	Stragg
n	ID	Lengt	rning	Pu	M _u kN-	Stress Comp	Stress Limit
Locati	IJ	h	Com	kN	m	MPa	MPa
on		(mm)	bo		111		
m–	2		on36	812			
Right							
Botto	Leg		UDC	194.2	_		
m–	3	230	on40		82.1	7.58	7
Left	5		011-10	51	02.1		
Botto	Leg		UDC	317.0	132		
m–	3	230	on40	337	1 <i>32</i> . 7	12.28	7
Right	3		011-0	557	/		
Botto	Leg		UDC	601.5	-		
m–	4	0	on2	408	275.	2.62	7
Left	т		0112	400	8		
Botto	Leg		UDC	620.5			
m–	4	0	on2	626	79.3	1.63	7
Right	т		0112	020			
Botto	Leg		UDC	2384.	_		
m–	τε _ε 5	0	on2	2504. 8649	817	2.01	7
Left	5		0112	0072	01.7		
Botto	Leg		UDC	2063.			
m–	10g	0	on2	1083	92.5	1.76	7
Right	5		0112	1005			
Botto	Leg		UDC	977.9	_		
m-	6	0	on2		86.5	2.36	7
Left	0		0112	107	00.5		
Botto	Leg		UDC	482.1			
m–	6	0	on2	799	5	0.97	7
Right	0						
Botto	Leg		UDC	783.8			
m–	T 7	0	on31	332	-23	1.65	7
Left							
Botto	Leg	0		855.9	18.5	1.77	7
m–	7	0	on31	671	10.5	1.//	'

Statio n Locati	т	Edge Lengt h (mm)	rning Com	Pu	M _u kN- m	Stress Comp MPa	Stress Limit MPa	
on		(mm)	bo					
Right								

CONCLUSION

1) The structural design is based on the ETABS and the theory of LIMIT STATE METHOD which provide adequate strength, serviceability, and durability besides the economy.

2) The preparation of the project has provided an excellent opportunity to emerge ourselves in planning &designing of G+4 commercial building.

3) This project has given an opportunity to recollect and coordinate the various methods of designing and engineering principles which we have learned in our lower classes.

4) The displacement, shear force, bending moment variation has been shown by ETABS.

5) If any beam and column fail, the dimensions of beam and column should be changed and reinforcement detailing can be produced.

6) By this project we are able to identify, formulate, and solve complex engineering problems by applying principles of engineering.